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Abstract Gene set enrichment analysis (GSEA) has been

successfully employed in transcriptomics and proteomics

research for over 5 years. We have applied a modified

GSEA approach to metabolomics, called metabolite set

enrichment analysis (MSEA), and have integrated this

method into the MeltDB platform. With the novel inte-

grated functionality, we evaluate the applicability of the

approach for metabolomics research by analyzing the

metabolic profiles of industrial amino acid producer strains

of Corynebacterium glutamicum. Metabolite sets are

obtained from metabolic pathways defined in the KEGG

and the newly created CglCyc databases. In the first

experiment using MSEA, the metabolic profiling analyses

compared glucose- and acetate-grown strains, and, in the

second, a production strain series in which the carbon flow

is shifted step-wise from the lysine pathway to the

branching threonine, isoleucine, and methionine pathways.

By identifying changes of the metabolic profile MSEA was

able to identify the metabolic pathways activated while

utilizing different carbon sources or those that have

been genetically modified. The presented experimental

results are publicly available at http://meltdb.cebitec.uni-

bielefeld.de.
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1 Introduction

Metabolomics can be regarded as the most recent contri-

bution to system-wide studies. It involves the analysis of

the qualitative and quantitative collection of virtually all

metabolites in the cell (the metabolome). As metabolomics

is closely connected to the actual phenotype of an organ-

ism, it adds to the understanding of cellular systems. The

results from metabolomics experiments can be connected

to the genotype through biochemical pathways and gene

regulatory networks (Fiehn 2002). A representative bio-

chemical phenotype of an organism can be achieved

through large-scale quantitative and qualitative measure-

ments of sizeable numbers of cellular metabolites. This

phenotypic information can be used to monitor and to

assess the response of the biological system and the func-

tion of specific genes. In addition, metabolomics studies of

mutants lacking or overexpressing an enzyme of unknown

function can provide information on the specific bio-

chemical pathway the enzyme is involved in. Thus, pro-

filing the metabolome can often provide the most
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conclusive and functional information of the ‘‘omics’’-

technologies. Coupled mass spectrometry instruments are

currently one of the most widely applied technologies in

metabolomics, as they provide rapid, sensitive, and selec-

tive qualitative and quantitative analyses (Dunn and Ellis

2005). Estimations for the number of metabolites present in

living organisms range from hundreds to many thousands;

for the model organism Escherichia coli = 750 metabo-

lites have been ascertained (Nobeli et al. 2003). With the

application of modern coupled technologies, a significant

part of the metabolome (Hall 2006) can be analyzed. Yet,

the extraction and analysis of entire metabolomes in a

single step remains undoable due in part to the chemical

complexity and heterogeneity of compounds (Goodacre

et al. 2004). The number of estimated compounds for

eukaryotic cells ranges from 4,000 to 20,000 (Fernie et al.

2004). In the entire plant kingdom, up to 200,000 metab-

olites are expected to exist. Therefore, truly comprehensive

metabolomics studies will require new technical inventions

(Hall 2006). Nonetheless, with current individual analytical

techniques or the combination of various platforms, hun-

dreds of metabolites can be effectively identified and rel-

atively quantified.

While far from complete, the amount of data produced

for the identifiable metabolites already presents interpre-

tation challenges for identifying interesting changes. For

other high-throughput techniques like transcriptomics and

proteomics, gene set enrichment analysis (GSEA) has

become a standard tool. A wide variety of applications

implement the functionality that was first described by

Mootha et al. (2003) and was improved upon by Subra-

manian et al. (2005). GSEA represents a robust technique

for analyzing molecular profiling data and is used for

analyzing gene expression by using pathway or ontology

information. Gene sets are defined based on prior biologi-

cal knowledge such as published information about bio-

chemical pathways or co-expression in previous microarray

experiments.

The central concept of GSEA has been the determina-

tion if the genes in a given set are enriched among the

genes that are most differentially transcribed between two

classes. Within GSEA, the genes are ordered based on a

difference metric. Typically the SNR difference metric is

used, which is simply the difference of the averages of the

two classes divided by the sum of the standard deviations

of the two diagnostic classes. In general, other difference

metrics can be used such as m-values or probability values

computed by simple t-tests. GSEA has been applied to a

wide range of research questions with various software

tools such as GSEA-P, J-Express, or Meta-GP that support

the GSEA analysis for transcriptomics and proteomics

datasets (Stavrum et al. 2008; Subramanian et al. 2007).

A comprehensive overview of the large list of existing gene

set enrichment tools has been detailed by Huang et al.

(2009).

Nonetheless, and as noted earlier, it could be beneficial to

evaluate how the GSEA approach performs when applied to

the analysis of metabolomics data (Rubin 2006). Slight dif-

ferences between the gene-centric and the metabolite-based

profiling exist. For example, the range of concentration

changes are magnitudes higher for metabolites compared to

transcript levels or protein concentrations (van den Berg

et al. 2006). One major challenge, however, is the fact that

the number of identifiable metabolites that can be associated

with metabolic pathways is much lower than the number of

mRNAs of genes that can be measured via comprehensive

microarray or cDNA sequencing methods, raising the need to

evaluate the general applicability of the GSEA approach

in the metabolomics context. A first implementation of

the MSEA approach has been provided recently (Xia and

Wishart 2010) focusing on metabolic pathways relevant to

human metabolism. The analysis of metabolic profiles in the

context of metabolic pathways has recently been detailed in

the PAPi approach by Aggio et al. (2010). The algorithm

generates Activity Scores for pathways present in the KEGG

database based on metabolic profiles from different experi-

mental conditions. The approach was evaluated on published

experimental data from Saccharomyces cerevisiae. In our

study we test the applicability of metabolite set enrichment

analysis for metabolic profiles obtained from the amino acid

producer Corynebacterium glutamicum and present adapta-

tions of the original GSEA approach.

1.1 The MeltDB software platform

The automation of sample acquisition and subsequent high-

throughput analysis is posing a challenge for the necessary

systematic storage and computational processing of the

experimental datasets. Whereas a multitude of specialized

software systems for individual instruments and pre-

processing methods exist, there is clearly a need for a free

and platform-independent system that allows standardized

integrated storage and analysis of data obtained from

metabolomics experiments. We have implemented the

platform independent MeltDB system (Neuweger et al.

2008) to address this need. MeltDB provides the storage,

organization, and annotation of datasets generated in met-

abolomics experiments. The system offers functionality for

the pre-processing of mass spectrometry datasets in net-

CDF, mzXML, and mzData file formats. The results of the

pre-processing are able to be visualized and integrated

within a functional genomics context and access to higher

level statistical analysis is provided via the MeltDB web

interface. For the evaluation and analysis of MSEA, we test

the integration of the approach within the MeltDB software

platform.
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1.2 The amino acid producer Corynebacterium

glutamicum

The Gram-positive soil bacterium Corynebacterium glu-

tamicum is widely used for the production of industrially

interesting amino acids. L-glutamate (1.5 million tons) and

L-lysine (850,000 tons) are the major products produced

and the amino acid market is growing at an annual rate of

7% (Hermann 2003; Leuchtenberger et al. 2005). Since

the determination of the complete genome sequence

of the C. glutamicum wild-type strain ATCC 13032

(Kalinowski et al. 2003) rational strain improvement is

replacing the classical mutational approaches. In addition,

knowledge of the genome sequence led to the develop-

ment of genome-wide high-throughput technologies, e.g.,

transcriptomics (Hüser et al. 2003; Wendisch et al. 2006),

proteomics (Burkovski 2006; Hansmeier et al. 2006),

metabolomics (Krömer et al. 2005; Plassmeier et al.

2007), and fluxomics (Drysch et al. 2003; Hoon Yang

et al. 2006). All these techniques have been applied to

study and optimize several production processes, chief

among them those for aspartate-derived amino acids like

lysine or methionine.

The production of lysine with C. glutamicum has

become a field of extensive research in the last decades.

In 2002, Onishi and co-workers presented a study where

the exchange of a single amino acid in three genes of

C. glutamicum ATCC 13032, namely the aspartokinase

(lysC), the pyruvate decarboxylase (pyc), and the homo-

serine dehydrogenase (hom), led to a tremendous increase

in lysine production (Ohnishi et al. 2002). The pyc muta-

tion led to an enhanced flux from pyruvate to oxaloacetate,

mutation of lysC generated a feedback deregulation, and

the mutation of hom caused a leaky mutation, redirecting

the flux of the lysine precursor aspartate-ß-semialdehyde

into the lysine pathway. Strains carrying these mutations

have become the ‘‘root’’ strains for further rational design

of lysine producers. Recent studies in metabolomics and

fluxomics revealed new insights in identifying ‘‘bottle-

necks’’ in the lysine production, e.g., decreased TCA cycle

activity lead to increased lysine formation or low biomass

formation enhances diaminopimelate supply as a precursor

(Becker et al. 2008, 2009; Drysch et al. 2003, 2004; El

Massaoudi et al. 2003; Hoon Yang et al. 2006; Krömer

et al. 2004; Neuweger et al. 2009).

The amino acid methionine is used in large amounts for

animal nutrition, since their occurrence in plant material is

very low. Until now methionine has been produced by

a chemical process, producing a racemic mixture of

D,L-methionine and employing rather hazardous chemicals

(Leuchtenberger 1996). Since methionine, like lysine, is a

member of the aspartic amino acid group and lysine is

produced in large amounts in C. glutamicum, this strain is

considered to be a good candidate for fermentative pro-

duction. Toward this end, several studies elucidating the

biosynthetic pathway of methionine in C. glutamicum have

been performed (Hwang et al. 1999, 2002; Park et al. 1998;

Rey et al. 2003, 2005; Rückert et al. 2003, 2005). In

C. glutamicum, methionine synthesis begins at the

branching point to lysine with homoserine dehydrogenase

(hom) converting aspartate-ß-semialdehyde to homoserine.

Homoserine dehydrogenase is feedback-inhibited by thre-

onine (Morbach et al. 1996) and the hom gene is repressed

by the master regulator of sulfur metabolism (Rey et al.

2003). Park and co-workers engineered a methionine pro-

ducing strain derived from the lysine producer MH20-22B,

yielding 2.9 g l-1 methionine (Park et al. 2007). The strain

carries a deregulated homoserine dehydrogenase (homFBR)

to abolish threonine-mediated feedback inhibition and a

deletion of the homoserine kinase (thrB), eliminating flux

of the precursor homoserine into the threonine pathway.

Besides the genetic modifications of C. glutamicum for

the development of productions strains, the influence of

different carbon sources on the metabolic behaviour was

also of interest for strain optimisation and media design

(Blombach and Seibold 2010; Kawaguchi et al. 2009;

Kiefer et al. 2002; Muffler et al. 2002; Seibold et al. 2009;

Wittmann et al. 2004). The analysis of the utilisation of

glucose compared to acetate revealed clearly distinguish-

able metabolic profiles and different fluxes. The main

differences were the higher fluxes in glycolysis and pentose

phosphate-cycle (PPP) when glucose is used as carbon

source, compared to the high fluxes in TCA cycle and

glyoxylate shunt in an acetate-grown culture (Wendisch

et al. 2000).

In this study we present the metabolic set enrichment

analysis as a feature of the MeltDB software platform for

identifying key pathways from metabolomics data sets in

order to facilitate metabolome analysis. We evaluate the

tool by analyzing the data published by Plassmeier and

co-workers (2007), dealing with the identification of the

2-methylcitrate cycle in C. glutamicum ATCC 13032. For

this experiment, C. glutamicum was fed with glucose,

acetate, and a mixture of acetate and propionate. Fur-

thermore, we present the metabolic profilng analysis of a

series of C. glutamicum strains engineered towards a flux

redirection from the lysine pathway to the branching

threonine, isoleucine, and methionine pathway. This was

done by analyzing the impact of three different alleles of

the homoserine dehydrogenase with the purpose of grad-

ually enhancing the flux into the methionine pathway.

MSEA was used to identify the pathways impacted the

most by these allele exchanges thus demonstrating its

usefulness.
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2 Materials and methods

2.1 Bacterial strains

The bacteria used in this study include several strains of

Corynebacterium glutamicum ATCC 13032 (WT), the

derivative lysine production strain C. glutamicum DM1730

carrying the mutations homV59A pycP458S lysCT311I Dpck

(Seibold et al. 2006), and two derivatives of DM1730. The

first, MP001, carries the wild type hom gene. The second

strain, DM1795, has the homV59A gene replaced by the

feedback deregulated homFBR allele. This strain was kindly

provided by Evonik-Degussa AG (Künsebeck, Germany).

2.2 Media and growth conditions

In the glucose-acetate experiment (Plassmeier et al. 2007),

Minimal medium MM1 (Tauch et al. 2002) was used for

growth of C. glutamicum at a temperature of 30�C, with

4 g l-1 glucose or 4 g l-1 of sodium acetate as carbon

source. All cultures for metabolite analysis were cultivated

as triplicates in shaking flasks and harvested at OD600 of 3.

Allelic exchange of the hom gene: CGXII minimal

medium was prepared according to Keilhauer et al. (1993),

additionally containing 30 mg l-1 protocatechuic acid.

C. glutamicum was cultivated in shaking flasks at a tem-

perature of 30�C. For each strain, eight parallel cultivations

were performed and harvested for metabolome analysis at

OD600 of 10.

2.3 Chemicals

All chemicals and standard compounds were purchased

from either Sigma–Aldrich–Fluka (Taufkirchen, Germany),

Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany),

or Macherey–Nagel (Düren, Germany).

2.4 Harvesting and sample preparation of C.

glutamicum cells for metabolome analysis

Cell harvesting by centrifugation was performed using the

protocol of Plassmeier et al. (2007). Two milliliters of an

exponentially growing bacterial culture were harvested by

centrifugation in 2 ml screw cap vials at 16,1009g for 15 s

at RT. After pelleting, the supernatant was removed

quantitatively and the vials were immediately frozen in

liquid nitrogen. The time until inactivation of the metab-

olism takes place was around 30 s. After freeze-drying, the

biomass was disrupted using a Precellys homogenisator

(Peqlab, Erlangen, Germany) and the hydrophilic metabo-

lites were extracted with 80% methanol containing 10 lM

ribitol (internal standard). Derivatization and GC–MS

measurements were conducted as described previously

(Plassmeier et al. 2007).

2.5 Metabolite analysis

The measurement of the metabolites was performed by

injecting 1 ll of the derivatized metabolite sample into the

GC–MS system consisting of a TraceGC gas chromato-

graph, a PolarisQ ion trap, and an AS1000 autosampler

(Thermo Finnigan, Dreieich, Germany). For separation of

the metabolites, a 30 m 9 0.25 mm 9 0.25 lm Equity-5

column (Suppelco) was used. The resulting chromatograms

were converted to netCDF format and imported into the

MeltDB system. Annotation of the chromatograms was

done in accordance with the recommendations of the MSI

and the chromatograms were organized in replicate groups

according to their strain or the fed carbon source in Melt-

DB. Peak detection, identification, and quantification were

performed using the XcaliburTM software (Version 1.4,

Thermo Finnigan, Dreieich, Germany). Subsequently, a

processing setup defined and routinely employed at Bie-

lefeld University, containing retention time windows of

representative ions of 80 compounds, was applied (Plas-

smeier et al. 2007). The Xcalibur importer tool of MeltDB

was used to transfer these results into the MeltDB data

model and link the identified metabolites to the KEGG

compound database. Therefore, the generic importer has

been configured by a user defined mapping from library

identifiers to KEGG compound IDs.

2.6 Metabolite set enrichment analysis

The MSEA extensions were integrated into the software

framework of the MeltDB platform. MSEA can be applied

to experiments with metabolic profiles originating from

two different classes represented by replicate measurement

groups in the MeltDB database. The metabolites present in

both classes were ranked using a distance metric that

compares the metabolic pool sizes that have been nor-

malized in MeltDB towards the dry weight of the metab-

olite sample and an internal standard (Ribitol). As one

possible metric is the difference of the log of the means of

the metabolite pool sizes (m-values) which we have pre-

viously integrated in MeltDB for the ProMeTra application

(Neuweger et al. 2009). In addition, we implemented the

Signal-To-Noise criterion and the t-test significance metric.

All metrics generate an ordered list L of all present

metabolites. Given an a priori defined set of metabolites

MS (e.g., metabolites present in a metabolic pathway), the

goal of MSEA is to determine whether the members of MS

are randomly distributed throughout L or predominantly

found at the top or bottom. For the computation of the

enrichment score (ES), we employed the method described

MSEA: metabolite set enrichment analysis 313
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by Subramanian et al. (2005). An interesting extension in

the context of metabolite research is the ordering of the

m-values by the absolute values. When knock-out muta-

tions of enzymes are analyzed, metabolite pool sizes will

often increase and decrease in the same metabolic pathway.

The rationale is that direct products of the enzyme decrease

while substrates increase. To identify these effects, the ES

function used is based on the absolute fold change. In

addition to the computation of an ES, the computation of

the p-value of that score for the experimental data was

performed by the MeltDB implementation.

2.7 Extracting metabolite sets from the KEGG pathway

database

The use of the KEGG compounds database provides a

controlled vocabulary for the identification of metabolites

(Kanehisa et al. 2006). Through the association of com-

pounds detected in the GC– and LC–MS measurements to

this controlled vocabulary, an unambiguous mapping to

metabolic pathways present in the KEGG database is

possible. The existing integration of the KEGG compounds

database in the MeltDB system simplifies the generation of

metabolite sets from the KEGG pathway database. Every

metabolic pathway in KEGG is represented by the set of its

associated metabolites and each pathway corresponds to a

metabolite set (MS). Through the use of the KEGG path-

way database, more than 200 predefined metabolite sets are

readily available for the MSEA. It is notable that metab-

olites occurring more than once in a metabolic pathway,

such as co-factors, are represented in a metabolite set only

once.

2.8 CglCyc: reconstruction of metabolic pathways

for C. glutamicum

To complement the metabolite sets obtained from the

KEGG pathway database, we reconstructed the metabolic

pathways of C. glutamicum ATCC 13032 using Pathway-

Tools (Karp et al. 2010). We manually curated and

extended the results in a locally installed CglCyc instance.

For example, we adapted the metabolites of the pathway

‘‘methionine biosynthesis I’’. This pathway provided a

metabolite set beginning with homoserine and ending with

methionine. The original pathway used the homoserine

O-succinyltransferase to convert homoserine to O-succi-

nyl-homoserine. This enzyme is present in Escherichia coli

(Born and Blanchard 1999), but C. glutamicum uses the

homoserine O-acetyltransferase converting homoserine to

O-acetyl-homoserine (Rückert et al. 2003). Therefore, the

pathway ‘‘methionine biosynthesis I’’ was corrected by

adding the correct metabolite identifiers. As a second

example, we renamed the pathway ‘‘respiration (anaero-

bic)’’, which is not present in C. glutamicum, to ‘‘TCA

cycle and gluconeogenesis (upper part)/glycolysis (lower

part)’’. By renaming this metabolic set, we fixed the

occurrence of a non existing pathway in the CglCyc data-

base and extended the metabolic pathways to a specific

smaller part representing conditions under gluconeogenesis

(Wendisch et al. 2000). Based on the reconstructed and

curated metabolic pathways, 110 metabolite sets were

defined that we integrated into the MSEA of MeltDB,

harboring at minimal one of the possible detectable

metabolites via GC–MS (Electronic Supplementary

Material).

3 Results and discussion

We implemented the MSEA approach in MeltDB via a web

based user interface. The interface for the MSEA func-

tionality in MeltDB allows us to directly query the list of

all metabolite sets obtained from the integrated KEGG

database and the manually created CglCyc instance

(Electronic Supplementary Material) initially obtained

from the PathwayTools software. Users may specify which

experimental conditions are to be compared and if the

enrichment score for individual pathways or the complete

list of metabolite pathways should be computed (Fig. 1). In

the latter case, the best scoring metabolic pathway is pre-

sented to the user. In addition, the ordered list of metabo-

lites identified in the experiment is given. Interactive

access to the visualizations of both the ES score and the

metabolite list via the user interface simplifies the analysis

of the MSEA results. Further information such as the name

and identifier of identifiable metabolites, the computed

m-value, and a t-test probability is presented to the

researcher.

The applicability of the method is presented in more

detail with the analysis of metabolic profiling experi-

ments conducted using amino acid production strains of

C. glutamicum. For comparison of the MSEA results, we

chose the presentation of the best five pathway hits,

enabling a clear discrimination between the analyzed

strains. Since metabolites are often present in more than

one metabolite set, MSEA results with less than four

matches to the identified metabolites could lead to false

positive pathway identifications. Therefore, we excluded

these hits from the analysis. MSEA was run with the

m-value score computed from the replicate measurements

of the wild type and mutant strains. The significance of the

metabolites set analysis was tested by permuting the scores

over the metabolites using 1,000 iterations each.
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3.1 Evaluation of MSEA by comparison

of the metabolic profiles of C. glutamicum

cultivated in minimal medium containing glucose

or acetate as carbon source

The first evaluation of the metabolic set enrichment anal-

ysis was done on the published data of Plassmeier et al.

(2007), dealing with cultivation of C. glutamicum in min-

imal medium with glucose or acetate as carbon source. The

cultivations were performed in triplicates for each strain

and metabolome analyses were performed using GC–MS.

Cell harvesting was done by fast centrifugation, resulting in

an inactivation time of the metabolism within 30 s. It is

known that metabolites of the central metabolism have

high turn over rates (*1 mmol s-1; de Koning and van

Dam 1992; Nöh et al. 2007; Schäfer et al. 1999) leading to

a potentially wrong estimation of the metabolic state of the

cells during growth if the inactivation time of the metab-

olism is long. Persicke and co-workers showed that the

comparison of pool size ratios without total quantification

of the metabolites was in the same range using harvesting

methods that were fast or slower inactivating the metabo-

lism (Persicke et al. 2010). MSEA were done using the

m-values, calculated from the comparison of the acetate

grown culture against the glucose grown culture. We chose

this comparison, since a plethora of information is avail-

able on the influence of these carbon sources on the metab-

olism of this bacterium (Auchter et al. 2009; Gerstmeir

et al. 2003; Han et al. 2008; Muffler et al. 2002; Plassmeier

et al. 2007; Veit et al. 2009; Wendisch et al. 2000). The

main difference between these two carbon sources is their

entry point into metabolism. Glucose is taken up via

the PEP-dependent sugar:phosphotransferase (PTS) system

(Parche et al. 2001) and then metabolized via glycolysis

and the tricarboxylic acid (TCA) cycle. Acetate mainly

diffuses into the cells and is converted there to acetyl-CoA

which is then used to fill the TCA cycle (Gerstmeir et al.

2003). During acetate consumption, gluconeogenesis must

be active in order to fulfill the cellular requirements for

sugar nucleotides. These principal differences are reflected

by the results obtained via MSEA: the best five hits are the

CglCyc pathways of the pantothenate and coenzyme A

biosynthesis, pentose phosphate pathway, pentose phos-

phate pathway (non-oxidative branch), pentose phosphate

pathway (partial) and TCA cycle and gluconeogenesis

(upper part)/glycolysis (lower part) (Fig. 2a). The best

pathway hit reflects the different utilization of acetate in

comparison to glucose. As mentioned above, intracellular

acetate is converted into acetyl-CoA to fulfill the TCA

cycle. Coenzyme A is produced in C. glutamicum by the

formation of pantothenate as precursor (Hüser et al. 2005).

When utilizing acetate as sole carbon source, gluconeo-

genesis is performed, resulting in reduced fluxes in the

pentose phosphate pathway (Wendisch et al. 2000) which

is in accordance with the smaller pool sizes of the metab-

olites of the upper part of the glycolysis and the pentose

phosphate pathway detected via MSEA. Conversely, as

acetate consumption activates the glyoxylate shunt and

leads to a higher flux in the TCA cycle (Gerstmeir et al.

2003; Hayashi et al. 2002; Muffler et al. 2002; Wendisch

et al. 2000), elevated pool sizes of TCA cycle intermediates

are found corresponding to the pathway hit TCA cycle and

gluconeogenesis (upper part).

When comparing the MSEA results performed with the

CglCyc database and the KEGG database, two pathway

hits were found in both databases, pentose phosphate

pathway at first position and the TCA cycle at fourth

position (Fig. 2a/c). Using the KEGG database, no

Fig. 1 The user interface for the MeltDB metabolite set enrichment

analysis. After reference and query replicate groups are selected, the

enrichment score for individual metabolite sets obtained from the

KEGG pathway and/or CglCyc database can be computed. Alterna-

tively, the best matching metabolite sets from all available pathways

can be computed or the user may specify own metabolite sets using

KEGG compound identifiers. In the default case, the method

described by Subramanian et al. (2005) is used for ES score

computation, alternatively the simple Kolmogorov–Smirnov statistic

may be selected
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pathway hit for gluconeogenesis was found under the best

five hits. Due to the different behavior of the metabolites

corresponding to the gluconeogenesis pathway, higher

pools in the upper part and lower pools in the upper part,

the MSEA score for this static KEGG pathway was low. A

main drawback using the KEGG database for MSEA can

be observed here. The pathways in the KEGG database are

designed to present a comprehensive view on the cellular

metabolism, resulting in a low granularity of many path-

ways. As MSEA works better with compartmentalized

pathways and KEGG pathways cannot be redefined by the

user, use of these pathways may give poor results for

MSEA.

The other three pathway hits were different in compar-

ison to the MSEA results using the CglCyc database. The

pathway corresponding to the second best hit was the

ß-alanine metabolism. This pathway represents a part of

the pantothenate and coenzyme A biosynthesis (Hüser et al.

2005), being the best hit using the CglCyc database. Here,

four metabolites were identified, aspartate, ß-alanine,

pantothenate and uracil. This highlights the second major

drawback of using the KEGG database for MSEA, the

presence of metabolic routes in the pathway that are not

present in the organism analyzed with MSEA. For exam-

ple, the uracil degradation pathway to ß-alanine is most

probably not present in C. glutamicum. False positive

metabolite identifications in pathways will cause over/

under representation of a pathway. Here, ß-alanine bio-

synthesis would not be identified when excluding pathways

with less than four metabolite identifiers. Therefore, it

might be necessary to check whether changing the minimal

number of matched metabolites in the pathways delivers

more meaningful results.

The last two pathways identified were the phenylalanine

metabolism and the arginine and proline metabolism. It is

hard to decide whether these hits should be considered a

real true positive as several of the metabolites responsible

for the high MSEA scores are also found in two of the best

Fig. 2 The visualization of the enrichment analysis results generated

out of SVG graphics from the web interface. The best five results for

the CglCyc (a) and the KEGG (c) metabolic pathways exhibiting the

highest enrichment scores were presented. The running ES score is

plotted using blue color if the metabolites belonging to MS are

predominantly found in the top part of the ordered List L. The red
color indicates that the metabolites are found at the lower part of L.
All metabolites present in the experiment are represented as gray

boxes and the ones belonging to MS are labeled and highlighted in

green. In the middle, the computed m-values (b), the t-test

probabilities, and the signal to noise ratios (SNR) are listed for all

compounds identified in the analyzed metabolomics experiment of

C. glutamicum ATCC 13032 grown on the carbon sources glucose

and acetate. For the background of the table cells, a color mapping

function of the m-values from red to green was chosen
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five scoring pathways, the pentose phosphate pathway and

the TCA cycle. This is due to the interconnectedness of the

different pathways which cannot be disentangled properly.

Still, the presence of other, unique metabolites provides

circumstantial evidence that these hits are indeed correct.

Since the results of the MSEA for the glucose and

acetate experiment in C. glutamicum delivered better

results with the CglCyc database, we used this for the

following analyses.

3.2 Analysis of the metabolic shift caused by allelic

exchange of the homoserine dehydrogenase gene

(hom) in C. glutamicum strains by metabolome

analysis

As a second test case, the metabolic profiles of a strain

development line originating from a genetically well-

defined lysine producer were analyzed. In these strains, the

branching point between lysine and threonine biosynthesis,

homoserine dehydrogenase was engineered in a step-wise

manner, ranging from a leaky mutation to a wild-type gene

and to a feedback-deregulated hom allele. The strains used

were the C. glutamicum wild-type ATCC 13032 as com-

mon reference, the lysine production strain C. glutamicum

DM1730 (relevant mutation: homV59A, leaky hom allele)

and the derivatives C. glutamicum MP001 (homWT, wild-

type allele) and C. glutamicum DM1795 (homFBR, encod-

ing a feedback-resistant enzyme). Thus the applicability of

MSEA to analyze production strain development lines with

gradual changes in a single enzyme was tested.

3.3 MSEA of the lysine production strain

C. glutamicum DM1730

The five top scoring pathways delivered by MSEA were

selected for a more detailed inspection. Here, the minimal

pathway matches were five metabolites. Surprisingly, the

pathways for formyl-tetrahydrofolate (formyl-THF) bio-

synthesis I/II are found as the top scoring hits in the strain

DM1730 (Table 1, Electronic Supplementary Fig. 1).

These two pathway hits were performed on the same

identified metabolites, serine, homocysteine, glutamate,

glycine and methionine. Formyl-THF and its derivatives

are not measurable using the applied GC–MS method, as

the substances have high molecular weights and are

therefore not volatile at the temperatures used. MSEA for

these pathways showed a higher abundance of the matched

metabolites than the wild type. Conversely, the end prod-

ucts of the formyl-THF biosynthesis are methionine and

glycine (Rückert et al. 2003), both metabolites are not

affected in comparison to the wild type (Fig. 3). In fact, the

precursors of the formyl-THF biosynthesis, homocysteine

and serine, showed a higher abundance in comparison to

the wild type, indicating of a lower formation of formyl-

THF. This may be due to the fact that the pool of methi-

onine, acting as precursor for the C1-metabolism via

S-adenosyl-methionine (Lu 2000), shows the same pool

size as the wild type, indicating an optimal supply for

growth and leading to accumulation of precursors.

The third top pathway hit, lysine biosynthesis I is found

to be on target. As this strains carry mutations redirecting

Table 1 MSEA results of the comparison of the strains C. glutamicum DM1730, MP001 and DM1730 with the wild type

Strain Pathway Higher/lower abundance MSEA-score p-value

DM1730 1. Formyl-THF biosynthesis I Higher 0.86 0.021

2. Formyl-THF biosynthesis II Higher 0.86 0.018

3. Lysine biosynthesis I Higher 0.83 0.013

4. TCA cycle and gluconeogenesis (upper part)/glycolysis (lower part) Lower 0.80 0.010

5. Superpathway of lysine, threonine and methionine biosynthesis I Higher 0.66 0.058

MP001 1. Threonine biosynthesis Higher 0.86 0.008

2. TCA cycle and gluconeogenesis (upper part)/glycolysis (lower part) Lower 0.82 0.004

3. Superpathway of lysine, threonine and methionine biosynthesis I Higher 0.74 0.004

4. Superpathway of methionine biosynthesis (by transsulfuration) Higher 0.74 0.026

5. Aspartate superpathway Higher 0.72 0.003

DM1795 1. Threonine biosynthesis Higher 0.91 0.009

2. Isoleucine biosynthesis I (from threonine) Higher 0.85 0.034

3. Superpathway of methionine biosynthesis (by transsulfuration) Higher 0.83 0.021

4. Methionine biosynthesis I Higher 0.77 0.044

5. TCA cycle and gluconeogenesis (upper part)/glycolysis (lower part) Lower 0.76 0.015

Presented are the MSEA calculations and the abundance scoring for the best five pathways involved in these comparisons
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carbon flow towards lysine biosynthesis (pycP458S, lysCT311I,

Dpck) (Ohnishi et al. 2002), this result delivers another proof

of principle.

In the fourth position, the CglCyc pathway hit belonging

to the carbohydrate- and energy metabolism group was

found in the strain DM1730, namely TCA cycle and glu-

coneogenesis (upper part)/glycolysis (lower part). Since

the strains were cultivated in media containing glucose as

sole carbon source and harvested in the logarithmic growth

phase, it can be assumed that this hit is due to differences in

the lower part of glycolysis as no gluconeogenesis is nee-

ded for the cell growth at these conditions. The matched

metabolites belong to the TCA cycle and the lower part

of the glycolysis and showed lower pool sizes than the

C. glutamicum wild type (Fig. 3). Due to the pyc (pyruvate

carboxylase) and lysC (aspartate kinase) mutations in the

strain DM1730, resulting in a higher flux from pyruvate to

oxaloacetate and its efflux into the lysine pathway, it was

already expected that these metabolite pools are affected

(Ikeda et al. 2006).

In the next CglCyc pathway hit of the MSEA, the su-

perpathway of lysine, threonine and methionine biosyn-

thesis I was found for strain DM1730. The pool sizes of the

metabolites belonging to this pathway also showed higher

Fig. 3 Visualization of the m-values obtained from the metabolite

profiles of C. glutamicum DM1730, MP001 and DM1795 in

comparison to the wild type by the software tool ProMeTra. The

m-values of the metabolites are presented in ellipses in color code

from green to red. Not measured metabolites are shown in grey and

metabolites, showing no significant difference (t-test [ 0.05) between

the analyzed strains and the wild type, are given in blue
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levels than in the wild type strain (Fig. 3). Here, smaller

pool sizes for threonine and homoserine were expected,

since the strain DM1730 harbors the leaky hom gene. The

higher pools of threonine and homoserine might be due to a

higher abundance of the precursor aspartate-ß-semialde-

hyde in the strain DM1730, resulting form the efflux of

oxaloacetate into the pathway of the aspartate-derived

amino acids.

3.4 MSEA of the strain C. glutamicum MP001

The MSEA for the strain MP001, containing the homWT

allele, delivers the threonine biosynthesis as best hit

(Table 1, Electronic Supplementary Fig. 2). Using the

ProMeTra pathway visualization for a closer inspection, it

was found that the exchange of the leaky hom gene against

the wild type hom gene resulted in a higher enzyme activity

of the hom gene and therefore resulting in higher pool sizes

of metabolites of the threonine and the branching methio-

nine pathway (Fig. 3), thus increasing the MSEA score for

threonine biosynthesis. We were aware of the fact metab-

olite pools do not directly reflect fluxes, but in case of the

hom gene, the increased enzyme activity might potentially

result in an increased metabolic flow at this point. The

equilibrium of the enzyme reaction is shifted towards the

product side (homoserine).

The next two CglCyc pathway hits of the MSEA

results of the strain MP001 were found likewise for the

strain DM1730, namely TCA cycle and gluconeogenesis

(upper part)/glycolysis (lower part) and superpathway of

lysine, threonine and methionine biosynthesis I. Here it

becomes obvious that if the strain harbors the wild type

hom gene, the pools of threonine and methionine are

higher than in the strain DM1730, leading to higher

MSEA scores for this pathway hit. Furthermore, the

increased pool sizes of the metabolites of the threonine

and methionine pathway caused by the wild type hom

gene generate a higher demand of the precursor aspartate-

ß-semialdehyde. This leads to lower pool sizes of

metabolites in the lysine biosynthesis and the pool of

aspartate as well as those of its precursors in the TCA

cycle and the lower glycolysis (Fig. 3) thus increasing the

MSEA score for the CglCyc hit TCA cycle and gluco-

neogenesis (upper part)/glycolysis (lower part) in com-

parison to the strain DM1730.

The superpathway of methionine biosynthesis (by sul-

fhydrylation) is the pathway hit at fourth position. As

mentioned above, the incorporation of the wild type hom

gene shifts the carbon flow in the strain MP001, resulting in

higher pool sizes of the metabolites of the threonine

and methionine pathways. In particular, homoserine and

O-acetyl-homoserine showed higher pool sizes in the strain

MP001 compared to the strain DM1730.

The fifth pathway hit for the strain MP001 was the

aspartate superpathway, showing the same metabolite

identifiers as the superpathway of lysine, threonine and

methionine biosynthesis I until dihydroxy acetone phos-

phate. This metabolite belongs to the nicotinamide adenine

dinucleotide (NAD) biosynthesis present in this super-

pathway. NAD and its precursors are not measurable with

GC–MS, as formyl-THF their molecular weights are too

high. Since the superpathway of lysine, threonine and

methionine biosynthesis I had a high MSEA score, it was to

be expected that this pathway occurs in the best five

pathway hits.

3.5 MSEA of the strain C. glutamicum DM1795

When comparing the MSEA calculations for the strain

C. glutamicum DM1795 to the other two strains, we

observed that other pathways were involved here. The two

best pathway hits were threonine biosynthesis and isoleu-

cine biosynthesis (from threonine) (Table 1, Electronic

Supplementary Fig. 3). Since the feedback-deregulated

hom gene leads to an enhanced production of threonine,

higher pool sizes of isoleucine can be observed due to the

fact that threonine is a precursor for this metabolite

(Guillouet et al. 2001) (Fig. 3).

The next two MSEA pathway hits belong to sulfur

containing metabolites, superpathway of methionine bio-

synthesis (by transsulfuration), and methionine biosynthe-

sis I. The matched metabolites in these CglCyc pathways

were mostly the same, only the metabolites aspartate,

pyruvate and cystathionine differ in the pathways. In the

case of aspartate, the pathway of methionine biosynthesis I

starts at homoserine according to PathwayTools (Karp

et al. 2010). The absence or presence of cystathionine and

pyruvate in methionine pathways is due to the fact that C.

glutamicum utilizes O-acetyl-homoserine by a branched

pathway, the transsulfuration- and the sulfhydrylation-

pathway (Hwang et al. 2002; Lee and Hwang 2003). The

feedback-deregulated hom gene shifts the metabolic profile

of the strain DM1975 to small metabolite pools corre-

sponding to the lysine pathway and to high pool sizes of

metabolites of the threonine and methionine pathway.

In particular, the pool sizes of threonine, homoserine and

O-acetyl-homoserine were higher compared to the strains

C. glutamicum DM1730 and MP001 (Fig. 3).

At the fifth position, the pathway TCA cycle and glu-

coneogenesis (upper part)/glycolysis (lower part) can be

found. Since the strains DM1730, MP001 and DM1795

share the same mutations except the homoserine dehydro-

genase, it is a consistency check for MSEA that this

pathway was identified in all three strains.

Closer inspection of the pathway for methionine metab-

olism revealed that conversion of O-acetyl-homoserine into
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homocysteine or cystathionine is apparently limiting in this

strain as O-acetyl-homoserine was found to accumulate.

Also, the pools of serine and glycine in the three strains

harboring the three different hom genes were found to be

altered significantly and in an opposing way. While the pool

of serine is lowering with rising metabolite pools corre-

sponding to the methionine pathway, the glycine pool

increases. This might be a sign for a higher conversion of

homocysteine into methionine by MetE and MetH, the two

homocysteine methyltransferases (Rückert et al. 2003). The

methyl group derives from methyl-THF, which is regener-

ated by GlyA and MetF, leading to the conversion of serine

into glycine.

As we showed in this paper, MSEA supports generating

knowledge from metabolomics data. As metabolites often

occur in more than one metabolic pathway, it might be

difficult to interpret the results of metabolic profiling

analyses. MSEA is able to identify metabolic pathways

where the metabolites show the same behavior, thus

facilitating data analysis.

4 Concluding remarks

MeltDB was designed as platform-independent software

for the analysis and integration of metabolomics experi-

ments. We extended the MeltDB platform by the metabo-

lite set enrichment, which can directly be applied for the

identification of metabolic pathways that exhibit the main

changes in metabolite pool levels under different experi-

mental conditions. As presented in our evaluation with

metabolic profiles obtained from C. glutamicum wild type

and mutant strains with known genetic modifications, the

MSEA approach is able to identify the metabolic pathways

associated to the modifications. Users have to keep in mind

that MSEA is dependent on the quality and the compre-

hensiveness of the metabolic data. In addition, success is

constrained to the composition and complexity of meta-

bolic databases.

We curated manually a CglCyc database that up to now

contains 119 biosynthetic pathways which are directly

accessible to the implemented MSEA approach. In the

future, we will extend the CglCyc pathway database to

improve the analysis of larger metabolite profiles generated

by GC–MS or LC–MS. Apart from the analysis of bacterial

production and wild-type strains, the general MSEA

approach enables identification of metabolic differences on

the level of pathways for all types of metabolomics and

metabolic profiling experiments. The direct integration of

the approach in MeltDB ensures that this novel analysis

approach can be readily applied to existing and future

metabolomics experiments.
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Hüser, A. T., Chassagnole, C., Lindley, N. D., et al. (2005). Rational

design of a Corynebacterium glutamicum pantothenate produc-

tion strain and its characterization by metabolic flux analysis and

genome-wide transcriptional profiling. Applied and Environ-
mental Microbiology, 71(6), 3255–3268.

Hwang, B. J., Kim, Y., Kim, H. B., et al. (1999). Analysis of

Corynebacterium glutamicum methionine biosynthetic pathway:

Isolation and analysis of metB encoding cystathionine gamma-

synthase. Molecules and Cells, 9(3), 300–308.

Hwang, B. J., Yeom, H. J., Kim, Y., & Lee, H. S. (2002).

Corynebacterium glutamicum utilizes both transsulfuration and

direct sulfhydrylation pathways for methionine biosynthesis.

Journal of Bacteriology, 184(5), 1277–1286.

Ikeda, M., Ohnishi, J., Hayashi, M., & Mitsuhashi, S. (2006). A

genome-based approach to create a minimally mutated Coryne-
bacterium glutamicum strain for efficient L-lysine production.

Journal of Industrial Microbiology & Biotechnology, 33(7),

610–615.

Kalinowski, J., Bathe, B., Bartels, D., et al. (2003). The complete

Corynebacterium glutamicum ATCC 13032 genome sequence

and its impact on the production of L-aspartate-derived amino

acids and vitamins. Journal of Biotechnology, 104(1–3), 5–25.

Kanehisa, M., Goto, S., Hattori, M. et al. (2006). From genomics to

chemical genomics: New developments in KEGG. Nucleic Acids
Research, 34(Database issue), D354–D357.

Karp, P. D., Paley, S. M., Krummenacker, M., et al. (2010). Pathway

Tools version 13.0: Integrated software for pathway/genome

informatics and systems biology. Briefings in Bioinformatics,
11(1), 40–79.

Kawaguchi, H., Sasaki, M., Vertes, A. A., Inui, M., & Yukawa, H.

(2009). Identification and functional analysis of the gene cluster

for L-arabinose utilization in Corynebacterium glutamicum.

Applied and Environmental Microbiology, 75(11), 3419–3429.

Keilhauer, C., Eggeling, L., & Sahm, H. (1993). Isoleucine synthesis

in Corynebacterium glutamicum: Molecular analysis of the ilvB-

ilvN-ilvC operon. Journal of Bacteriology, 175(17), 5595–5603.

Kiefer, P., Heinzle, E., & Wittmann, C. (2002). Influence of glucose,

fructose and sucrose as carbon sources on kinetics and stoichi-

ometry of lysine production by Corynebacterium glutamicum.

Journal of Industrial Microbiology & Biotechnology, 28(6),

338–343.
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