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Abstract A key interest in clinical diagnosis and phar-

maceutical industry is to have a repertoire of noninvasive

biomarkers to—individually or in combination—be able to

infer or predict the degree of liver injury caused by path-

ological conditions or drugs. Metabolomics—a compre-

hensive study of global metabolites—has become a highly

sensitive and powerful tool for biomarker discovery thanks

to recent technological advances. An ultra-performance

liquid chromatography/time-of-flight tandem mass

spectrometry (UPLC/TOF MS/MS)-based metabolomics

approach was employed to investigate sera from galactos-

amine-treated rats to find potential biomarkers for acute

liver injury. Hepatic damage was quantified by determining

serum transaminase activity and in situ liver histological

lesions. Principal component analysis in combination with

coefficient of correlation analysis was used for biomarker

selection and identification. According to the data, serum

levels of several metabolites including glucose, amino

acids, and membrane lipids were significantly modified,

some of them showing a high correlation with the degree of

liver damage determined by histological examination of the

livers. In conclusion, this study supports that UPLC-MS/

MS based serum metabolomics in experimental animal

models could be a powerful approach to search for bio-

markers for drug- or disease-induced liver injury.

Keywords Galactosamine � Hepatotoxicity � Acute-liver

injury � DILI � Biomarkers � Serum metabolic profiling �
UPLC-MS/MS metabolomics

1 Introduction

Drug-induced liver injury (DILI) remains a major cause of

worldwide mortality (Boelsterli and Lim 2007; Ulrich

2007) and represents a serious clinical and financial prob-

lem because it is the single greatest cause of attrition in

drug development and withdrawal of approved drugs from

the market (Kaplowitz 2001). The cost of introducing a

new drug to the market (estimated at hundred of millions of

dollars) generates a high socio-economical pressure to

generate new tools and approaches for the identification of

highly sensitive biomarkers of liver toxicity. Currently,

besides liver biopsy the activity of a series of hepatic
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enzymes and proteins released into the blood by damaged

liver cells are the most useful tools available in detecting

liver damage in a non-invasive manner. Hepatic screening

test measuring bilirubin (total and unconjugated), alkaline

phosphatase, aspartate aminotransferase (AST), alanine

aminotransferase (ALT), albumin, gamma-glutamyl trans-

ferase (GGT), prothrombin time and glutathione-S-trans-

ferase are routinely used in both preclinical and human

clinical drug studies (Ozer et al. 2008). The inherent defi-

ciencies and limitations in sensitivity or specificity of each

of these existing markers preclude the use of any one

marker as the ‘‘standard’’ for detecting liver damage or

DILI (Ozer et al. 2008; Muller and Dieterle 2009). The

development of novel diagnostic biomarkers with greater

sensitivity and specificity can enhance the efficiency in the

detection of low-degree liver damage, increasing the con-

fidence of drug safety for release into the market.

Metabolomics refers to the comprehensive analysis of

endogenous small molecules present in a biological system.

The recent technological development of analytical

instruments combined with rapid progress in bioinformat-

ics has led to new opportunities to quickly and simulta-

neously measure and model huge numbers of metabolites

in biological samples (Nicholson and Wilson 2003; Fernie

et al. 2004; Chen et al. 2007; Clarke and Haselden 2008).

In consequence, metabolomics has found broad application

in the identification of biomarkers, and in the unravelling

of pathophysiological mechanism in many scientific fields,

such as plant biology (Schauer and Fernie 2006), toxicol-

ogy (Coen et al. 2007; Clarke and Haselden 2008) and

disease diagnosis (Brindle et al. 2002). Currently, meta-

bolomic profiling has been performed using a number of

techniques, including high-field nuclear magnetic reso-

nance (NMR) (Nicholls et al. 2003; Duarte et al. 2005;

Coen et al. 2007), and gas or liquid chromatography/mass

spectrometry (GC–MS, LC-MC)(Lin et al. 2010; Lutz et al.

2006; Major et al. 2006; Zhang et al. 2007; Kushnir et al.

2009). While NMR demonstrates its advantages in highly

selective and non-destructive analysis, LC–MS possesses

much higher sensitivity and resolution. The development of

ultra-performance liquid chromatography (UPLC) has

made it possible to achieve even higher resolutions, higher

sensitivities, and rapid separations when compared to con-

ventional LC methods (Nordstrom et al. 2006; Novakova

et al. 2006). UPLC combined with orthogonal acceleration

time-of-flight mass spectrometry (oaTOF–MS), which

enables the exact mass measurements, is undoubtedly a

suitable system for metabolomics (Chan et al. 2007).

However, because of this high sensitivity and capacity to

detect subtle changes, the use of well-characterized in vitro

(Dan and Yeoh 2008; Gomez-Lechon et al. 2008) and in

vivo (Newsome et al. 2000; Tunon et al. 2009) experi-

mental models are advisable in order to minimize the

impact of variables such as age, gender, genetic and life-

style heterogeneity.

For the identification of non-invasive biomarkers

enabling direct inference of the extent of liver-injury, an

UPLC/TOF-MS-based metabolomics approach was applied

to characterize the serum metabolic profile associated with

acute liver injury. D-galactosamine (galN)-treated rats were

chosen as the experimental model for two reasons. First, it is

a classical ‘‘model’’ hepatotoxin resembling human viral

hepatitis (Keppler et al. 1968) that has been widely used in

studies on different aspects such as mechanism of damage

induction, biomarker discovery and therapy of acute liver

injury (El-Mofty et al. 1975; Stramentinoli et al. 1978;

Maezono et al. 1996; Coen et al. 2007; Feng et al. 2007; Lv

et al. 2007; Komano et al. 2008; Miller et al. 2008; Yovchev

et al. 2008; Kitazawa et al. 2009). Second, studies in rats

revealed an extreme inter-animal variability in the extent of

the induced liver injury (Coen et al. 2007; Miller et al.

2008), which is convenient since it gives the opportunity to

correlate different changes in metabolite levels to different

stages of liver injury. Our results indicate that serum levels

of many membrane lipids including mono and diacylgly-

cerolphospholipids, and sphingomyelins were significantly

affected by the treatment with the hepatotoxin. Remarkably,

a number of them were identified by using exact mass

measurements, and found to be in high correlation with the

degree of cell death in the liver as assessed by histological

examination. These results constitute a clear support to use

UPLC–MS-based metabolomics to identify non-invasive

biomarkers for liver damage.

2 Materials and methods

2.1 Animal model and samples collection

All the animal experimentation was conducted in accor-

dance with the Spanish Guide for the Care and Use of

Laboratory Animals (RD 1201/2005—BOE 21/10/05).

Twenty-three male Wistar rats (14 weeks old, body weight

300–400 g), were maintained in an environmentally con-

trolled room at 22�C on a 12 h light/dark cycle and provided

with standard diet (Rodent Maintenance Diet, Harlan Teklad

Global Diet 2014) and water ad libitum. The rats were ran-

domly allocated in two groups. The test group (n = 11)

received an intraperitoneal injection of 1 g/kg/5 ml of D(?)-

galactosamine (2-amino-2-deoxy-D-galactose) hydrochlo-

ride (Sigma–Aldrich Chemical Co., Steinheim Germany)

while animals in the control group (n = 12) were injected

with the same volume of saline solution (5 ml/Kg of 0.9%

NaCl sterile). Four days before (untreated samples) and 18-h

after the injection, individualized blood samples of each

animal were drawn under anesthesia (4% isoflurane), after a
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12-h food fasting period and, the samples were quickly

processed to obtain the sera by using gel serum separator

tubes (BD Microtainer SST Tubes). The obtained sera were

transferred to a fresh Eppendorf tubes and stored at -80�C.

Immediately after blood extraction, the liver of each animal

was excised and stored in 10% formalin for histopatholo-

gical analysis.

2.2 Clinical serum biochemistry and histopathological

analysis of liver tissue

Aliquots of 10 or 1 ll serum from saline- or galN-treated

animals, respectively, were analyzed for alanine amino-

transferase (ALT) activity using Infinity ALT (GPT)

reagent (Thermo Electron, Waltham, MA). Formalin-fixed

liver sections were embedded into paraffin, sectioned to

5 lm slices, mounted on slides and stained with hema-

toxylin-eosin (American HistoLabs Inc., Gaithersburg,

MD, USA). The hematoxilin-eosin-stained tissue sections

were examined by light microscopy for morphological

changes following treatment with galN. Colour images

were captured using a 409 objective on a Zeiss Axioplan

light microscope equipped with an AxioCam HR CCD

camera and Axiovision 3.1 software (Carl Zeiss, Inc.,

Thornwood, NY, USA). DNA fragmentation, characteristic

of apoptosis, was assessed in formalin-fixed liver sections

by direct terminal deoxynucleotidyl transferase biotin-

dUTP nick end labeling (TUNEL assay) by using ApoTag�

Peroxidase in situ Apoptosis Detection Kit (Chemicon Int.,

Temecula, CA, USA) performed in accordance with man-

ufacturer’s instructions. A quantitative value referred as

cell death score (CDS) was determined for each animal by

counting the number of apoptotic cells that were detected

in 1 square millimetre of liver corresponding to the area

covered by 10 frames acquired using a 409 objective. Each

of the 10 frames were physically separated by at least

1 mm in order to cover different regions of the liver, and

they were captured by using a ‘‘blind test’’ in which the

examiner was not aware of the identity of the sample

present in each slide.

2.3 UPLC�-MS analysis

Proteins were precipitated from the defrosted serum samples

(50 ll) by adding four volumes of methanol in 1.5 ml

microtubes at room temperature. After brief vortex mixing

the samples were kept overnight at -20�C. Supernatants

were collected after centrifugation at 13,000 rpm for

10 min, and transferred to vials for UPLC�-MS analysis.

Chromatography was performed on a 1 mm i.d. 9 100 mm

ACQUITY 1.7 lm C8 BEH column (Waters Corp., Milford,

USA) using an ACQUITY UPLC� system (Waters Corp.,

Milford, USA). The column was maintained at 40�C and

eluted with a 10 min linear gradient. The mobile phase, at a

flow rate of 140 ll/min, consisted of 100% solvent A (0.05%

formic acid) for 1 min followed by an incremental increase

of solvent B (acetonitrile containing 0.05% formic acid) up

to 50% over a further minute, increasing to 100% B over the

next 6 min before returning to the initial composition in

readiness for the subsequent injection which proceeded a

45 s system re-cycle time. The volume of sample injected

onto the column was 1 ll. The eluent was introduced into the

mass spectrometer (LCT PremierTM, Waters Corp., Milford,

USA) by electrospray ionization, with capillary and cone

voltages set in the positive and negative ion modes to 3,200

and 30 V, and 2,800 and 50 V respectively. The nebuliser

gas was set to 600 l/h at a temperature of 350�C. The cone

gas was set to 50 l/h and the source temperature was set to

150�C. Centroid data were acquired from m/z 50–1,000

using an accumulation time of 0.2 s per spectrum. All

spectra were mass corrected in real time by reference to

leucine enkephalin, infused at 50 ll/min through an inde-

pendent reference electrospray, sampled every 10 s. A test

mixture of standard compounds (acetaminophen, sulfagua-

nidine, sulfadimethoxine, Val–Tyr–Val, terfenadine, leu-

cine-enkephaline, reserpine and erythromycin—all 5 nM in

water) was analyzed before and after the entire set of ran-

domized, duplicated sample injections in order to examine

the retention time stability (generally\6 s variation, injec-

tion-to-injection), mass accuracy (generally\3 ppm for m/z

400–1,000, and\1.2 mDa for m/z 50–400) and sensitivity of

the system throughout the course of the run which lasted a

maximum of 28 h per batch of samples injected. For each

injection batch, the overall quality of the analysis procedure

was monitored using ten repeat extracts of a pooled serum

sample. Corresponding root mean square coefficients of

variation were 15.3% over all variables detected in the

positive ion mode, and 11.7% in the negative ion mode.

Online tandem mass spectrometry (MS/MS) experiments for

metabolite identification were performed on a Waters QTOF

PremierTM (Waters Corp., Milford, USA) instrument oper-

ating in both the positive and negative ion electrospray

modes; source parameters were identical to those employed

in the profiling experiments, except for the cone voltage

which was increased (30–70 V) when pseudo MS/MS/MS

data were required. During retention time windows corre-

sponding to the elution of the compounds under investiga-

tion the quadrupole was set to resolve and transmit ions with

appropriate mass-to-charge values. The selected ions then

traversed an argon-pressurized cell, with a collision energy

voltage (typically between 5 and 50 V) applied in accor-

dance with the extent of ion fragmentation required. Sub-

sequent TOF analysis of the fragment ions generated accurate

mass (generally\3 ppm for m/z 400–1,000, and \1.2 mDa

for m/z 50–400) MS/MS or pseudo MS/MS/MS spectra

corrected in real time by reference to leucine-enkephalin,
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infused at 50 ll/min through an independent reference elec-

trospray, sampled every 10 s. Centroid data were acquired

between m/z 50–1,000 using an accumulation time of 0.2 s

per spectrum.

2.4 Data processing

All data were processed using the MarkerLynx application

manager for MassLynx 4.1 software (Waters Corp., Mil-

ford, USA). The LC/MS data were peak-detected and

noise-reduced in both the LC and MS domains such that

only true analytical peaks were further processed by the

software (e.g., noise spikes are rejected). A list of inten-

sities (chromatographic peak areas) of the peaks detected

was then generated for the first chromatogram, using the

Rt-m/z data pairs as identifiers. This process was repeated

for each LC-MS analysis and the data sorted such that the

correct peak intensity data for each Rt-m/z pair were

aligned in a table. Detected variables that were found to be

zero in both injections of any serum extract corresponding

to untreated animals were then removed from the dataset.

Although this process would be expected to remove vari-

ables associated with xenobiotic metabolites, the influence

of these species still has a strong impact on the analysis by

way of ion suppression effects. In order to remove this

interference, all variables co-eluting with xenobiotic

metabolites, found in the retention time region

2.75–3.55 min, were eliminated. In the case of the positive

ion mode, the resulting variable ion intensities were then

normalized within each injection, to the sum of peak

intensities in that injection. In the negative ion mode the

normalization factor for each injection was calculated from

the ratio of the median intensity to the median intensity of a

reference serum injection, as obtained from all variables

contained in the retention time bin 6–8 min. All zeros

contained within the normalized dataset were substituted

with missing values to form a single matrix with Rt-m/z

pairs for each injection. The final dataset was mean cen-

tered and pareto scaled during multivariate data analysis.

2.5 Multivariate statistical analysis

The first objective in the data analysis process is to reduce

the dimensionality of the complex data set to enable easy

visualization of any metabolic clustering of the different

groups of samples. This has been achieved by principal

components analysis (PCA) where the data matrix is

reduced to a series of principal components (PCs), each a

linear combination of the original Rt-m/z pair peak areas.

Each successive PC explains the maximum amount of

variance possible, not accounted for by the previous PCs.

Hence the scores plots shown in the PCA figures—where

the first two principal components, t[1] and t[2], are

plotted—represent the most important metabolic variation

in the samples captured by the analysis. The corresponding

loadings (p[1], p[2] etc.) for each model are the projections

of the model variables onto each of the principal compo-

nents; i.e., variables with positive loadings, p[A], correlate

with positively scoring, t[A], samples (injections) on the

same component, A. The performance levels of the PCA

models were evaluated using the R2X (variance modeled)

and Q2 (cross-validated R2X) parameters. Robust trends

captured by PCA models are reflected by similar values of

R2X and Q2.

2.6 Metabolite identification

Exact molecular mass data from redundant m/z peaks

corresponding to the formation of different parent (e.g.,

cations in the positive ion mode, anions in the negative ion

mode, adducts, multiple charges) and product (formed by

spontaneous ‘‘in-source’’ CID) ions were first used to help

confirm the metabolite molecular mass. This information

was then submitted for database searching, either in-house

or using the online ChemSpider database where the Kegg,

Human Metabolome Database and Lipid Maps data source

options were selected. MS/MS data analysis highlights

neutral losses or product ions, which are characteristic of

metabolite groups and can serve to discriminate between

database hits. Specific metabolite group MS/MS charac-

terization methods have been described previously (Barr

et al. 2010). Regiochemistry [e.g., PC(18:0/0:0), PC(0:0/

18:0)] was only specified if it could be corroborated by

mass spectral evidence. However, in many instances these

differences can be inferred by relative abundance and

retention time information, e.g., in general sn-1 mono-

acylglycerophosphocholine [PC(X:X/0:0)] is usually much

more abundant, and chromatographically retained, than

sn-2 monoacylglycerophosphocholine [PC(0:0/X:X)].

2.7 Statistics

The strength of the relationship between the different

parameters for liver damage quantization was estimated by

a Pearson correlation coefficient. The correlation between

each of the serum metabolites detected and the degree of

liver damage was assessed by calculation of Spearman rank

correlation coefficients. Value of the correlation coeffi-

cients being very near to zero, shows that no significant

correlation exists between the compared parameters.

Fisher’s exact test was used to assess the significance of the

association between metabolite and degree of liver dam-

age. A statistical significant difference was considered

when P value was less than 0.01.
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A regression model based on the logistic function f(z)

was created to predict the risk of suffering acute-liver

injury.

f zð Þ ¼ 1= 1þ e�zð Þ

where:

z ¼ �1ð Þþb1 Imethionineþb2 IlysoPC 16:0=0:0ð Þ

þb3 IlysoPC 0:0=18:0ð Þ þb4 IlysoPC 22:1=0:0ð Þ

þb5 IlysoPC 24:1=0:0ð Þ þb6 IPCð14:0=18:1Þ þb7 IPC 16:0=18:1ð Þ

The logit (z) in this model was calculated using the

intensity (Imetabolite) of a set of metabolites significantly

affected by galN treatment (Table 1, in bold). The

arbitrarily chosen metabolites have in common a small

relative standard deviation between animals (\2.5%)

before treatment with saline solution or galN, and after

treatment with the saline solution. The calculated means

for the intensity of these metabolites differ significantly

([1.9 times) between animals treated with galN and those

treated with the saline solution in all cases.

The regression coefficients (bi) were defined as follows:

bi ¼ �Iuntreatedsamples

� �
=ðI450þ I516þ I328þ I358

þ I372þ I696Þ

where Īuntreated samples represents the mean intensity of the

chosen metabolite (i) in all samples before treatment. The

values in the quotient (RIn) represent the sum of intensities

observed for a set of stable metabolites, and it is used as an

internal normalizing step to facilitate inter-individual

evaluation. The set includes six metabolites that showed a

minimal relative standard deviation (\2.5%) between all

samples before and after saline or galN treatments, and it is

formed by those with m/z 328,318; 358,367; 372,381;

450,750; 516,788 and 696,649. These metabolites were

detected in all injected samples but discarded in the iden-

tification process of PCA analysis, a tool used to identify

significant altered metabolites. This normalization step in

the algorithm used allows the grouping of information and

precludes the possible variations due to different instru-

mental setup. It is a normalization of signals within an

experiment, so it is done for every animal sample

independently.

3 Results

3.1 Serum metabolomics profiling of galN-treated rat

model for acute liver injury

Acute liver injury in a group of male rats was induced by

one-single intraperitoneal injection of galN. The control

group received an injection of saline solution only. After

18 h, one of the galN-treated rats died and was not further

considered in the subsequent study. Individualized blood

samples from the remaining of the animals were drawn,

analysed by UPLC-MS/MS and subjected of multivariate

data analysis. Due to the larger number of mass spectro-

metric peaks (1,351) detected in the mass spectrometer

working in the positive mode compared to the negative one

(143), only data obtained in the former mode was further

considered. Principal component analysis (PCA) of these

data clearly discriminated between sera of galN-treated rats

(Fig. 1, open triangles) and sera of saline-treated rats (open

squares). In addition, PCA analysis showed that saline

solution injections did not significantly modify the metabolic

profile of rat sera as judged by the clustering together with the

serum samples of untreated rats (Fig. 1, filled triangles and

squares). This supports the idea that modifications in the

endogenous serum metabolome of the different groups were

mainly due to the treatment with the hepatotoxin. The

loading plot of the PCA analysis (Fig. 2) reveals more than

100 serum metabolites grouped in different chemical fami-

lies with a significant weight in the separation of the galN-

treated from saline-treated rats. They included mainly

membrane lipids such as phosphatidylcholine, phosphati-

dylethanolamine, lysophosphatidylcholine or lysopho-

sphatidylethanolamine (Table 1). The serum levels of

sphingomyelins, amino acids (methionine, threonine or

tyrosine) and free fatty linoleic (18:2) acid were also sig-

nificantly altered by the treatment with galN (Table 1).

Amongst the metabolites that were identified by MS/MS or

analytical standards, a number of clear tendencies were

observed; in general sn-1 monoacylglycerophosphocholine,

sn-2 arachidonyl diacylglycerophosphocholine and sphin-

golipids were less abundant in animals treated with galN,

whilst diacylglycerophosphocholines, monoacylglyceropho-

sphoethanolamines and amino acids showed the opposite trend.

A prediction model was created based on the intensity

(I) of a set of metabolites (Table 1, in bold) to predict the

risk of suffering acute-liver injury. A logit (Table 2) cal-

culated by the equation described in Sect. 2 was able to

differentiate both groups, and the probability of suffering

acute-liver injury changes dramatically only for those

animals treated with galN, all of them showing liver injury

although with different severity.

3.2 Assessment of liver damage in saline- or

galN-treated rats

We next investigated whether there are endogenous serum

metabolites that correlate with the degree of liver damage.

To quantify this damage biochemical and histological

parameters were measured (Table 2). Serum ALT activity

was determined for each of the animals and was within the

normal range in the saline-treated control group, while
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Table 1 Endogenous serum metabolites significantly affected by galN-treatment

Metabolite ID m/z RT ID methoda Salineb log(NS) galNb log(NS) log(FC)c -log(p)d

AA Methionine 150.06 0.87 Standard -3.3 -2.8 0.58 3.21

AA Proline 116.07 0.61 Standard -0.7 -0.2 0.56 2.75

AA Threonine 120.06 0.59 Standard -1.1 -0.7 0.42 2.50

AA Tyrosine 182.08 0.98 Standard 0.0 1.0 1.00 4.25

FFA Linoleic acid 281.25 5.52 Standard -0.8 -0.7 0.11 1.92

Glucose 383.12 0.59 Standard -0.1 -0.3 -0.16 2.74

LysoPC(0:0/18:0) 524.37 4.54 MS/MS 0.3 -0.3 -0.64 13.45

LysoPC(14:0/0:0)) 468.31 3.60 Standard -0.4 -0.7 -0.30 7.91

LysoPC(15:0/0:0) 482.32 3.83 Standard -0.3 -0.7 -0.33 7.31

LysoPC(16:0/0:0)) 496.34 4.09 Standard 1.7 1.3 -0.42 11.14

LysoPC(16:1/0:0) 494.32 3.77 MS/MS 0.0 -0.2 -0.15 2.86

LysoPC(17:0/0:0) 510.36 4.37 Standard -0.1 -0.6 -0.47 7.14

LysoPC(18:1/0:0) 522.36 4.28 Standard 0.9 0.5 -0.34 8.75

LysoPC(18:3) 518.32 3.98 Database -1.5 -2.1 -0.54 7.40

LysoPC(19:0/0:0) 538.38 4.96 Standard -0.5 -1.0 -0.51 6.39

LysoPC(20:0/0:0) 552.40 5.26 Standard -0.8 -1.2 -0.41 7.31

LysoPC(20:1/0:0) 550.39 4.81 MS/MS -0.2 -1.0 -0.75 10.16

LysoPC(20:2/0:0) 548.37 4.44 MS/MS -0.7 -1.1 -0.40 6.73

LysoPC(20:3) 546.36 4.54 Database -1.2 -1.5 -0.31 6.50

LysoPC(20:4) 544.34 3.99 MS/MS 1.2 1.0 -0.22 4.34

LysoPC(22:0) 580.43 5.86 Database -1.1 -1.3 -0.23 6.83

LysoPC(22:1/0:0) 578.42 5.38 MS/MS -1.3 -1.7 -0.38 8.85

LysoPC(22:5/0:0) 570.36 4.12 MS/MS -1.1 -0.9 0.21 2.71

LysoPC(24:0) 608.46 6.46 Database -0.9 -1.0 -0.09 1.71

LysoPC(24:1/0:0) 606.45 5.96 MS/MS -1.0 -1.3 -0.35 8.93

LysoPC(O-16:0/0:0) 482.36 4.21 MS/MS -0.6 -1.1 -0.57 12.59

LysoPC(O-18:0/0:0) 510.39 4.80 MS/MS -1.1 -1.6 -0.48 11.61

LysoPC(O-20:0/0:0) 538.42 5.41 MS/MS -1.5 -1.8 -0.37 9.32

LysoPC(O-22:0/0:0) 566.46 6.02 MS/MS -1.9 -2.0 -0.19 3.62

LysoPC(P-18:0/0:0) 508.37 4.39 MS/MS -0.7 -1.4 -0.69 13.95

LysoPE(16:0) 454.29 4.07 MS/MS -0.3 0.3 0.53 3.72

LysoPE(18:0) 482.32 4.64 MS/MS -0.1 0.2 0.37 3.44

LysoPE(18:2) 478.29 3.93 MS/MS -0.7 0.0 0.75 6.92

LysoPE(20:4) 502.29 3.97 MS/MS -0.6 0.2 0.74 4.52

LysoPE(22:6) 526.29 3.97 Database -1.2 -0.4 0.83 4.15

LysoPE(P-16:0/0:0) 438.30 4.25 MS/MS -0.9 -1.4 -0.54 9.19

PC(14:0/16:0) 706.54 7.39 Standard -0.4 -0.1 0.31 9.80

PC(14:0/18:1) 754.55 7.50 MS/MS -0.9 -0.5 0.38 6.50

PC(14:0/20:4) 754.54 7.15 MS/MS -0.2 0.0 0.21 6.48

PC(15:0/18:2) 744.56 7.38 MS/MS 0.2 0.5 0.37 3.64

PC(16:0/16:0) 734.57 7.80 MS/MS 0.5 0.8 0.29 5.83

PC(16:0/18:1) 760.59 7.87 Standard 1.3 1.6 0.31 8.68

PC(16:0/18:2) 758.57 7.58 Standard 1.9 2.1 0.20 9.44

PC(16:0/20:5) 780.56 7.25 MS/MS 0.3 0.5 0.20 4.58

PC(17:0/18:2) 772.59 7.77 MS/MS 0.3 0.7 0.44 4.76

PC(18:0/18:2) 786.61 7.97 Standard 1.5 1.8 0.24 10.96

PC(18:0/20:4) 810.60 7.92 Standard 2.0 1.8 -0.15 7.61

PC(18:0/22:6) 834.60 7.68 Standard -0.3 -0.9 -0.60 1.85
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ALT activity in the galN-treated group was significantly

increased (60–250 fold, Table 2). Histological manifesta-

tions such as inflammation, congestion, haemorrhage and

hepatocellular degeneration along with necrotic areas were

observed in all livers from the galN-treated group, while

the control animals showed normal liver morphologies

(Fig. 3; Table 2). However, the severity of liver damage,

based on histological characteristics showed significant

inter-animal variability. Histological quantization of liver

damage was undertaken using two approaches. First, a

semi-quantitative score from 1 to 6 was assigned based on

the severity of the above-mentioned manifestations in the

hematoxilin-eosin (H&E) staining (Table 3). Second,

TUNEL staining analysis of the characteristic DNA frag-

mentation of apoptotic cells in liver sections was per-

formed, and a quantitative value referred to as cell death

Fig. 1 PCA scores plots discriminating galN-treated rats from saline-

treated or untreated rats from positive ion mode UPLCTM-MS data

(t[1]: R2X = 0.609 and Q2 = 0.585, t[2]: R2X = 0.057 and

Q2 = 0.042): untreated rats (n = 23), filled squares and triangles;

saline-treated rats (n = 12), open squares; and galN-treated rats

(n = 10), open triangles

Table 1 continued

Metabolite ID m/z RT ID methoda Salineb log(NS) galNb log(NS) log(FC)c -log(p)d

PC(18:1/20:4) 808.59 7.63 MS/MS 1.4 1.2 -0.20 4.83

PC(18:2/18:2) 782.57 7.56 Standard 2.0 2.0 -0.03 3.02

PC(P-16:0/20:4) 766.58 7.71 MS/MS 0.3 0.1 -0.20 7.64

PC(P-18:0/20:4) 794.61 7.79 MS/MS 0.4 0.2 -0.25 8.72

PC(P-18:1/20:2) 796.62 7.98 Database -0.6 -1.0 -0.41 5.72

PE(16:0/18:2) 716.52 7.61 MS/MS -0.8 0.3 1.14 3.51

SM (d18:1/16:0) 703.58 6.99 MS/MS 1.2 0.9 -0.26 9.07

SM (d18:1/18:0) 731.61 7.49 MS/MS 0.2 0.0 -0.15 3.35

SM(d18:1/14:0) 675.54 6.50 MS/MS -0.8 -1.0 -0.20 5.88

SM(d18:1/15:0) 689.56 6.75 MS/MS -0.5 -0.8 -0.28 7.11

a Metabolite identification method is indicated
b Log of the normalized signal (NS)
c Log of the average fold change (FC) between galN vs saline-treated rats (negative value = down regulation, positive value = up regulation)
d -log(p) value of Welch’s t-test between galN and saline-treated rats
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score (CDS) was determined for all animals by counting

the number of apoptotic cells in a liver section of 1 mm2

(Fig. 3; Table 3). To avoid possible bias, both analyses

were performed in a blind manner in which the examiner

was not aware of the sample identity. The data obtained

from these quantitative analyses clearly highlight the

indicated dissimilar inter-animal response to galN, which is

in agreement with previous works that have used this

experimental model (Coen et al. 2007, 2009; Miller et al.

2008). The Pearson correlation coefficients between visual

H&E score of liver sections and CDS (r = 0.9123) or

between serum ALT activity and CDS (r = 0.8863) indi-

cated that CDS is a bona fide quantitative value to define in

situ liver injury.

3.3 Serum endogenous metabolites correlate

with the degree of liver cell death

In order to detect serum metabolites correlating with the

degree of liver damage, Spearman’s rank correlation coef-

ficients between CDS scores of each animal and each of the

serum detected-metabolites were calculated (Table 3). As

result 169 endogenous metabolites were found to correlate

with CDS score (rho [ 0.71, P value \ 0.001) and from this

group 49 could be identified by using databases, chemical

standards or MS/MS data (Table 3). In addition to the sig-

nificant correlation observed with the degree of liver dam-

age, all of these 49 metabolites showed also a high

correlation with serum ALT activity (Table 3) further sup-

porting the direct connection of these metabolites with liver

damage. The average fold change between galN- and saline-

treated groups for many of the metabolites was by a factor

higher than 2 (Table 3), and as it is exemplified by box plots

in Fig. 4 the range of the serum levels was different among

the metabolites. In this sense, the highest ranges were

observed for phosphatidylethanolamine (16:0/18:2) and

tyrosine in which serum levels increased between 6 and 17,

and 8 and 22 folds after treatment with galN, respectively

(Fig. 4). Another interesting observation was that the high-

est correlation (rho [ 0.91) of liver cell death occurs with

serum levels of long-chain containing phospholipids such

as LysoPC(0:0/18:0), LysoPC(20:0/0:0), LysoPC(22:0),

LysoPC(20:1/0:0), LysoPC(22:1), LysoPC(24:1/0:0),

LysoPC(O-18:0/0:0), PC(P-18:0/20:4) (Table 3). In this

sense, an increase in the degree of liver cell death reduces the

level of these metabolites in serum, highlighting that these

metabolites could be used to define a serum metabolic sig-

nature for liver cell death in acute liver injury.

4 Discussion

In the present study, we have performed an UPLC-based

metabolomics analysis to detect candidate endogenous

metabolites suitable for the direct assessment of liver

damage degree using a minimally invasive technique.

Fig. 2 Loading plot for PCA mode positive. The ions with highest

contribution to the variance in the scores plot are indicated on the

loadings plot. The peaks are labelled according to their identifica-

tions; open square PC, filled square LysoPC, open diamond PE, filled

diamond LysoPE, filled triangle FA, open triangle SM, open inverted
triangle Bile Acid, inverted filled triangle AA, asterisk No

determinated
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We have used a well-characterized experimental model for

acute liver injury; i.e., rats treated with a single high dose

of galN that has been shown to create a hepatic lesion

resembling human viral hepatitis (Keppler et al. 1968). The

underlying molecular mechanism involves a severe deple-

tion of hepatic uridine nucleotide pool including UTP,

UDP, UMP, UDP-glucose, UDP-galactose, UDP-glucuro-

nate (Decker and Keppler 1972; Coen et al. 2007) which

results in inhibition of protein and RNA synthesis. This

molecular mechanism causes a compendium of histopa-

thological hepatic lesions described by several groups

(Keppler et al. 1968; Medline et al. 1970; Koff et al. 1971;

Miyahara et al. 1982), characterized by acidophilic

degeneration of the cytoplasm at 4 h, apoptosis and cell

death at 6 h and more extensively at 24 h. Also observed is

an inflammatory response with neutrophil accumulation

and activation of Kuppfer cells starting 6 h after toxin

administration. Hepatocytes as evidenced by light micros-

copy, show extreme variation in nuclear and cytoplasmic

size and shape, develop lipid accumulation (steatosis) that

is maximal at 24 h (Koff et al. 1971). Electron microscopy

additionally showed and increased number of autophagic

vacuoles, a reduction of glycogen particles, hypertrophy of

the smooth endoplasmic reticulum, and mitochondrial

abnormalities in size and shape (Miyahara et al. 1982). In

general, maximal response to galN administration is seen

48 h post-administration, with complete recovery within

7–12 days if the regulation of the apoptotic, necrotic and

Table 2 Liver damage assessment. Serum ALT activity and cellular death score (CDS) in liver sections from saline- or galN-treated rats

Animal ID Injection Predictiona Visual scoreb,d H&E CDSb,d (cells/mm2) ALTc,d (U/L)

Logit Model

1 Saline -2.36 0.08 1 6 26.61

2 Saline -2.38 0.10 1 6 29.55

3 Saline -2.06 0.10 1 5 26.08

4 Saline -1.71 0.16 1 3 25.15

5 Saline -1.69 0.18 1 3 18.35

6 Saline -2.60 0.07 1 2 20.01

7 Saline -2.76 0.06 1 6 25.15

8 Saline -1.68 0.16 1 10 14.68

9 Saline -2.03 0.11 1 6 15.97

10 Saline -1.83 0.15 1 8 17.80

11 Saline -1.80 0.11 1 3 18.72

12 Saline -2.07 0.11 1 1 18.90

13 GalN 8.86 1.00 6 254 5807.64

14 GalN 5.05 0.99 5 187 1321.58

15 GalN 7.63 1.00 6 149 3186.47

16 GalN 6.13 1.00 4 197 4790.72

17 GalN 4.21 0.98 3 160 1600.58

18 GalN 4.13 0.99 2 87 2654.17

19 GalN 4.11 0.98 2 103 2848.73

20 GalN 4.76 0.99 2 104 3682.06

21 GalN 6.77 1.00 3 142 3843.59

22 GalN 3.91 0.98 2 112 3601.30

a Application of a binomial prediction model based on six metabolites (bold, Table 1) to predict acute liver-injury. ‘‘Logit’’ value for each

animal is calculated as indicated in Sect. 2 considering the intensity of selected metabolites, and ‘‘Model’’ indicates the probability that the

animal suffers acute-liver injury (A value equal to or close to 1 is indicative of high probability of acute-liver injury while a value of 0 or close

means low probability to have acute-liver injury)
b 18-h after intraperitoneal injection of saline solution or galN animals were sacrificed and livers were extracted, formalin-fixed and processed

for histology. Liver sections were stained with Hematosylin-eosin (H&E), and analyzed for the presence of apoptotic cells by using ApopTag�

Peroxidase In Situ Apoptosis Detection Kit. Liver injury was assessed by visual examinations of H&E-stained sections and scored 1–6 based on

hemorragie, necrosis appearance. Liver injury was further quantified by counting apoptotic cells in 10 different randomly chosen fields covering

a total area of 1 mm2; this value is referred as cellular death score (CDS). Both analyses were done in a blind test in which the analyzer was not

aware on the sample identity
c Serum alanine aminotransferase (ALT) levels were assayed with the Infinity ALT liquid stable reagent
d Correlation analysis (Pearson r coefficient): H&E with CDS (0,91), H&E with ALT (0,75), CDS with ALT (0,88)
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inflammatory processes work properly (Decker and Keppler

1972). Different groups have used galN-based rodent

models to characterize the mechanisms causing acute liver

injury, and to identify putative diagnostic biomarkers by

using metabolomics approaches. The NMR approach was

applied in order to investigate how galN is metabolized

and what its metabolic effect is in rat livers (Coen 2010).

GC–MS/MS analysis of serum from LPS/galN-treated

mice detect 267 distinct endogenous compounds and

showed that some of them including glucose, b-hydrox-

ybutiric acid (a ketone body), 5-hydroxyindolacetic acid (the

main serotonin-derived metabolite) and several amino acids

could be used as blood metabolic markers for fulminant

hepatic failure (Coen et al. 2007, 2009; Feng et al. 2007).

We have performed an UPLC–MS/MS-based meta-

bolomics analysis of serum samples from galN- and saline-

treated animals, and we were able to detect and quantify

more than 1,351 mass spectrometric peaks in each of them

providing a very comprehensive serum metabolome for

acute liver injury. Because of the huge amount of data

generated by this UPLC–MS/MS-based approach multi-

variate statistical analysis was applied in order to determine

principal components that clearly discriminate between

animals that were treated with galN from the control group.

By applying the principal component analysis metabolites

that significantly contributed to this discrimination were

identified, including the amino acids methionine, threonine

and tyrosine, which were enriched in the serum of the

injured rats, in accordance with previous studies using

other technologies. This increment in the serum levels of

amino acids after acute liver injury has been suggested to

be caused by an inhibition of the uptake and utilization of

amino acids, especially aromatic amino acids and an

increment in the degradation of proteins in the liver (Arai

et al. 2001). In agreement also with these findings metab-

olism of methionine has been involved in liver disease

(Mato et al. 2008) and rats treated with galN were previ-

ously shown to affect these metabolism (Cabrero et al.

1988). In addition, it has been reported that livers from

control animals released glucose, whilst the livers from

galN-injured animals took up glucose reflecting a switch in

the carbohydrate metabolism, changing from gluconeo-

genesis to glycolysis (Arai et al. 2001). In concordance

with that result glucose was one of the identified metabo-

lites in our study that clearly distinguished the control from

the test group in that galN treated animals showed reduced

glucose levels (Table 1). Thus, the UPLC–MS/MS analy-

sis, as presented here, corroborates well with previous

reports regarding amino acids and glucose metabolism.

Importantly, our results show that serum levels of major

and essential structural components of membrane lipid

bilayers including phosphatidylcholines, phosphatidyletha-

nolamines and sphingomyelins were significantly increased

in acute liver injury. This increase, associated mostly with

PCs carrying short-chain unsaturated (14:0, 15:0 and 16:0)

acyl groups in the sn-1 position, could be explained by the

massive destruction of membranes as judged by the cell

death observed in the histological examination of the livers.

In contrast, lysophosphatidylcholines were reduced in the

serum samples from injured rats (Table 1). This family of

lipids are formed from PCs by PLA2 activity that has been

reported to be enhanced in galN-treated rats (Petkova et al.

1987). Contrary to what is observed in this study the

increase in PLA2 should be reflected in an increase in

LysoPCs. Lyso-phospholipids are known to be highly bio-

active molecules that can signal through G-protein-coupled

receptors (Fox et al. 2009) so a tight regulation of them

during a regenerative process will be critical for the final

outcome of an injured tissue. In this sense, it has been

shown that endothelial cells are able to degrade extracel-

lular lysoPCs (Tosti et al. 1999) reducing plasma and tissue

levels of these pro-inflammatory lipid molecules. This

activity could provide an explanation for the low levels

observed in the serum of acute liver injury, but further

experiments are needed to clarify this aspect.

Finally, a logistic regression prediction model based on

our metabolomic study was created using a selection of six

metabolites from the groups mentioned above, including

methionine, three lysophosphocholines and two phospho-

cholines. The model is able to predict the high probability

of acute-liver injury in all galN-treated animals with more

than 98% accuracy, with no false positives observed

between saline-treated animals. However, a full validation

of this prediction model will require a bigger test set. Also

it would be preferable to include samples from other

experimental models for hepatic and non-hepatic injury in

order to establish that these six metabolites are indeed

specific biomarkers for acute liver injury.

Interestingly, PE (16:0/18:2) is among the identified

metabolites the one that suffer the highest increase in the

serum of galN-treated animals. The source of this increase

could be also the massive liver cell death induced by galN.

Interestingly, PEs are enriched in the inner leaflet of

Fig. 3 Histopathology and TUNEL immunohistochemistry in liver

collected from adult male Wistar rats treated i.p. with saline solution

or D-galatosamine (1.0 g/kg). Tissues were taken on 18 h after

treatment. Representative photomicrographs of hematoxilin-eosin-

stained formalin fixed liver sections from saline- or galN-treated

animals. In situ detection of apoptotic cells by direct terminal

deoxynucleotidyl transferase-mediated dUTP nick end labeling

(TUNEL) of fragmented DNA following treatment with saline or

galN. Note that all livers from galN-treated rats showed evident signs

of lesions, such as loss of liver architecture, severe liver congestion,

haemorrhage and necrotic areas. TUNEL analysis shows clearly a

higher number of apoptotic cells in liver sections from galN-treated

rats compared to saline-treated animals. The darker stains fragmented

DNA commonly observed in apoptotic cells

b
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Table 3 Endogenous serum metabolites correlate with liver damage indicators

RT m/z ION ID metabolite Confidencea Fold change SD CDSd ALTd

rhoe P valuef rhoe P valuef

7.39 706.5384 [M?H]? PC(14:0/16:0) Standard 2.0 0.16 0.71 2.2E-04 0.74 7.4E-05

7.80 734.5724 [M?H]? PC(16:0/16:0) MS/MS 1.9 0.06 0.79 1.5E-05 0.70 3.0E-04

7.50 754.5466 [M?Na]? PC(14:0/18:1) MS/MS 2.4 0.44 0.72 1.8E-04 0.77 2.5E-05

7.87 760.5910 [M?H] PC(16:0/18:1) Standard 2.1 0.23 0.67 6.5E-04 0.73 1.3E-04

7.38 744.5561 [M?H]? PC(15:0/18:2) MS/MS 2.4 0.82 0.70 3.0E-04 0.72 1.6E-04

7.58 758.5671 [M?H] PC(16:0/18:2) Standard 1.6 0.14 0.70 2.9E-04 0.73 1.3E-04

7.77 772.5880 [M?H]? PC(17:0/18:2) MS/MS 2.8 0.78 0.67 6.5E-04 0.76 4.1E-05

7.97 786.6082 [M?H] PC(18:0/18:2) Standard 1.7 0.24 0.71 1.9E-04 0.81 4.7E-06

7.15 754.5386 [M?H] PC(14:0/20:4) MS/MS 1.6 0.32 0.75 5.0E-05 0.70 3.0E-04

7.71 766.5758 [M?H]? PC(P-16:0/20:4) MS/MS 0.6 0.09 -0.86 2.2E-07 -0.70 3.2E-04

7.79 794.6074 [M?H] PC(P-18:0/20:4) MS/MS 0.6 0.10 -0.96 1.2E-12 -0.80 6.5E-06

7.92 810.6025 [M?H] PC(18:0/20:4) Standard 0.7 0.09 -0.90 1.1E-08 -0.74 7.4E-05

7.25 780.5568 [M?H] PC(16:0/20:5) MS/MS 1.6 0.35 0.77 2.4E-05 0.85 4.7E-07

7.98 796.6198 [M?H]? PC(P-18:1/20:2) Database 0.4 0.19 -0.78 1.7E-05 -0.83 1.5E-06

3.60 468.3075 [M?H] LysoPC(14:0/0:0) Standard 0.5 0.14 -0.85 6.2E-07 -0.71 2.4E-04

3.83 482.3231 [M?H] LysoPC(15:0/0:0) Standard 0.5 0.16 -0.87 1.3E-07 -0.70 3.2E-04

4.21 482.3602 [M?H] LysoPC(O-16:0/0:0) MS/MS 0.3 0.10 -0.86 3.5E-07 -0.74 9.0E-05

4.09 496.3378 [M?H] LysoPC(16:0/0:0) Standard 0.4 0.10 -0.88 5.8E-08 -0.70 3.1E-04

3.98 496.3406 [M?H]? LysoPC(0:0/16:0) MS/MSb 0.3 0.11 -0.87 1.3E-07 -0.73 1.0E-04

4.37 510.3551 [M?H] LysoPC(17:0/0:0) Standard 0.3 0.18 -0.90 1.3E-08 -0.78 1.5E-05

4.80 510.3917 [M?H] LysoPC(O-18:0/0:0) MS/MS 0.3 0.11 -0.96 6.9E-13 -0.75 5.9E-05

4.39 508.3749 [M?H] LysoPC(P-18:0/0:0) MS/MS 0.2 0.09 -0.87 1.4E-07 -0.74 8.7E-05

4.66 524.3714 [M?H] LysoPC(18:0/0:0) Standard 0.3 0.08 -0.83 1.4E-06 -0.73 1.1E-04

4.54 524.3718 [M?H]? LysoPC(0:0/18:0) MS/MS 0.2 0.08 -0.95 1.9E-11 -0.69 4.2E-04

4.96 538.3838 [M?H] LysoPC(19:0/0:0) Standard 0.3 0.15 -0.88 7.5E-08 -0.70 3.0E-04

5.26 552.3993 [M?H]? LysoPC(20:0/0:0) Standard 0.4 0.13 -0.92 1.3E-09 -0.63 1.7E-03

5.86 580.4316 [M?H] LysoPC(22:0) Database 0.6 0.14 -0.94 1.8E-10 -0.69 3.7E-04

6.46 608.4629 [M?H] LysoPC(24:0) Database 0.8 0.22 -0.76 4.1E-05 -0.38 8.4E-02

4.81 550.3853 [M?H] LysoPC(20:1/0:0) MS/MS 0.2 0.07 -0.96 4.7E-12 -0.69 4.3E-04

5.38 578.4156 [M?H]? LysoPC(22:1/0:0) MS/MSb 0.4 0.13 -0.92 2.3E-09 -0.76 3.9E-05

5.96 606.4473 [M?H]? LysoPC(24:1/0:0) MS/MSb 0.4 0.12 -0.96 1.2E-12 -0.69 3.7E-04

4.28 522.3562 [M?H]? LysoPC(18:1/0:0) Standard 0.5 0.13 -0.87 1.4E-07 -0.67 6.3E-04

4.44 548.3699 [M?H] LysoPC(20:2/0:0) MS/MS 0.4 0.12 -0.82 2.4E-06 -0.70 2.6E-04

4.09 518.3254 [M?H] LysoPC(18:3) Database 0.3 0.11 -0.85 5.0E-07 -0.72 1.6E-04

3.98 518.3219 [M?H] LysoPC(18:3) Database 0.3 0.13 -0.85 4.0E-07 -0.70 2.6E-04

3.99 544.3407 [M?H]? LysoPC(20:4/0:0) MS/MS 0.6 0.21 -0.86 3.5E-07 -0.67 6.0E-04

7.61 716.5239 [M?H]? PE(16:0/18:2) MS/MS 13.7 7.76 0.79 1.4E-05 0.76 4.2E-05

4.25 438.2967 [M?H] LysoPE(P-16:0) MS/MS 0.3 0.15 -0.82 2.4E-06 -0.88 5.8E-08

4.07 454.2922 [M?H]? LysoPE(16:0) MS/MS 3.4 1.36 0.85 7.1E-07 0.79 1.2E-05

4.52 482.3227 [M?H]? LysoPE(18:0) MS/MS 3.1 1.47 0.76 4.1E-05 0.74 9.0E-05

4.64 482.3237 [M?H]? LysoPE(18:0) MS/MS 2.4 0.84 0.75 6.4E-05 0.82 3.8E-06

3.93 478.2927 [M?H]? LysoPE(18:2) MS/MS 5.7 1.35 0.79 1.4E-05 0.90 1.5E-08

3.97 502.2924 [M?H]? LysoPE(20:4) MS/MS 5.5 1.96 0.73 1.0E-04 0.89 3.3E-08

3.97 526.2932 [M?H] LysoPE(22:6) Database 6.7 2.92 0.75 5.4E-05 0.78 2.1E-05

6.50 675.5420 [M?H] SM(d18:1/14:0) MS/MS 0.6 0.14 -0.86 3.8E-07 -0.81 5.9E-06

6.75 689.5582 [M?H] SM(d18:1/15:0) MS/MS 0.5 0.15 -0.93 4.1E-10 -0.83 1.7E-06

6.99 703.5782 [M?H]? SM (d18:1/16:0) MS/MS 0.5 0.11 -0.92 1.3E-09 -0.80 7.2E-06
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mitochondria and is well-known that galN causes severe

damage to the mitochondria (Miyahara et al. 1982), which

raises the possibility that the increment in the levels of this

metabolite could be more specifically a consequence of a

degeneration of the mitochondrial membrane.

Liver damage was observed in 100% of the animals

treated with galN as judged by serum ALT activity and

liver histology. The quantization of this damage showed

inter-individual variability in the response of the animals to

the treatment with galN ranging from lethal to low (but

Fig. 4 Representative serum metabolites significantly altered by

galN-induced acute liver injury. Examples of metabolites showing

high correlation with CDS score are represented by box plots. For the

box plots the top and bottom of the boxes represent the 75th and 25th

percentile, respectively. The top and bottom bars (whiskers) represent

the entire spread of the data points for the animals. The hyphen
indicates the median value. The y-axis is the level of metabolite

relative to the average of the level of that metabolite in serum of

saline-treated animals

Table 3 continued

RT m/z ION ID metabolite Confidencea Fold change SD CDSd ALTd

rhoe P valuef rhoe P valuef

7.49 731.6091 [M?H]? SM (d18:1/18:0) MS/MS 0.7 0.20 -0.76 3.6E-05 -0.68 4.7E-04

0.87 150.0572 [M?H]? Methionine Standard 3.8 1.79 0.85 4.4E-07 0.80 9.8E-06

0.61 116.0698 [M?H]? Proline Standard 3.6 1.99 0.83 1.9E-06 0.79 1.5E-05

0.98 182.0792 [M?H]? Tyrosine Standard 10.0 4.36 0.83 1.8E-06 0.84 8.2E-07

0.59 120.0647 [M?H]? Threonine Standard 2.6 1.38 0.85 7.1E-07 0.82 3.4E-06

a Metabolites confirmed by MS/MS or standard are indicated
b Regiochemistry assigned based on the elution order
c Average Fold Change and standard deviation, GalN- versus saline- treated rats
d Correlation analysis with Liver damage indicators (CDS score and serum ALT activity)
e Spearman’s rank correlation coefficient GalN- versus saline- treated rats
f F-distribution probability
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visible) damage. Although we found a strong correlation

(r [ 0.75) between the three parameters (Table 2) that we

used to quantify the damage, there were outliers (e.g., animal

number 18, Table 2) with H&E and CDS scores not corre-

lating with serum ALT activity. A possible explanation

of this could be the fact that high levels of serum ALT

activity is not exclusively produced by liver injury, but could

also be indicative of muscle damage (Lott and Landesman

1984). Due to this specificity feature of the transaminase

activity we have focused our work in the correlation with

CDS scores. We took advantage of the inter-individual

variability detected in the liver damage from the galN-

treated rats to identify a serum metabolic signature to assess

noninvasively the degree of cell death that occurred during

acute liver injury. The highest correlations (rho [ 0.91,

P value \ 0.001) were observed for long-chain fatty acids

containing lipids such as LysoPC(0:0/18:0), LysoPC(20:0/

0:0), LysoPC(22:0), LysoPC(20:1/0:0), LysoPC(22:1),

LysoPC(24:1/0:0), LysoPC(O-18:0/0:0), PC(P-18:0/20:4),

SM (d18:1/15:0) and SM (d18:1/16). Thus, quantization of

these 10 metabolites in serum could constitute a very sen-

sitive method to establish the degree of liver cell death,

however further investigations in other experimental models

are required to truly establish that these metabolites are

specific biomarkers of cell death in the liver.

5 Conclusions

Our results highlight the power of UPLC–MS/MS-based

metabolomics approach in combination with an experi-

mental animal model for studying metabolic changes of

acute liver injury. We were able to identify potential non-

invasive biomarkers correlating with a specific lesion.

Extending this approach to other hepatic models with dif-

ferent liver injuries would help to provide a repertoire of

highly sensitive and specific biomarkers for different liver

affections. Although the clinical applicability of these

studies on diagnosis and prognosis of liver diseases will

still require time-consuming translational research, in a

short period of time this set of hepatic biomarkers could

assist pharmaceutical research and development, acceler-

ating the launch of safer drugs to the market.
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