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Metabolomic technologies produce complex multivariate datasets and researchers are faced with the daunting task of extracting

information from these data. Principal component analysis (PCA) has been widely applied in the field of metabolomics to reduce

data dimensionality and for visualising trends within the complex data. Although PCA is very useful, it cannot handle multi-

factorial experimental designs and, often, clear trends of biological interest are not observed when plotting various PC

combinations. Even if patterns are observed, PCA provides no measure of their significance. Multivariate analysis of variance

(MANOVA) applied to these PCs enables the statistical evaluation of main treatments and, more importantly, their interactions

within the experimental design. The power and scope of MANOVA is demonstrated through two different factorially designed

metabolomic investigations using Arabidopsis ethylene signalling mutants and their wild-type. One investigation has multiple

experimental factors including challenge with the economically important pathogen Botrytis cinerea and also replicate experiments,

while the second has different sample preparation methods and one level of replication �nested� within the design. In both

investigations there are specific factors of biological interest and there are also factors incorporated within the experimental design,

which affect the data. The versatility of MANOVA is displayed by using data from two different metabolomic techniques; profiling

using direct injection mass spectroscopy (DIMS) and fingerprinting using fourier transform infra-red (FT-IR) spectroscopy.

MANOVA found significant main effects and interactions in both experiments, allowing a more complete and comprehensive

interpretation of the variation within each investigation, than with PCA alone. Canonical variate analysis (CVA) was applied to

investigate these effects and their biological significance. In conclusion, the application of MANOVA followed by CVA provided

extra information than PCA alone and proved to be a valuable statistical addition in the overwhelming task of analysing

metabolomic data.
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1. Introduction

Plant metabolomics is the study of predominantly
low molecular weight metabolites within cells, tissues or
organisms and is a widely applied approach for the
elucidation of gene function in a wide range of plant
species. Due to the biochemical complexity of plant
systems and the high diversity of chemical species to be
analysed, there is currently no single technology, which
enables measurement of the global metabolome (Sum-
ner et al., 2003). As a consequence there are a wealth of
approaches and technologies being applied to study
plant metabolomics (Holtorf et al., 2002; Fernie, 2003;
Sumner et al., 2003; Bino et al., 2004). One of the
many goals of researchers in the field of metabolomics is
high-throughput screening of crude samples with little
or no sample preparation time. The methods of fourier
transform infra-red spectroscopy (FT-IR), nuclear
magnetic resonance (NMR) and direct injection elec-

trospray mass spectrometry (DIMS) have emerged with
this in mind (Goodacre et al., 2004; Kim et al., 2005), all
producing high dimensional, biochemically discrimina-
tory data. FT-IR is a �fingerprinting� technique, which
produces a biochemical signature of the sample to gen-
erate biologically relevant data without identifying
individual metabolites (Fiehn, 2001; Johnson et al.,
2003). DIMS can be classified as both a fingerprinting
technique and �profiling� technique, as terminologies
used in this field often overlap. This article refers to
DIMS as a profiling technique due to phase separation
of the extracts and tentative identification of contribu-
tory mass ions (Dunn et al., 2005). Irrespective of the
analytical method selected, the aim is to differentiate
between samples and/or the classification of samples to
their origin or in response to external stimuli (Fiehn,
2001).

Both of these techniques yield huge multidimensional
datasets which are virtually uninterpretable by visual
analysis (figure 1A, B). Hence, chemometric methods
are used to examine the shape of the data and to identify
trends within it, so summarising the data. Principal
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component analysis (PCA) is a method commonly
applied which enables the visualisation of sources of
natural variability within the data in the form of 2-D or
3-D plots of different principal component (PC) com-
binations (Taylor et al., 2002; Johnson et al., 2003;
Schulz et al., 2004). The method has several advantages:
primarily that the data do not have to be multivariate
normally distributed and that no a priori knowledge of
the data set structure is required as it is an �unsupervised�
technique. As a result the user does not have to make
any assumptions about significant effects or interactions
within the data.

In addition to data visualisation, PCA is also used to
reduce data dimensionality (Martens and Næs, 1989).
Metabolic data sets typically contain hundreds, or even
thousands of variables, many of which are often highly
correlated. Such a large number of variables relative to a
much smaller number of observations can lead to
problems of matrix singularity when trying to analyse
data using methods such as canonical variate analysis
(CVA) (Chatfield and Collins, 1980). This has been
pointed out previously by Langsrud (2002), Jansen et al.
(2005), Smilde et al. (2005) and Coombes (accessed 15/
05/2007). Hence, PCA is applied to reduce the dimen-
sionality of the data prior to further analysis (Goodacre
et al., 1998; Johnson et al., 2004). CVA, or discriminant

function analysis (DFA) as it can also be termed, is a
clustering method commonly applied to metabolic data
and is a �supervised� method requiring a priori knowl-
edge of the data (Alsberg et al., 1998).

Although PCA and CVA are very useful techniques
for data visualisation, and dimensionality reduction in
the case of PCA, often when dealing with complex, high
dimensional data clear trends of biological interest are
not observed when plotted. Even if patterns are
observed, PCA provides no measure of their signifi-
cance. Multivariate analysis of variance (MANOVA) is
a statistical method which enables assessment of the
statistical significance of the factors and their interac-
tions within the experimental design, as demonstrated
by Daoyu and Lawes (2000) in a study using phenotypic
data for parental selection in kiwifruit breeding. In
principle, MANOVA parallels the more familiar uni-
variate analysis of variance (ANOVA), in that the form
of the technique corresponds to the experimental design.

Analysis of variance has two main purposes: these
being the summarisation of data and the drawing of
inferences from data. When using multivariate methods,
the emphasis is often on data summarisation rather than
drawing inferences as these data sets can contain hun-
dreds or thousands of variables and there is a need to
find structure in the data. However, many studies are
also multi-factorial in their design, containing more than
one factor. If the experimental design contains only a
single factor then CVA may be sufficient.

It is the presence of many sources of variation and the
significance of this variation which are of key impor-
tance in the development of metabolomics technologies/
methodologies. There is both biological and experi-
mental variation, with the latter phrase used to encom-
pass sample generation, harvesting, preparation and
analysis. In order to preserve the biological variability of
interest, that is to preserve the biochemical differences
between the sample classes such as those due to geno-
type, abiotic or biotic treatments, one must aim to
maximise the range and amounts of metabolites
extracted, whilst minimising the experimental variance
(Gullberg et al., 2004). The term biological variability
can be slightly ambiguous; so far we have used the term
to refer to those differences between samples which are
expected, as the samples are genetically different or have
been exposed to different experimental treatments.
However, there is also the biological variation which
occurs between plants which are genetically identical or
between those which are replicates from the same
treatment. Roessener et al. (2000) and Fiehn et al.
(2000) found that the biological variation between
genetically identical samples (plant variability) was
greater than that associated with the analytical tech-
nique of GC-MS (machine variability). These observed
degrees of variability reflect the intrinsic metabolic
flexibility of plants, and hence metabolomics must cope
with this (Holtorf et al., 2002). Overall these findings
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Fig. 1. (A) Classical FT-IR spectra indicating very little obvious

spectral variation between several replicates of the Arabidopsis geno-

types Col-0, etr1-1 and ctr1-1 after sample preparation method 5, as

described in Table 8. (B) An example of a DIMS spectrum from the

pathogen challenge investigation. The spectra from each treatment

combination share a high degree of similarity; hence, chemometric

analysis is needed to allow differentiation between different treatments

and controls.
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highlight the need for biological replication (the analysis
of samples from the same statistical population),
appropriate experimental design and the standardisation
of methods (Chen et al., 2004).

In this article we will show how MANOVA can be
applied to metabolic data from different metabolomic
techniques; profiling using direct injection mass spec-
troscopy (DIMS) and fingerprinting using fourier
transform infra-red (FT-IR) spectroscopy, to study the
significance of all experimental factors and their inter-
actions. Langsrud (2002) also used MANOVA on mul-
tivariate data of reduced dimensionality by PCA, but
merely noted where significant interactions occurred.
Here we investigate the nature of significant interactions
arising in a MANOVA by CVA. In all experiments there
are specific factors of biological interest and there are
also factors incorporated within the experimental
design, which affect the data. The data shown here are
all collected from Arabidopsis thaliana plant material
from two separate investigations. The first investigation
involves response to pathogenic challenge with the
economically important necrotroph Botrytis cinerea (the
cause of grey mould in soft fruits) at 12 and 48 h post
infection. Resistance against necrotrophic pathogens is
dependent upon the synergistic action of jasmonic acid
and ethylene signalling cascades (Penninckx et al., 1998;
Thomma et al., 1998). The model plant Arabidopsis
exhibits disease symptoms following challenge with B.
cinerea and offers a wide range of well-characterised
mutants with altered ethylene perception and transduc-
tion (Guzman and Ecker, 1990), which may exhibit
enhanced or compromised defence. Three different
genotypes were used in this work, the wild type
Columbia (Col-0), an ethylene insensitive mutant etr1-1,
which has a dominant mutation in a gene that encodes
an ethylene receptor and a constitutive signalling eth-
ylene mutant ctr1-1 that is mutated in a MAP3kinase
CTR1 gene (Bleecker et al., 1988; Kieber et al., 1993).
The aim was to obtain snapshots of the metabolome of
the mutants and wild-type during metabolic repro-
gramming of the host upon infection with B. cinerea,
using DIMS, and then to use these data to discriminate
by genotype, infection and time within two replicate
experiments. The second investigation uses FT-IR data
from an experiment to study the effect of sample prep-
aration method, namely freezing or freeze-drying, on the
metabolome of these same three genotypes, but without
infection, providing a system within which comparisons
could be made between the different sampling methods.

2. Materials and methods

2.1. Plant material

Plants of mutants etr1-1 and ctr1-1 and their wild-
type, Col-0, were cultivated on Levington Universal
compost in black trays with 24 compartment inserts in a

6·4 arrangement, with one plant per module. Plants
were grown in Conviron (Controlled Environments Ltd)
growth rooms at 24 �C providing a light intensity of
70 lmol m)2 s)1 at shelf height and with an 8 h pho-
toperiod (i.e. short day) light cycle for 5 weeks. For
ease of treatment, plants were transferred at 5 weeks to
Fotron 600-H growth cabinets (Fisons Environmental
Equipment) set at the same conditions and kept here for
the duration of the investigation. Aerial plant parts were
harvested at the fully expanded rosette stage (stage 3.7
as defined by Boyes et al., 2001).

2.2. Pathogen Challenge Investigation

Botrytis cinerea, strain IMI 169558, was cultured on
potato dextrose agar plates for 4 weeks (PDA; Oxoid) at
20 �C with a 12 h photoperiod in a Gallenkamp illu-
minated cooled incubator (Sanyo Biomedical Europe
BV). Conidia were harvested from the surface of the
plates by flooding with sterile potato dextrose broth
(PDB; Oxoid) and dislodging conidia with an L-shaped
glass rod, filtering to remove mycelium and then diluted
to 1·105 spores mL)1 in PDB. Plants of mutants etr1-1
and ctr1-1 and Col-0 were inoculated by spraying using
a mini airbrush (Amtech) attached to a compressor (35/
20 Bambi air Ltd), subsequently covered with propa-
gator hoods and placed back into the Fotron 600-H
growth cabinets for the duration of the experiment.
Non-infected control plants were �mock inoculated� by
spraying with PDB. The aerial parts of the plant were
harvested at 12 and 48 h post infection, with three
individual plants of each genotype and infection com-
bination being bulked together [40 mg of fresh weight
(FW)] for each biological replicate, and immediately
frozen as whole rosettes in liquid nitrogen and stored at
)80 �C. Two replicate experiments were performed
(hereafter referred to as experiment 1 and experiment 2)
within 2 months of each other. These plant samples
were analysed using DIMS.

2.3. Sample preparation and storage investigation

Three trays of each genotype (Col-0, etr1-1 and ctr1-
1) were grown as described above and three plants of
each genotype were bulked together, a plant randomly
selected from each of the three trays, to give a sample.
Three samples were prepared for each genotype and
preparation combination. The plants were processed
immediately after harvesting. The samples were treated
in the following ways. (1) Whole rosettes, frozen in
liquid nitrogen, stored at )80 �C. (2) Whole rosettes,
frozen in liquid nitrogen, ground by pestle and mortar,
stored at )80 �C. (3) Whole rosettes, frozen in liquid
nitrogen, freeze-dried for 24 h, stored at )80 �C. (4)
Whole rosettes, frozen in liquid nitrogen, freeze-dried
for 24 h, stored at room temperature in desiccators. (5)
Whole rosettes, frozen in liquid nitrogen, ground by
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pestle and mortar and analysed on day of harvest.
Samples prepared using methods 1–4 were all stored for
8 weeks prior to analysis by FT-IR. A new batch of
plants was grown as described above and these provided
material for preparation method 5, which was not stored
but analysed immediately.

2.4. Direct injection electrospray mass spectrometry
(DIMS)

The samples were frozen in liquid nitrogen, then
ground using a ball mill (MM200, Retsch) and metab-
olites were extracted essentially following a procedure
from Fiehn et al. (2000) for metabolite extraction. A
chloroform, methanol and water-based solvent mixture
(at a ratio of 1:2.5:1) was used as the extraction buffer.
The samples were then mixed using a shaking table
(Janke and Kunkel, VX 2E) in a cold room at 3 �C for
15 min. The aqueous layer was removed and 0.5 mL of
sterile ultra pure dH2O was added. The extracts were
mixed, centrifuged at 3 �C at 9000·g (14000 rpm; Het-
tich, EBA 12R) for 3 min and then dried down in a
Savant AES2000 (Thermo Electron Corp) automatic
environmental speed vacuum concentrator and stored at
)80 �C. Prior to analysis the stored extracts were cen-
trifuged as before to remove any small particulates and
75 lL were transferred into a 250 lL glass insert placed
in a glass autosampling vial. Finally, extracts were
reconstituted in 100 lL 80% [v/v] methanol (running
solvent) and mixed gently. Metabolomic profiling of the
extracts was carried out using flow injection (FI)-ESI-
MS on a micromass LCT electrospray ionisation time-
of-flight mass spectrometer. All extracts were introduced
into the electrospray source via a Waters 2695 Alliance
Separations Module (Waters Ltd) under the following
conditions in negative ion mode (ES-): capillary voltage
2000V, sample cone voltage 30V, source temperature
120 �C, desolvation temperature 250 �C, RF lens 125V.
Mass spectra were collected in the mass-to-charge (m/z)
range 100–1400 Th.

The data were exported from Masslynx version 3.5
software (Micromass Ltd, Manchester, UK), used to
run the LCT, and converted into an ASCII format using
a databridge program written by Dr D Broadhurst
(University of Manchester, UK). The ASCII data were
then loaded into Matlab (version 6.5; Mathworks Inc,
Natwick, MA, USA) and, prior to data analyses, nor-
malised to total ion count, so each m/z measurement
became a proportion of the total ion count for each
sample.

2.5. FT-IR spectroscopy

Double distilled water was added to each freeze-dried
sample in a ratio 1 mg freeze-dried weight: 40 lL water
and to each frozen (not freeze-dried) sample in a ratio of
1 mg fresh weight: 5 lL water. The sample was then

mixed gently and 5 lL of sample were loaded onto a
400-well bespoke aluminium plate. The plates were then
dried at 50 �C for 45 min. After drying, the plate was
loaded onto a motorised stage of an adapted reflectance
TLC (thin layer chromatography) accessory connected
to a Bruker IFS28 FT-IR spectrometer (Bruker Spec-
trospin, Coventry, UK) equipped with an MCT (mer-
cury-cadmium-telluride) detector cooled with liquid
nitrogen (Goodacre et al., 1996) The spectra were col-
lected over the wavenumber range 4000–600 cm)1. A
total of 256 spectra were co-added and averaged per
sample to improve the signal to noise ratio. Further
instrument and methodological details are given in
Winson et al. (1997) and Goodacre et al. (1998).

The spectrum for each sample contained 1764 data
points, ranging from 4000 to 600 cm)1 wavenumbers,
each representing absorbance values at a particular
wavelength. These data were imported into Matlab.
Prior to performing any data analyses the spectra were
normalised by row using the prestd.m algorithm in the
statistics toolbox of Matlab. PCA was carried out on the
correlation matrix which autoscales the data as part of
the process (Otto, 1999).

2.6. Principal component analysis

Principal component analysis is a transformation
which produces a new set of uncorrelated variables from
the original correlated variables. The derived variables,
termed principal components (PCs), are linear combi-
nations of the original variables and are arranged in
decreasing order of importance with respect to the per-
centage of total variability accounted for (Joliffe, 1986).
Often the first few PCs account for a high proportion
of the total variance within the original data; as such,
it is often assumed that these contain the important
descriptive information about the experimental samples.

PCA was performed using a routine written in Mat-
lab and which computed the PCs of the correlation
matrix rather than those of the variance-covariance
matrix.

2.7. Multivariate analysis of variance

Analysis of variance (ANOVA) provides a method
for analysing and interpreting univariate data; and often
in situations where multiple responses are measured,
each is analysed separately by ANOVA (Smith et al.,
1962). However, by analysing each separately, the
investigator is failing to study correlations that may
exist between the responses; and in a situation where
there are many hundreds of variables, as in spectros-
copy, such a strategy is totally impractical.

For ANOVA the total sum of squared deviations for
the overall mean is partitioned into a series of sums of
squares (SS) due to the experimental factors, their
interactions and a residual (error) sum of squares. With
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each factor are associated degrees of freedom and these
when divided into the corresponding sum of squares
give the mean squares, the ratios of which constitute the
F-statistics. The partitioning is set out in an ANOVA
table as shown in Table 1 for the simplest situation – a
single factor (one-way ANOVA). Multivariate analysis
of variance uses exactly the same principle, except the
data comprise p variates instead of a single variate.
Hence, the SS are replaced by sums of squares and
products matrices (SSPM) for the p variates. A com-
parison between ANOVA and MANOVA can be seen in
Tables 1 and 2, with both showing a generalised form
for a one-way situation.

In Table 1, all the quantities are, of course, single
numbers, whereas in Table 2, H, R, T are all square
matrices of dimensions p·p, where p is the number of
variates involved.

The degrees of freedom are exactly the same for the
two methods, but in Table 2 they have each been
assigned a symbol of their own (corresponding to the
symbol given to the sums of squares and product
matrix) in order to simplify the formulation of equation
(1). In MANOVA there are no quantities corresponding
to the mean squares of ANOVA. The test statistic,
Wilks�-Lambda (K) is given as the ratio of the determi-
nant of matrix R divided by the determinant of the
matrix which is the sum of both H and R. The next
column in Table 2 is the F-statistic approximation which
is calculated from the Wilks�-Lambda using equation
(1). The F-statistic has degrees of freedom equal to ph
and ab)c, as defined in equation (1). If the latter
expression does not evaluate to a whole number then the
degrees of freedom are rounded up or down in the usual
way.

1� K1=b

K1=b
:
ðab� cÞ

ph
� F½ph;ab�c� ð1Þ

Where

a¼ r�p�hþ1

2

� �
; b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2h2�4

p2þh2�5

s
; c¼ ph�2

2

and h, r and t are defined in Table 2 and p is the
number of variates.

Test statistics for MANOVA have been proposed
other than Wilks�-Lambda but this statistic is by far the
commonest, and in our experience other test statistics
such as Lawley-Hotelling and Pillai�s have given very
similar results.

Unlike PCA, MANOVA basically assumes that
within-group distribution is multivariate normal. How-
ever, like ANOVA, MANOVA is fairly robust to some
departure of the data from normality. Data normality is
important only when assessing the probability of the
F-statistic, hence critical only when the significance is
marginal with reference to the chosen probability level
(usually 0.05). When, as is very often the case, proba-
bilities turn out to be very different from 0.05, either
higher or lower, then any deviations of the data from
normality are of little consequence.

MANOVA was performed using Minitab (version
12.23).

2.8. Canonical variate analysis

If any factors or their interactions are found to be
significant in the MANOVA, the precise details of the
effects can be elucidated by CVA. This can be regarded
as the multivariate equivalent to the univariate multiple
range test (Chatfield and Collins, 1980).

CVA was calculated as part of the one-way MA-
NOVA algorithm in the Matlab Statistics toolbox
(MANOVA1.m). CVs are plotted against each other,
allowing interrelationships between �sample groups� to
become apparent. On such a graph the mean of each
sample class is plotted on each CV, and this can be
surrounded by a confidence area. The latter is circular
because each population, having been transformed to
CVs, has a variance of unity and, like PCs, CVs are
uncorrelated with one another. When significant factors
or their interactions were found for the nested MA-
NOVAs (two machine replicates were taken for each
plant replicate to generate the FT-IR data, thus the
former are said to be �nested� within the latter), a mean
of the machine replicates was calculated before per-
forming CVA as �plant� was the residual in these cases
for assessment of the significance. The confidence area is
an interval estimate for the population mean (Quinn and

Table 1

An ANOVA table for a one-way situation, where there are t treatments
each replicated n times

Sum of squares Degrees of freedom Mean square F P

Treatment (t)1)M (t)1) M M
s2

Residual t(n)1)s2 t(n)1) s2 – –

Total Sum of above tn)1 – – –

The other symbols (M and s2) are as defined in the table, F is the test

statistic and P is the probability.

Table 2

A MANOVA table for a one-way situation, where there are t treat-
ments each replicated n times

Sum of squares

and products

matrices

Degrees of

freedom

Wilk�s-
lambda

(K)

F

approximation P

Treatment H h = (t)1) Rj j
HþRj j Equation (1)

Residual R r = t(n)1) – – –

Total TSum of above t = tn)1 – – –

The square matrices H, R and T are p·p in dimension, where p is the

number of variates involved. F is the test statistic approximation cal-

culated from Wilk�s-lambda and P is the probability.
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Keough, 2002) and is analogous to confidence intervals
in the univariate situation; so that if, say, the 95%
confidence circles are plotted around each mean this
would provide a guide as to which sample groups are
significantly different to each other. Confidence areas
are obtained simply by equation (2) and for a 95%
confidence circle z = 1.96, which is derived using the
method as described by Seahl (1964) for a 90% confi-
dence level.

r ¼ z
� ffiffiffi

n
p ð2Þ

where r = radius of the confidence circle.
z = the standard normal deviate for the degree of

confidence required.
n = the sample size of each group.

2.9. Selection of the discriminatory metabolites

The selection of discriminatory metabolites between
different factors was only applied to the first investiga-
tion (DIMS data) for demonstration purposes, but it
can also be applied to FT-IR data where key regions of
spectra can be identified in terms of groups of metabo-
lites or compound classes, rather than individual
metabolites.

If the plotted CV results show interrelationships
between sample groups, interrogation of the loading
vectors derived from the CVA can identify the most
influential PCs. Examination of the most highly loaded
PCs on the CV of interest will illustrate the mass-to-
charge (m/z) ion contribution (DIMS) that leads to
separation of the sample groups. The most positive and
most negative m/z ion contributions which appear in the
relevant PC are considered as being key m/z ions influ-
encing the separation of the factors. The most highly
discriminatory key m/z ions can be tentatively identified
based upon comparisons with DIMS metabolite librar-
ies and databases, ultimately leading to the elucidation
of the key differences between sample groups, although
confirmation is required from further MS analyses.

3. Results and discussion

3.1. Selection of the number of principal components

Prior to performing the MANOVA, the dimension-
ality of each dataset was reduced using PCA. The
selection of the number of PCs to apply MANOVA
proved to be a very difficult problem. In purely statis-
tical terms, the aim is to retain a sufficient number of
PCs to account for a high percentage of the total vari-
ability, e.g. 95%. However, the problem is that in data
of this kind there is a very high correlation between the
spectra from all the experimental units which results in
a very large percentage of the total variability being

accounted for by the first PC. In the first investigation
reported in this article, more than 95% of the total
variability was accounted for by just the first two PCs
(Table 3).

On the other hand, in the course of analysing the
work reported in this article we have found that in the
main, PC1 reflects the general correspondence of the
spectra between the individual samples, while the sub-
sequent PCs are the potential sources of biological
variation. Useful biological interpretations often lie in
PCs which contain only a small percentage of the total
variability. In general, we have found that the more PCs
included for further analysis by MANOVA, the greater
the number of significant main effects and interactions
will be found (unpublished data). But against this can be
stated that these extra PCs will account for only a
minute amount of statistical variability, and so the sig-
nificance of any biological information that such PCs
may contain would be very questionable.

Ideally, the selection of the number of PCs to retain
for the rest of the statistical analyses would be based on
biological criteria alone. However, because the biologi-
cal information in the various PCs derived from data of
a new investigation is unknown, and because an objec-
tive solution to this problem is ideally required, recourse
does have to be made to the statistical aspect. For the
first investigation reported in this article, we set the
variability threshold to 99%, which required eight PCs
(Table 3). In the second investigation, because less of
the total variability was accounted for by the first few
PCs a threshold of 95% was chosen, which resulted
again in eight PCs being used.

3.2. Pathogen challenge investigation

In this investigation the first factor is experiment,
which has two levels, and the second factor is genotype
with three levels corresponding to the wild-type
Arabidopsis line and the two ethylene mutants. The third
factor is infection, which has two levels corresponding to
plus or minus B. cinerea infection as previously descri-
bed. The fourth factor is time, which has two levels
equivalent to 12 h post infection and 48 h post infection.

Table 3

The PCs derived from the DIMS data set used in the MANOVA

Principal component number Cumulative % variance

PC1 92.72

PC2 95.48

PC3 96.67

PC4 97.50

PC5 98.08

PC6 98.59

PC7 98.93

PC8 99.10

The number of PCs retained accounted for just over 99% explained

variance (cumulative percentage explained variance shown).
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Six replicate plants were used for each experi-
ment·genotype·infection·time combination. Hence the
variability of the individual plants constitutes the
residual or error line in the MANOVA table and is used
to assess the four main effects and their interactions.

The dimensionality of the DIMS data was reduced
and the first eight PCs were used in the MANOVA, the
results of which are shown in Table 4.

The MANOVA shows that there is a highly signifi-
cant experiment effect, genotype effect, infection effect
and time effect (all P < 0.001). More importantly, there
are also highly significant two and three factor interac-
tions. The aim of this investigation was discrimination
between the three Arabidopsis genotypes upon infection
over time and within two independent experiments. The
presence of the significant experiment·infection·time
effect (P < 0.001), means that it is not appropriate to
study the single effects of genotype, time and infection
alone or even the first order interactions among them.
Due to all the interactions, it was not possible to visu-
alise the relationships between the factors and the
experiments; so it was decided to break down the data,
considering the two time points and the two replicate
experiments individually. Thus we carried out four
separate analyses on three-factor data (experiment,
genotype, infection in the first two analyses; genotype,
infection, time in the latter two). It must be noted that
these four separate analyses use different sub-sets of the
data. Hence this can introduce apparently conflicting
interpretations.

3.2.1. Time interactions
By applying MANOVA to the two individual time
points, very similar conclusions can be drawn. Due to
this, only the first time point (12 h post infection) was
expanded further in this article.

From the MANOVA (Table 5) for 12 h post infec-
tion it can be concluded that no further breakdown was
required due to a non-significant triple interaction of
experiment·genotype·infection (P = 0.432). There are
highly significant experiment, genotype and infection
effects (P < 0.001, P < 0.001 and P = 0.001 respec-
tively) but, more importantly, all the first order inter-
actions of experiment·genotype, experiment·infection
and genotype·infection are highly significant. By
removing the fourth (time) factor, the aim of these
breakdowns (time 1 and 2 separately) was to differenti-
ate between Arabidopsis genotypes, with and without
infection within two replicate experiments. It is not
appropriate to study the single factor effects only due to
the presence of the significant interactions. So therefore
CVA was used to study the interrelationships between
experiment, genotype and infection.

The experiment·genotype interaction. The low P-
value of <0.001 of the experiment·genotype interaction
shows that the relationships between the three genotypes
are not the same for each experiment. The actual rela-
tionships can be observed using CVA, with a priori
knowledge of the number of classes, in this case, six
consisting of each experiment and genotype combina-
tion (figure 2A, B). The data, in the form of sample
means (one for each population) are plotted on the first
two CV axes. It should be noted that the two plots show
exactly the same CVA results; it is merely that different
means are joined together to aid interpretation. By
joining together the means of the two genotypes within
each experiment, as shown in figure 2A, a clear experi-
mental difference can be seen. CV2 separates the three
genotypes showing the same trends, i.e. with Col-0
having the highest scores on CV2, followed by etr1-1,
and then ctr1-1. But CV1 also has some influence on the
separation of the genotypes and it is here, where there
are some subtle differences in orientation that the
cause of the significant experiment·genotype interaction
originates. As the trends of the three genotypes are very
similar, the experiment·genotype interaction is clearly
not biologically significant, only significant statistically.
Even though there seems to be large metabolomic

Table 4

The MANOVA using 8 PCs derived from the DIMS data, where df1 is
the numerator degrees of freedom, df2 is the denominator df, F is the

value of the F statistic and P is the probability

df �F [df1, df2] P

Experiment (E) 1 789.97 [8, 113] 0.000

Genotype (G) 2 33.87 [16, 226] 0.000

E·G 2 7.91 [16, 226] 0.000

Infection (I) 1 17.81 [8, 113] 0.000

E·I 1 5.66 [8, 113] 0.000

G·I 2 2.24 [16, 226] 0.005

E·G·I 2 1.33 [16, 226] 0.179

Time (T) 1 22.36 [8, 113] 0.000

E·T 1 22.16 [8, 113] 0.000

G·T 2 3.85 [16, 226] 0.000

E·G·T 2 1.56 [16, 226] 0.082

I·T 1 3.95 [8, 113] 0.000

E·I·T 1 7.62 [8, 113] 0.000

G·I·T 2 1.53 [16, 226] 0.089

E·G·I·T 2 1.37 [16, 226] 0.158

Residual 120 – – –

Total 143 – – –

Table 5

The MANOVA using 8 PCs derived from the DIMS data (12 h only),
where df1 is the numerator degrees of freedom, df2 is the denominator

df, F is the value of the F statistic and P is the probability

df �F [df1, df2] P

Experiment (E) 1 449.71 [8, 53] 0.000

Genotype (G) 2 22.446 [16, 106] 0.000

E·G 2 6.040 [16, 106] 0.000

Infection (I) 1 3.776 [8, 53] 0.001

E·I 1 5.582 [8, 53] 0.000

G·I 2 2.638 [16, 106] 0.002

E·G·I 2 1.030 [16, 106] 0.432

Residual 72 – – –

Total 83 – – –
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differences between the two experiments the significance
with respect to genotype is minimal as the three geno-
types are behaving similarly between the two experi-
ments.

The experiment·infection interaction. The presence of
an interaction, (P < 0.001), indicates that the relation-
ships between the two treatments of B. cinerea infected
and non-infected were not the same for each experiment.
Again, the relationships can be elucidated using CVA, in
which each experiment and infection combination is

shown, yielding a class structure of two treatments plus
two controls. Again, as before, there is a clear experi-
mental split on CV1, with experiment 1 to the left-hand
side and experiment 2 to the right (figure 3A, B).
However, the interaction between experiment and
infection is clearly shown in that the two infection
regimes are significantly different in experiment 1, but
not in experiment 2. By joining together the means of
the two experiments for each infection regime (fig-
ure 3B), it can be seen that in non-infected plants, the
differences between the two experiments are greater than
are the differences between the two experiments in the
infected plants.

Examination of the CV loading vectors will identify
PCs used to derive the CVA model for the experiment ·
infection interaction. Figure 4 shows the m/z plot of
PC2, which is the most highly loaded PC on CV1
(positively loaded at 0.721), illustrating the m/z ion
contribution to the variation between experiments given
in figure 3. Some of the top m/z intensities are 150, 156,
211 and 213 of which all are highly positively loaded. On
the other hand 116, 147, 210, 224 and 437 m/z are all
negatively loaded on this PC. On CV1, experiment 1 has
a low score while experiment 2 has a high score. Hence
experiment 1 tends to have low 150, 156, 211 and 213
mass ions compared with experiment 2, but higher 116,
147, 210, 224 and 437 m/z. Tentative identification of
these mass ions can allow possible metabolite pathways
in which they belong to be explored leading to the
elucidation of the key pathway differences between
experiments, although confirmation using further MS
techniques would be required.

The genotype·infection interaction. Each genotype
and infection combination is produced by pooling the
data from the two experiments resulting in a class
structure of six groups. This highly significant geno-
type·infection (P = 0.002) interaction indicates that
the relationships between the three genotypes are not
the same upon infection. The ethylene insensitive
mutant, etr1-1, has been shown to be more susceptible
to B. cinerea due to premature symptom development
compared with Col-0 and ctr1-1 (data not shown).
On the other hand, ctr1-1 shows delayed symptom
responses and increased resistance to B. cinerea. Thus
it can be hypothesised that there would be large dif-
ferences between the metabolic profiles of the three
genotypes upon infection with B. cinerea. The CVA
results (figure 5A, B) show a separation of the geno-
types on CV1, but the differences in orientation of
Col-0 and etr1-1 is the cause of the interaction here.
The two infection regimes are separated along CV2
(figure 5B), with the infected plants together having a
lower score than the non-infected ones, but again
there are differences in orientation of Col-0 and
etr1-1. This interaction suggests that etr1-1 does not
respond in the same way to infection as do Col-0 and
ctr1-1.

Fig. 2. CVA for the experiment·genotype interaction, where experi-

ment is the first number and genotype is the second number (where

1 = Col-0, 2 = etr1-1 and 3 = ctr1-1) (A) means of the three geno-

types within each experiment joined, and (B) means of the two

experiments for each genotype joined. Both plots show confidence

circles which equal 0.5658 units where n = 12.
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3.2.2. Experiment interaction
The aim of these breakdowns (experiments 1 and 2
separately) was the discrimination between the geno-
types, with and without infection over time, removing
the effect of the replicate experiment. Both of the
breakdown analyses yielded very similar conclusions in
terms of significant main effects and interactions. So
even though significant differences were evident between
the two experiments in the previous breakdown analysis
for Time, and key m/z ion intensities contributing to this
variation have been identified, the trends within each
experiment remain the same. This suggests that even

with the highly significant experiment difference the
model is still reproducible.

Experiment 1 breakdown was chosen to be explored
further in this article. There are highly significant single
factor effects of genotype, infection and time but, again,
all the first order interactions are highly significant
(Table 6). However, the non-significant three factor
interaction of genotype·infection·time, (P = 0.336) in
the MANOVA table for experiment 1 enables us to
proceed straight to CVAs.

The infection·time interaction. The significant infec-
tion·time interaction (P < 0.001) indicates that the
relationships between the B. cinerea infected and non-
infected are not the same for each time point. The CVA
results are shown in figure 6A and B, in which each
infection and time combination is shown, yielding a
class structure of four. Figure 6A indicates that the non-
infected are not significantly different at the two time
points but B. cinerea infected plants are significantly
different at the two sampling time points. Figure 6B
shows that at 12 h the two infection regimes are not
significantly different, but at 48 h the two infection
regimes differ more than at 12 h. These observations are
biologically important as the metabolite profiles of the
non-infected controls should differ less than those
infected with B. cinerea, so therefore these results sug-
gest a representative and robust experimental design.

The genotype·time interaction. The significant geno-
type·time interaction (P < 0.001) suggests that the
relationships between the three genotypes differ over
time. In this investigation, ctr1-1 grows as if continu-
ously exposed to ethylene, resulting in a profoundly
dwarfed phenotype when compared to Col-0; while

Fig. 3. CVA for the experiment·infection interaction, where experi-

ment is the first number and infection is the second number (1 = B.

cinerea infected and 2 = non-infected) (A) means of the two infection

regimes within each experiment joined, and (B) means of the two

experiments for each infection regime joined. Both plots show confi-

dence circles which equal 0.462 units where n = 18.

Fig. 4. Principal component (PC) loading plot; the most highly loaded

PC loading vector plotted against m/z revealing the major ions con-

tributing variance in the DIMS spectra ultimately allowing the iden-

tification of key discriminatory m/z between the two replicate

experiments.
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etr1-1, shows a greater resemblance to the Col-0 phe-
notype (Woester and Kieber, 1998; Bleecker and Kende,
2000). It might therefore be hypothesised that there
would be larger differences between the metabolite
profiles of ctr1-1 and Col-0 than etr1-1 and Col-0. Each
genotype and time combination is produced by pooling
the data from the two infection regimes resulting in a
class structure of six groups. Figures 7A and B show a
clear genotype split on CV1, with ctr1-1 having a lower
score than Col-0 and etr1-1, thus supporting the
hypothesis. CV2 separates the two time points showing
that ctr1-1 is not significantly different at the two time

Fig. 5. CVA for the genotype·infection interaction, where genotype is

the first number (where 1 = Col-0, 2 = etr1-1 and 3 = ctr1-1) and

infection is the second number (1 = B. cinerea infected and 2 = non-

infected) (A) means of each genotype joined, and (B) means of each

infection joined together. Both plots show confidence circles which

equal 0.5658 units where n = 12.

Fig. 6. CVA for the infection·time interaction, where infection is the

first number (1 = B. cinerea infected and 2 = non-infected) and time

is the second (1 = 12 h and 2 = 48 h) (A) means of each infection

joined, and (B) means of each time joined. Both plots show confidence

circles which equal 0.462 units where n = 18.

Table 6

The MANOVA using 8 PCs derived from the DIMS data (experiment
1 only), where df1 is the numerator degrees of freedom, df2 is the

denominator df, F is the value of the F statistic and P is the probability

df �F [df1, df2] P

Genotype (G) 2 13.876 [16, 106] 0.000

Infection (I) 1 4.353 [8, 53] 0.000

G·I 2 2.194 [16, 106] 0.009

Time (T) 1 10.488 [8, 53] 0.000

G·T 2 2.496 [16, 106] 0.003

I·T 1 6.075 [8, 53] 0.000

G·I·T 2 1.131 [16, 106] 0.336

Residual 72 – – –

Total 83 – – –
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points and both Col-0 and etr1-1 are significantly dif-
ferent. The subtle differences in orientation of etr1-1 and
Col-0 have produced the significant genotype·time
interaction.

The genotype·infection interaction. The CVA results
for the significant genotype·infection interaction (fig-
ure 8A, B) imply very similar conclusions to the geno-
type·infection interaction seen in the first breakdown
analysis of time 1 (figure 5A, B). But in this case each
genotype and infection combination is produced by
pooling the data from the two time points within
experiment 1. Again CV1 shows the same genotypic split

but ctr1-1 is more separated from Col-0 and etr1-1
(figure 8A). Again, CV2 shows the same split due to the
two different infection regimes (figure 8B) except not so
clearly as the genotype·infection interaction for the time
breakdown.

3.3. Sample preparation and storage investigation

The experimental design here resulted in a two factor
nested MANOVA as there are three plant replicates per
genotype·sample preparation combination, which con-
stitute the residual for the genotype and treatment

Fig. 7. CVA for the genotype·time interaction, where genotype is the

first number (where 1 = Col-0, 2 = etr1-1 and 3 = ctr1-1) and time

is the second (1 = 12 h and 2 = 48 h) (A) means of each genotype

joined, and (B) means of each time joined. Both plots show confidence

circles which equal 0.5658 units where n = 12.

Fig. 8. CVA for the genotype·infection interaction, where genotype is

the first number (where 1 = Col-0, 2 = etr1-1 and 3 = ctr1-1) and

infection is the second number (1 = B. cinerea infected and 2 = non-

infected) (A) means of each genotype joined, and (B) means of each

infection joined together. Both plots show confidence circles which

equal 0.5678 units where n = 12.
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effects and their interaction. The two factors are geno-
type at three levels (Col-0 and mutants etr1-1 and ctr1-
1), and sample preparation method which had five levels
as previously described. Each plant sample was analysed
in triplicate (machine replicates) the variability of which
was used to assess plant-to-plant variation, as illustrated
in the MANOVA (Table 7). The dimensionality of the
FT-IR data was reduced prior to MANOVA and the
first 8 PCs were retained as these accounted for 95.23%
explained variance.

MANOVA shows a highly significant genotype and
sample preparation method effect (both P < 0.001),
along with a significant genotype·preparation method
interaction (P = 0.001) (Table 7). There is also a highly
significant plant effect, illustrating that there is much
more variability between the replicate plants than there
is between replicate machine runs within plants as was
found for the pathogenic challenge investigation.

The relationship between the three genotypes is not
the same within each sample preparation method as
there is a highly significant interaction. Figure 9 shows
the CVA plot for the genotype·sample preparation
interaction, with means and confidence intervals, where
figure 9A is labelled showing genotype and figure 9B is
labelled showing sample preparation method. Table 8
describes the numerical key used to label the plots to aid
interpretation.

Figure 9 shows discrimination between the sample
preparation methods and the genotypes. CV1 predomi-
nantly separates the different sample preparation
methods, where all samples stored for 8 weeks are dis-
tinct from the fresh (FR) samples and the freeze-dried
samples (indicated by FD1 and FD2) being furthest
away (figure 9B). Despite the sample preparation effect,
etr1-1 is clearly discriminated from both Col-0 and
ctr1-1 (figure 9A). All etr1-1 samples show a similar
trend of tending towards the lower end of CV2 irre-
spective of the sample preparation method. These results
indirectly indicate a closer similarity between the meta-
bolic fingerprints of Col-0 and ctr1-1 despite the very
distinct dwarf phenotype of ctr1-1. In contrast, etr1-1
shows a larger biochemical difference which is not
reflected by its phenotype which is more comparable to
that of the Col-0.

Data from the two investigations suggests that the
genotypes Col-0, etr1-1 and ctr1-1 have different meta-
bolic fingerprints (FT-IR) and profiles (DIMS). How-
ever, the degree of discrimination of etr1-1 and ctr1-1
from Col-0 appears to be dependent on the analytical
techniques employed.

When focusing on sample preparation method those
samples which were analysed on the day of harvest
(labelled as FR in figure 9B) are distinct from all those
which had been stored for 8 weeks, irrespective of
genotype. By joining together the means of each sample
class, as shown in figure 9B, the relationships between
genotypes with respect to sample preparation can be
visualised more clearly. The shape of the triangles
reflects the tendency for etr1-1 to cluster to the lower
end of CV2. However the shapes of the five triangles
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Fig. 9. CVA for the significant genotype·sample preparation inter-

action, with (A) annotated to indicate the three genotypes: Col-0, ctr1-

1 and etr1-1, and (B) annotated to indicate the sample preparation

method, where FR is treatment 5, FF is freezing whole (1) and after

grinding (2) and FD is freeze-dried and stored at )80 �C (1) and at

room temperature (2), as described in Table 8. Both plots show the

treatment means and confidence circles which equal 0.65 units where

n = 9.

Table 7

The MANOVA using 8 PCs derived from the FT-IR data, where df1 is
the numerator degrees of freedom, df2 is the denominator df, F is the

value of the F statistic and P is the probability.

df �F [df1, df2] P

Genotype (G) 2 11.87 [16, 46] 0.000

Preparation method (M) 4 8.06 [32, 86] 0.000

G·M 8 1.88 [64, 139] 0.001

Plant 30 1.52 [240, 660] 0.000

Machine within plant 90

Total 134
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corresponding to each sample preparation method dif-
fer, reflecting the complexity of the interaction. It is
often not practical in highly replicated metabolomic
experiments to analyse samples on the same day as
harvest, so the material must be stored. Ideally storage
of the plant material will preserve the metabolome as it
was at the instant of harvest; however these results
indicate that subtle changes may be occurring altering
the biochemical composition. In this example the sig-
nificance with respect to genotype is minimal as the same
overall relationship between wild type and ctr1-1 on the
one hand and etr1-1 on the other remains the same.
Further work is required to assess the significance of
sample preparation and storage duration on the me-
tabolome and the consequences this might have.

3.4. Selection of the number of canonical variates

Although CVs have a similar property to PCs in that
they both (sequentially) account for a decreasing per-
centage of the total variability, the criteria for selecting
the number of CVs to retain in the interpretation of the
results are quite different from considerations in respect
of PCs where both are used sequentially to analyse
multivariate data, as here.

In the first place, PCA is considering all the individual
data points (individual plants or machine runs) envis-
aged as having come from a single statistical population,
even though this is not true – every treatment is a dif-
ferent statistical population. The method is used simply
to reduce the dimensionality of the data in order to
make the data set more manageable. CVA, on the other
hand, works on the means of samples derived from the
different statistical populations.

Second, apart from a simple experimental situation
where there is no factorial structure in the design and the
results are first analysed by a one-way MANOVA and
followed by a CVA to ascertain which treatments are
significantly different from which others, a CVA fol-
lowing the MANOVA of a factorially designed investi-
gation is using only a sub-set of the data to investigate a
specified interaction. The amount of the total variability
accounted for by the first CV will now depend only upon
the differences between the sample means of the levels of
the various factors included in the data sub-set being

analysed. This point is brought out very well in the first
investigation. Whenever the factor �experiment� is part
of the interaction being investigated, nearly all the
variability is accounted for by the first CV, typically
>90%. This is because the two experiments are so
different from each other. However, in the case of a
genotype·infection interaction, the first CV accounts for
markedly less of the total variability (�70%), and the
second CV for �20%.

In our experience, it is rarely necessary to retain more
than the first two CVs for an adequate interpretation of
a CVA. But, like all questions of this type, every
investigation is unique and a judgement has to be made
according to circumstances. If most of the variability is
accounted for by the first CV, then nothing will be
gained by trying to interpret more than the first two
CVs. On the other hand, in a situation like the geno-
type·infection interaction above where other CVs
account for a substantial amount of the total variability
(however that may be judged), then of course they
should be included in the final assessment.

4. Conclusion

The value of statistical analyses as a test of analytical
rigour of metabolomic data was highlighted in a review
by Sumner et al. (2003), as was the daunting task of
analysing large data sets. The application of MANOVA,
a multivariate method, enables the simultaneous analy-
sis of many variates; and therefore provides a powerful
method by which the significance of multiple experi-
mental factors and their interactions can be assessed. We
have demonstrated how MANOVA can be applied to
investigate the significance of all factors involved within
an investigation from the main focus of genotype and
pathogenic challenge to plant cultivation and prepara-
tion, plant reproducibility, analytical run and experi-
mental reproducibility. CVA as a multiple range test
permits the visualisation of the sample groups within the
significant main effects or interactions of interest, and
allows the rapid evaluation of inter-relationships. In the
first investigation the experimental effect was not of
biological interest. However, the inclusion of two repli-
cate experiments was done specifically to assess the
degree of reproducibility between identical experiments
in the field of metabolomics. The identification of sig-
nificant treatments is important for subsequent analysis,
which may involve the application of other multivariate
methods and perhaps evolutionary algorithms, many of
which are of a supervised nature and therefore require
a priori knowledge of the data set structure.

The application of MANOVA to metabolomic data
incorporates the features of the experimental design in
which all the effects of the different factors and their
interactions are clearly revealed. This is a necessary
statistical process in the overwhelming task of analysing
complex multivariate datasets.

Table 8

The key for the numerical class structure used in figure 9, where
method 1 is frozen whole and stored at )80 �C, method 2 is frozen
ground and stored at )80 �C, methods 3 and 4 are freeze-dried and
stored at )80 �C and room temperature, respectively, and method 5 is

harvested and ground on day of analysis

Method 1

(FF1)

Method 2

(FF2)

Method 3

(FD1)

Method 4

(FD2)

Method 5

(FR)

Col-0 1 4 7 10 13

ctr1-1 2 5 8 11 14

etr1-1 3 6 9 12 15
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