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Abstract Selective breeding of dogs over hundreds of

years has inadvertently resulted in breed-specific propen-

sities to particular diseases. Furthermore, it has likely

induced more subtle affects on the physiology of certain

breeds and moved them from their evolutionary optima. In

the absence of obvious disease phenotypes such subtle

changes could have yet unrecognised breed-specific

implications for health and well-being. Here we have

applied NMR metabolomics as a discovery-driven

approach to identify the impact of breed on the urinary

profile of dog and to determine if non-disease-related breed

differences can be identified. Multiple urines were col-

lected non-invasively over a two-week period from seven

neutered male Labrador retrievers and miniature Schnau-

zers. Following NMR analyses by 1-dimensional 1H and 2-

dimensional 1H J-resolved (JRES) spectroscopy, principal

component analysis revealed that the metabolic variability

within each individual is relatively small compared to

inter-individual variability, and that some separation

between breeds was evident. A supervised model, using

partial least squares discriminant analysis (PLS-DA) with

class based upon breed, was trained using the JRES data.

The model predicted correctly the breed of seven additional

urines, yielding a model sensitivity and specificity of

100%. Several significant metabolic differences between

the breeds were identified. A second model was developed

using PLS-DA with class based upon individual dogs,

which again achieved high classification accuracy for the

test set. Overall, this confirms that canine urine is infor-

mation-rich and that breed is a major determinant of

urinary metabolic fingerprints. In the future this may enable

a more accurate development of specific nutritional care for

an individual or breed.
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1 Introduction

Natural selection results in the accumulation of traits for

optimal success, which include improved health and fit-

ness. Humans have undertaken artificial selection of dog,

arguably for 15,000–40,000 years (Savolainen et al. 2002).

Evidence of breeding for specific roles, e.g., hunting and

guard dogs, exists from Egyptian times and the other main

current types, including lap and herd dogs, since Roman

times. Initially, the selection criteria would have been

behavioural but also included diminution (through hor-

monal and dietary changes) and resulted in early

maturation, larger litters and shortened generation time

(Clutton-Brock 1999). Selection for more specific roles has

lead to a diverse range of morphologies, making the dog

being more variable than any other mammalian species.

Indeed, many of the recognised breeds are a consequence

of a restricted breeding pool over the last 400–600 years.

There has been a change in selection from specific function

to aesthetic aspects as a consequence of the development of

M. R. Viant (&)

School of Biosciences, University of Birmingham, Edgbaston,

Birmingham B15 2TT, UK

e-mail: M.Viant@bham.ac.uk

C. Ludwig � S. Rhodes � U. L. Günther

Henry Wellcome Building for Biomolecular NMR Spectroscopy,

Division of Cancer Studies, University of Birmingham,

Edgbaston, Birmingham B15 2TT, UK

D. Allaway

WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-

on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, UK

123

Metabolomics (2007) 3:453–463

DOI 10.1007/s11306-007-0092-0



kennel clubs 150 years ago, which may have further

reduced the physiological fitness of many pure-bred dogs

through the creation of breed barriers and the drive toward

a breed standard. The selective breeding within breed type

has inadvertently resulted in the development of breed-

specific propensities to specific diseases. Indeed, it is on

this basis that dog is such a useful genetic model for

mapping disease traits that are common to both dog and

humans (Patterson 2000). However, as well as presenting

distinct susceptibilities to disease states, the development

of breed classes is likely to have also had more subtle

effects on the physiology of certain breeds and moved them

from their evolutionary optima. These changes may have

some, as yet unrecognised, welfare effects upon some

breeds and without obvious disease phenotypes appropriate

care or treatment may not be offered. The consequence of

these breed-specific effects may be identified through the

use of -omics technologies. Methods to measure a vast

range of factors at the DNA, RNA, protein and metabolite

level exist and may shed light on breed-specific differ-

ences, which may be compensated by appropriate care and

diet.

Urine is a practical diagnostic sample because it is rel-

atively safe, non-invasive and simple to collect, and

contains systemic information about the individual in a

concentrated form. However, beyond diagnostic markers to

diagnose pregnancy and specific diseases, urine can also

provide other relevant information about the individual, its

health, physiological function and response to xenobiotics

(Strasinger and Di Lorenzo 2001). The extent to which

urine can act as a surrogate sample to more invasive

samples is being extended through the development of

metabolomics as a discovery tool. Metabolic fingerprinting

has been used to identify markers associated with a number

of phenotypes, such as drug safety and toxicity (Nicholson

et al. 2002; Pelczer 2005), disease (Brindle et al. 2002;

Coen et al. 2005; Rosenblum et al. 2006), gender (Plumb

et al. 2005; Stanley et al. 2005), ethnicity (Dumas et al.

2006), ageing (Plumb et al. 2005), diet and the impact of

caloric restriction (Bijlsma et al. 2006; Shi et al. 2002a, b;

Vigneau-Callahan et al. 2001; Walsh et al. 2006), and the

environment (Hines et al. 2007; Lin et al. 2006; Viant et

al. 2003).

As described above, the domestic dog is a unique

mammalian species in that it has over 400 well-defined

genetic classes with a diverse range of physiological and

behavioural phenotypes. It is reasonable to propose that

such changes are likely to result in subtle differences in

breed care requirements. However, without clear disease

phenotypes, there has been little possibility to research this

using hypothesis-led research. As such this area of research

would benefit from taking a discovery-driven approach

using -omic technologies. With urine being a valid and

non-invasive sample, metabolomics studies on urine would

appear to be a useful approach. Previously, metabolomics

analyses in the domestic dog have included a study related

to the plasma fingerprints of congenital and acquired liver

disease (Whitfield et al. 2005), a GC-MS investigation that

compared human urine with that from Dalmatian dogs and

Shetland sheepdogs (Matsumoto et al. 1995), and most

recently a study to monitor urinary metabolic profiles

throughout the lifetimes of control-fed and diet-restricted

dogs (Wang et al. 2007). Here we have undertaken a study

to develop and apply an NMR analysis to identify the

impact of breed on the urinary profile of dog and to test

whether non disease-related breed differences could be

identified. The first objective was to establish optimised

sample preparation methods for the analysis of metabolites

in dog urine. Subsequently we sought to measure the NMR

fingerprints of multiple urine samples from two dog breeds,

Labrador retriever and miniature Schnauzer. Samples were

collected from several male dogs across a 2-week period,

allowing us to assess intra-individual metabolic variability,

inter-individual variability in the same breed, and inter-

breed variability. The final objective was to construct and

test a supervised multivariate model that could predict the

breed of dog based upon its urinary metabolome.

2 Materials and methods

2.1 Ethical standards statement

All dogs were fed commercially available, complete diets

throughout the study period at energy levels to maintain

adult body weight. The dogs were housed at the WAL-

THAM Centre for Pet Nutrition (UK) where they were

housed in purpose-built, environmentally enriched facili-

ties and treated in accordance with the Centre’s research

ethics and UK Home Office Regulations.

2.2 Collection of urine

Urine samples were obtained from three neutered male

dogs of one breed (Labrador retriever, LR), and four neu-

tered male dogs of a second breed (miniature Schnauzer,

MS) (Table 1), all fed the same brand diet for at least

4 weeks prior to urine collection. For each animal, either 5

or 6 urine samples were collected on different days within a

2-week longitudinal study (Table 2). Samples were

obtained using a ‘‘free catch’’ approach during the morning

walk using an individually designated uripet urine collec-

tion pot. Samples were maintained at ambient temperature

for up to 30 min, placed on ice and aliquots then frozen

within 1 h of sampling. Urine was then maintained at
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–80�C until it was shipped to the University of Birming-

ham on dry ice where it was stored at –80�C. The total set

comprised of 37 identified urine samples and a further 7

samples (randomly obtained from the same seven dogs) for

which the identities were withheld from the metabolomics

group at Birmingham (Table 2).

2.3 Preparation of urine for NMR analysis

Each urine sample was thawed to room temperature, vor-

texed and centrifuged (10,000g; 3 min). Then 540 ll of

supernatant was mixed with 180 ll 0.4 M sodium phos-

phate buffer (pH 7.0; 0.75% w/v sodium azide) and 60 ll

13 mM sodium 3-trimethylsilyl-2,2,3,3-d4-propionate

(TMSP) in D2O, producing a final solution of 0.1 M buffer,

0.2% NaN3, 1 mM TMSP and 8% D2O. The solution was

left to stand for 20 min, centrifuged, and the supernatant

removed. The pH was adjusted to 7.05 (±0.05) using 1 M

HCl or NaOH, the solution left to stand for 20 min, cen-

trifuged, the supernatant removed, and the pH was

measured again. This pH adjustment protocol was repeated

until the pH fell within 7.00–7.10. The solution was then

transferred to a 5 mm NMR tube.

2.4 1H NMR spectroscopy

Prepared urine samples were analyzed on a DRX-500

NMR spectrometer (Bruker), operating at 500.18 MHz

proton frequency, equipped with a cryogenically cooled

probe and a BACS-60 automatic sample changer. One-

dimensional (1-D) 1H NMR spectra were obtained using a

60� read pulse flip angle, 5.3-kHz spectral width, 3-s

relaxation delay, 128 transients collected into 16 k data

points, and excitation sculpting to suppress the residual

water resonance (Hwang and Shaka 1995). Datasets were

zero-filled to 32 k points and exponential line-broadenings

of 0.5-Hz applied before Fourier transformation. The

resulting spectra were phased and baseline corrected

manually, and their chemical shifts calibrated against

TMSP (0.0 ppm) using TopSpin (version 1.3, Bruker). 2-D
1H J-resolved (JRES) NMR spectra were also obtained

using excitation sculpting for water suppression (Hwang

and Shaka 1995). Acquisition parameters included a 3-s

relaxation delay, 90� read pulse flip angle, and 16 transients

per increment for 16 increments collected into 16 k data

points, using spectral widths of 5.3 kHz in F2 (chemical

shift axis) and 50 Hz in F1 (spin-spin coupling axis).

Datasets were zero-filled to 128 points in F1, and both

Table 1 Description of dogs

and their urine samples

employed in the metabolomics

study

Dog identifier Age (yr) Breed No. of urine samples Sample labels

LR1 8 Labrador retriever 5 1–5

LR2 7 Labrador retriever 6 6–11

LR3 7 Labrador retriever 6 12–17

MS1 9 Miniature Schnauzer 5 18–22

MS2 6 Miniature Schnauzer 5 23–27

MS3 4 Miniature Schnauzer 5 28–32

MS4 3 Miniature Schnauzer 5 33–37

Unknown samples – – 7 38–44

Table 2 Dates of urine

sampling for each of the seven

dogs

The 37 urines used to train the

PLS models (H) and the 7

urines that were withheld as the

independent test set (*) are

indicated

Date Dog identifier

LR1 LR2 LR3 MS1 MS2 MS3 MS4

28 February 2005 * H H H

1 March 2005 H * H H H

2 March 2005 H H * H H

3 March 2005 * H H

4 March 2005 H H H *

7 March 2005 H H H H * H

8 March 2005 * H

9 March 2005 H H H H H

10 March 2005 H H H

11 March 2005 H H H H H H H
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dimensions multiplied by sine-bell window functions prior

to Fourier transformation. JRES spectra were calibrated

against TMSP (0.0 ppm), tilted by 45�, symmetrized about

F1, and then 1-D skyline projections of the 2-D spectra

were calculated (denoted pJRES), all using TopSpin.

2.5 Spectral pre-processing

The 1-D NMR spectra and 1-D projections of the 2-D J-

resolved spectra were converted to an appropriate format

for multivariate analysis using custom-written ProMetab

software (Viant 2003) running within Matlab (version 7.1;

The MathsWorks, Natick, MA, USA). First, the regions

above 10 ppm, below 0.2 ppm, and between 4.50 and

6.45 ppm (residual water and urea) were excluded from all

spectra, and the total area of each spectrum was normalized

to one. All spectra were then generalized-log transformed

(transformation parameter, k = 3.0 · 10–8) to stabilise the

variance across the spectral data points and to increase the

weightings of the less intense peaks (Parsons et al. 2007;

Purohit et al. 2004). Due to slight pH-induced chemical

shift variability, all spectra were aligned using a beam

search algorithm as described by Lee and Woodruff (2004).

All spectra were then segmented into 0.005-ppm bins. For

the 1-D spectra, bins between 2.405–2.425, 2.52–2.57,

2.66–2.71, 2.94–2.955, 3.105–3.13, 3.72–3.77, 3.955–3.99,

7.08–7.20, 8.00–8.18 and 8.45–8.48 ppm containing pH-

sensitive resonances were each compressed into a single

bin resulting in a matrix of 44 samples · 1855 bins. Sim-

ilarly, for the 1-D projections, bins between 2.40–2.425,

2.52–2.57, 2.66–2.71, 2.935–2.955, 2.96–2.98, 3.105–3.13,

3.72–3.77, 3.955–3.99, 7.08–7.20 and 8.00–8.18 ppm were

each compressed into a single bin resulting in a matrix of

44 samples · 1855 bins.

2.6 Statistical analyses

Pre-processed NMR data were mean-centred before prin-

cipal component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA) using PLS_Toolbox (ver-

sion 3.53, Eigenvector Research, Manson, WA, USA).

PCA was used to identify any clustering of the 37 known

urine samples in an unsupervised manner, to determine if

this clustering was most evident in the 1-D or pJRES

dataset, and to identify any outliers (Eriksson et al. 2001).

PLS-DA was used to build two classification models, the

first based upon breed (2 classes only) and the second

based upon individual dogs (seven classes) (Eriksson et al.

2001). For both models, the 37 known urine samples were

used as the training set (Tables 1 and 2), and cross-vali-

dation was employed to tune the model and to select the

appropriate number of latent variables (LV). The seven

remaining samples were used as an independent test set to

assess the performance of the fully trained PLS-DA mod-

els; the identities of these seven samples remained

unknown to the metabolomics group at Birmingham until

after the completion of model building. NMR peaks cor-

responding to the largest weightings in the PLS analyses

were quantified using Matlab and the significance of these

differences in metabolite concentrations were examined

using t-tests (Microsoft Excel). Methods to identify the

peaks are described below.

2.7 Metabolite identification

A 2-D 1H, 1H TOCSY NMR experiment at 800 MHz was

performed on a single 4-fold concentrated urine sample

(from dog MS3) to aid the assignment of metabolites. The

spectrum was acquired using a DIPSI3 isotropic mixing

sequence (Shaka et al. 1988) for 120 ms at a field strength

of 6 kHz. For analysis of the spectrum the data were pro-

cessed using NMRLab (Gunther et al. 2000) and visualised

using CcpNmr software (University of Cambridge). Peaks

were then identified (or attempted to be identified) using

the Chenomx NMR Suite and associated metabolite

libraries (version 4.5; Chenomx Inc., Edmonton, Canada),

the Madison Metabolomics Consortium Database

(MMCD) (Markley et al. 2007), and the Human Metabo-

lome Database (HMDB) (Wishart et al. 2007). Spiking of

pure metabolite into urine was also used to attempt to

confirm metabolite identity by 1-D NMR.

3 Results and discussion

3.1 1-D and pJRES NMR fingerprints of dog urine

The initial pH of the urine samples, prior to buffering,

varied significantly from animal to animal (from 6.44 to

7.66 for miniature Schnauzers and 6.60–7.27 for Labrador

retrievers). Furthermore, the samples were somewhat

resistant to buffering, and even after pH adjustments in the

presence of buffer the pH values drifted over time.

Therefore, drawing from a number of published methods

(Keun et al. 2002; Lauridsen et al. 2007), a protocol was

developed to produce and maintain a stable and repro-

ducible urine pH that resulted in minimal pH-induced

chemical shift variation in the NMR spectra; described in

Materials and Methods above. A representative 1-D 1H

NMR spectrum and a 1-D skyline projection of a 2-D 1H J-

resolved NMR spectrum (pJRES) for dog urine are shown

in Fig. 1a and b. The corresponding pre-processed NMR

data are shown in Fig. 1c and d for the 1-D 1H and the
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pJRES spectra, respectively. The raw and pre-processed

data highlight a number of interesting features. First, the

quality of the water suppression using excitation sculpting

is readily apparent from the raw spectra (Fig. 1a, residual

water at ca. 4.7 ppm). This is one of few studies to have

employed this approach in metabolomics (Aranibar et al.

2006). Second, and as expected, urea dominates the 1-D

spectrum (Fig. 1a, ca. 5.8 ppm). However it is absent from

the projection of the J-resolved spectrum (Fig. 1b) due to a

combination of the spin-echo delay in the pulse sequence

as well as the sine window function, which both minimise

the contribution of protons that relax rapidly. Third, the

dramatic effect of the generalised log transformation is

clearly evident, with the pre-processed data (Fig. 1c and d)

both exhibiting a suppression of the most intense peaks and

an increase in the lower intensity peaks (Parsons et al.

2007; Purohit et al. 2004). Finally, the greatly reduced

spectral congestion in the projection of the J-resolved

spectrum is visible (Fig. 1d, versus the 1-D data in Fig. 1

c), which greatly increases metabolite specificity and

facilitates more accurate quantification via the integration

of well-resolved resonances on a flat baseline (Viant 2003).

PCA was conducted on both the 1-D 1H and the pJRES

pre-processed data from the 37 known urine samples. For

the 1-D 1H dataset, two samples had large Q residuals

(beyond 99% confidence limit) indicating that they do not

fit the PCA model. Sample 7 (which showed chemical shift

alterations compared with the other spectra) and sample 37

(no technical abnormality in NMR spectrum) were subse-

quently removed and the resulting PCA scores plot is

shown in Fig. 2a. PCA also identified sample 37 as an

outlier in the pJRES dataset, based upon a large Q residual,

and the scores plot of the remaining 36 samples is shown in

Fig. 2b. The scores plot of the pJRES data (derived from

the 2-D J-resolved spectra) revealed improved clustering of

each individual dog’s urine fingerprints and also an

improved separation of the Labrador retrievers and mini-

ature Schnauzers. This improvement in clustering using

pJRES data is a result that we have documented previously

(Viant 2003) and have observed for several other datasets.

In addition, the PCA loadings plots and PLS weightings

plots (discussed below) are significantly less congested for

the pJRES dataset which greatly facilitates their interpre-

tation. Consequently all subsequent multivariate analyses

and interpretation were conducted only on the pJRES

spectra.

Considering the PCA scores plot of the pJRES data

(Fig. 2b), in general the metabolic variability within each

individual is relatively small (except for LR2, samples 6–

11) compared to the inter-individual variability. Further-

more, even using this unsupervised method of analysis,

there is clearly some degree of separation between

Fig. 1 Representative raw and

pre-processed NMR spectra of

the dog urine samples: (a) raw

1-D 1H NMR spectrum, (b) raw

1-D skyline projection of a 2-D
1H J-resolved NMR spectrum

(pJRES), (c) pre-processed 1-D
1H NMR data, and (d) pre-

processed pJRES data. The

primary advantage of the pJRES

spectral projection method is a

lower peak density resulting in

improved spectral resolution
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Labrador retrievers and miniature Schnauzers along the

PC1-PC2 axis. The 14 urine samples from three of the four

miniature Schnauzers are particularly tightly clustered with

low PC1 and high PC2 scores. The fourth dog in this breed

(MS3, samples 28–31) showed a somewhat different met-

abolic fingerprint, but health checks revealed no medical

problems and no medication had been administered to this

animal. The relatively low amount of variance explained

by the first two principal components in Fig. 2b (43.3%)

highlights the complexity of the metabolic variability

within the NMR dataset; i.e., the dataset is not dominated

by variance in just a few metabolites within multi-dimen-

sional space. Overall, however, these unsupervised

analyses clearly indicate that individuals and breeds

occupy different regions of urinary metabolic space, and

confirm the ability to obtain urine metabolic fingerprints in

healthy dogs using a daily ‘‘free catch’’ sampling strategy.

This sampling strategy is already widely used for dogs in

both the clinic and domestic environments.

3.2 Classification model for dog breed

A PLS model was built using the pJRES pre-processed

spectra of the 37 known urine samples (Tables 1 and 2),

where each sample was identified as a Labrador retriever

or miniature Schnauzer. The optimised model was con-

structed of 3 LVs based upon the minimization of the root

mean square error of cross validation. None of the 37

samples exceeded the Q-residual or Hotelling T2 99%

confidence limits, so all samples were retained in the

training set for the model. The PLS scores plot is illus-

trated in Fig. 3a, which shows clear separation between

the urinary NMR fingerprints of the Labrador retrievers

and miniature Schnauzers. Subsequently, to investigate the

classification accuracy of the PLS model, the breeds

associated with each of the seven unknown urine samples

were predicted using DA and a threshold determined using

a Bayesian approach (as implemented in the PLS_Tool-

box; Wise et al. 2004). The algorithm used the

distribution of training set predictions obtained from the

PLS model to determine a threshold value which best split

the two classes with the least probability of false classi-

fications for future predictions. The predicted breeds for

the 37 known and 7 unknown samples are shown in

Fig. 3b, and the predictions for the unknowns are sum-

marised in Table 3. The model predicted that 4 of the

unknown samples were from Labrador retrievers and 3

from miniature Schnauzers, which, when the identities of

the samples were later revealed to the Birmingham met-

abolomics group, was determined to be the correct

classification; i.e., the sensitivity and specificity for the

PLS model based on breed are both 100%. The breed-

specific nature of urines is clearly indicated by the degree

of separation seen in the blind test set (Fig. 3b). There is

therefore a high likelihood that metabolic differences

representing the breed classification exist and may repre-

sent the different physiologies of the two breeds. Further

examination of these discriminatory metabolites is

important since it may provide a better understanding of

which biological factors are the most influential, or sen-

sitive, to breed physiology and genetics. In addition, these

results suggest it may be possible to use metabolomics to

identify small genetic differences in other species,

including domesticated and wild animals.

Fig. 2 PCA scores plots from analyses of the 37 known urine

samples using (a) the 1-D 1H NMR dataset (2 outliers removed), and

(b) the pJRES NMR dataset (1 outlier removed). Dotted lines have

been drawn around the clusters for each Labrador retriever (LR1 (4 ),

LR2 (h), LR3 (�)) and solid lines around each miniature Schnauzer

(MS1 (Q ), MS2 (m ), MS3 (j), MS4 (•)). The pJRES dataset

provides somewhat improved separation of the two breeds
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3.3 Metabolic discrimination between dog breeds

The weightings plot associated with the LV1 + LV2 axis in

the scores plot, which provides the greatest discrimination

between the breeds, is shown in Fig. 4. Positive peaks

correspond to metabolites that are at elevated concentration

in miniature Schnauzers and negative peaks to metabolites

that are elevated in Labrador retrievers. NMR peaks with

the larger PLS weightings were quantified in the original

pJRES NMR dataset, and fold differences in the metabolite

levels between the two breeds were calculated along with

the significance of those differences (Table 4). We then

attempted to identify these peaks using a range of methods.

A few metabolites were readily identified from their

characteristic chemical shifts and spin-spin couplings, in

conjunction with metabolite databases. Note that many

more metabolites could be identified in the urine spectra

than listed in Table 4, but these metabolites did not cor-

respond to large PLS weightings and so are of minimal

interest to this study. Next, peaks arising from unidentified

metabolites that could discriminate between the two breeds

and that exhibited spin multiplicity were analysed further,

specifically a triplet at 0.95 ppm and a triplet at 1.09 ppm.

An 800 MHz TOCSY spectrum of a concentrated urine

sample (from dog MS3, who was known to have high

levels of these metabolites) was recorded and analysed,

providing a more complete description of the spin systems.

The triplet at 0.95 ppm was coupled to NMR resonances at

1.70 ppm (multiplet of at least 6 peaks) and 4.04 ppm

(triplet), suggesting a CH–CH2–CH3 spin system. The

second triplet at 1.09 ppm was coupled to NMR resonances

at 1.86 ppm (multiplet), 3.30 ppm (multiplet) and

3.41 ppm (multiplet). Extensive searching of databases

using this additional information revealed no obvious

candidate metabolites, although the spin system associated

with the 0.95 ppm triplet was somewhat consistent with 2-

hydroxybutyrate. We therefore spiked pure 2-hydroxybu-

tyrate into the urine sample, but the peaks arising from the

spiked compound were not coincident with the unknown

metabolite. Unfortunately these two metabolites remained

unidentified.

Next, NMR peaks that appeared as singlets (no cross

peaks in a TOCSY) were analysed further by examining

the degree of correlation between the intensities of these

peaks across multiple spectra. It was discovered that the

peaks at 2.09 ppm and 2.95 ppm likely arose from a

common metabolite, since their intensities were highly

correlated (r2 = 0.989). This conclusion was further sup-

ported by the similar ratio in peak intensities between

miniature Schnauzers and Labrador retrievers, as well as

the similar P-values (Table 4). However, even when con-

sidering the intensity ratio of these peaks together with

their chemical shifts, none of the available metabolite

databases were able to provide an assignment. Taken

together, these results dramatically highlight the need for

greatly expanded metabolite databases that can provide

more extensive coverage of the mammalian metabolome.

Clearly there are a number of highly significant metabolic

differences between miniature Schnauzers and Labrador

retrievers; for example a 4.35-fold higher concentration of

an unidentified metabolite at 0.95 ppm in miniature

Schnauzers (P = 0.0006) and a 2.58-fold higher concen-

tration of an unidentified metabolite at 2.80 ppm in

Fig. 3 (a) PLS scores plot from analysis of the pre-processed pJRES

NMR spectra of the 37 known urine samples, where breed was used

for the class descriptors. A dotted line has been drawn around all

known Labrador retriever samples (j) and a solid line around the

known miniature Schnauzer samples (•). The seven unknown

samples, which were not included in the training of the PLS model,

are indicated as open squares or open circles for Labrador retrievers

and miniature Schnauzers, respectively. (b) Predictions from the 3-

LV PLS model as to whether urine samples belong to the Labrador

retriever class; labelling as above. Unknown samples 38, 40, 41 and

43 all lie significantly above the threshold (dashed line just above

zero) indicating that they arise from Labrador retrievers, and

unknowns 39, 42 and 44 lie below the threshold and are predicted

to arise from miniature Schnauzers
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Labrador retrievers (P = 0.0004). Considering the rela-

tively small number of dogs employed in this study, these

highly significant metabolic discriminators between breeds

indicate that the affect of breed may have significant

impacts on their biology. Only when improved NMR

databases of metabolites become available will a more in-

depth interpretation of these biochemical differences

between breeds become possible.

3.4 Classification model for individual dogs

A second PLS model was built using the pJRES pre-pro-

cessed spectra of the 37 known urine samples (Tables 1

and 2), where class assignments were based on individual

dogs. This dataset comprised of 5, 6, 6, 5, 5, 5 and 5 pJRES

spectra from seven different animals. The optimised model

was constructed of 6 LVs based upon the minimization of

the root mean square error of cross validation. Only sample

37 in the training set exceeded the 99% confidence limit for

the Q-residual and therefore was removed (this sample was

determined to be an outlier from the earlier PCA results).

The PLS scores plot for LV1 versus LV2 is shown in

Fig. 5, which shows that the NMR fingerprints of each of

the seven individual dogs tend to occupy different regions

of metabolic space. Subsequently, the identities of the dogs

associated with the seven unknown urine samples were

predicted using DA with Bayesian-determined thresholds

(as described above). The predicted individuals for the

seven unknown samples are summarised in Table 3. For

five out of seven of the unknowns the model predicted that

each urine sample was associated with a specific dog. For

one of the unknowns (sample 40) it predicted that it could

arise from either of two dogs, although one of these pre-

dictions was only just above the threshold. We therefore

assigned the urine sample to the more likely animal that

was significantly above the threshold (LR1). For the one

Table 3 Predicted breed and predicted individual identity for each of the seven unknown samples in the test set. The results are derived from

two PLS models, the first built upon breed descriptors only, and the second built upon individual identifiers only a.

Urine sample in test set

Predicted breed 38 39 40 41 42 43 44

Labrador retriever Yes Yes Yes Yes

Miniature Schnauzer Yes Yes Yes

Predicted individual 38 39 40 41 42 43 44

LR1 Yes

LR2 Yes Yes

LR3 Yes

MS1 Yes (just)

MS2 Yes

MS3 Yes No (just)

MS4

Actual identity LR3 MS3 LR1 LR2 MS3 LR2 MS2

a ‘Yes’ indicates that the sample was strongly predicted to lie within a particular class and was far above the Bayesian determined threshold (as

implemented in the PLS_Toolbox); ‘Yes (just)’ indicates that the sample does lie within that class but is close to the threshold for that class; ‘No

(just)’ indicates that the sample does not lie within that class but is very close to the threshold for that class; and all blank entries imply the

sample definitely does not lie within that class

Fig. 4 PLS weightings plot from analysis of the pre-processed

pJRES NMR spectra of the 37 known urine samples. The weightings

correspond to the LV1 + LV2 axis, which provides the greatest

degree of discrimination between the Labrador retriever and minia-

ture Schnauzer urine samples. Positive peaks correspond to

metabolites that are at higher concentration in the miniature

Schnauzers relative to the Labrador retrievers, and vice versa. Peak

assignments are as listed in Table 4
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remaining unknown (sample 42), the model predicted that

it did not arise from any of the seven dogs. However, one

of these predictions was only just below the threshold and

so we assigned that urine sample to the most likely animal

(MS3). These final results were then communicated to the

WALTHAM Centre for Pet Nutrition who confirmed that

seven out of seven of these predictions were correct

(Table 3). Considering the results from the entire study,

this confirms that NMR fingerprinting of urine followed by

supervised multivariate analysis is capable of identifying

both breed and individual dogs. This therefore suggests that

a single urine sample (rather than a temporal series of

samples) may be considered representative of an individ-

ual. Furthermore, in the future this approach may allow us

to identify breed-specific standard ranges for specific

metabolites in urine and to study the physiological impli-

cations of these metabolite levels in urine.

4 Concluding Remarks

We believe that this study represents one of the first NMR-

based metabolomics investigations of canine urine sam-

ples. Whilst it has not employed large numbers of dogs, but

instead is a proof of principle, there are a number of

comments and conclusions that can be made. Our results

suggest that the non-invasive collection (using ‘‘free

catch’’) of urine and its NMR metabolic fingerprint is a

potentially valid approach to undertake biologically rele-

vant studies in dogs. Furthermore, we have determined that

breed may be a major determinant of urine metabolic fin-

gerprints in healthy dogs. Our results also suggest that a

spot sample may be representative of an individual, and so

there appears to be no need for whole day collections and

repeated samplings, the latter assuming that an appropriate

multivariate model with suitable replication has already

been built. It is important to realise, however, that the dogs

in this study are pure-bred dogs living in the same envi-

ronment, with the most consistent and best care possible.

As such these dogs are clearly representative of healthy

individuals and environmental noise will be relatively low

Fig. 5 PLS scores plot from analysis of the pre-processed pJRES

NMR spectra of 37 known urine samples (1 outlier removed), where

individual dogs were used for the class descriptors. Dotted lines have

been drawn around the clusters for each Labrador retriever (LR1 (4),

LR2 (h), LR3 (�)) and solid lines around each miniature Schnauzer

(MS1 (Q), MS2 (m), MS3 (j), MS4 (•)). The seven unknown urine

samples are labelled 38 to 44 and were not included in the training of

the PLS model

Table 4 NMR peaks (with partial assignments) present in canine urine samples that were identified to differ in concentration between Labrador

retrievers (LR) and miniature Schnauzers (MS) from the PLS weightings plot in Fig. 4

Metabolite no. Identification Chemical shift (ppm)a Metabolite ratio (MS/LR) P value b

1 Unidentified 0.95 (t) [1.70 (m), 4.04 (t)] c 4.35 0.0006

2 Unidentified 1.09 (t) [1.86 (m), 3.30 (m), 3.41 (m)] c 3.51 0.0146

3 Unidentified d 2.09 (s) 3.55 0.0064

4 Citrate 2.55 (d), 2.69 (d) 2.20 0.2864

5 Unidentified 2.80 (s?) 0.388 0.0004

6 Unidentified d 2.95 (s) 3.14 0.0089

7 Unidentified 2.97 (s) 2.82 0.0100

8 Unidentified 3.16 (s) 0.235 0.0534

9 Hippurate 3.97 (d), 7.55 (t), 7.64 (t), 7.84 (d) 0.245 0.0214

10 Unidentified 7.31 (s?) 0.688 0.0455

Ratios of metabolite levels (not generalized-log transformed) are also shown
a Multiplicity of peak: s, singlet; d, doublet; t, triplet; m, multiplet. As determined from the full 2D J-resolved NMR spectra
b Determined from a t-test of the mean metabolite concentrations for n = 3 Labrador retrievers and n = 4 miniature Schnauzers
c Determined from 800 MHz TOCSY experiment
d Unidentified metabolite has two highly correlated singlets at 2.09 and 2.95 ppm
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compared to privately owned dogs. In this regard it is not

necessarily surprising to find that dog breeds are able to be

distinguished from each other, but the fact that in this

dataset we also see separation between individual animals

indicates that the urinary profile may be particularly

information-rich. To develop a better understanding of

what factors need to be controlled when designing and

interpreting experiments using a metabolomics approach

we require further work to investigate the importance of

other factors such as diet, age and gender, as well as

extending the number and diversity of breeds screened.

With this information a more accurate development of

specific nutritional care for an individual or breed will

become possible.
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