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A novel approach is presented combining quantitative metabolite and protein data and multivariate statistics for the analysis of

time-related regulatory effects of plant metabolism at a systems level. For the analysis of metabolites, gas chromatography coupled

to a time-of-flight mass analyzer (GC-TOF-MS) was used. Proteins were identified and quantified using a novel procedure based on

shotgun sequencing as described recently (Weckwerth et al., 2004b, Proteomics 4, 78–83). For comparison, leaves of Arabidopsis

thaliana wild type plants and starchless mutant plants deficient in phosphoglucomutase activity (PGM) were sampled at intervals

throughout the day/night cycle. Using principal and independent components analysis, each dataset (metabolites and proteins)

displayed discrete characteristics. Compared to the analysis of only metabolites or only proteins, independent components analysis

(ICA) of the integrated metabolite/protein dataset resulted in an improved ability to distinguish between WT and PGM plants (first

independent component) and, in parallel, to see diurnal variations in both plants (second independent component). Interestingly,

levels of photorespiratory intermediates such as glycerate and glycine best characterized phases of diurnal rhythm, and were not

influenced by high sugar accumulation in PGM plants. In contrast to WT plants, PGM plants showed an inversely regulated cluster

of N-rich amino acid metabolites and carbohydrates, indicating a shift in C/N partitioning. This observation corresponds to altered

utilization of urea cycle intermediates in PGM plants suggesting enhanced protein degradation and carbon utilization due to

growth inhibition. Among the proteins chloroplastidic GAPDH (At3g26650) was the best discriminator between WT and PGM

plants in contrast to the cytosolic isoform (At1g13440) according to the primary effect of mutation located in the chloroplast. The

described method is applicable to all kinds of biological systems and enables the unbiased identification of biomarkers embedded in

correlative metabolite–protein networks.
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1. Introduction

Metabolite measurements have been used for decades
to characterize biological systems (Gerhardt et al.,
1987; Nicholson et al., 1999, 2002; Trethewey et al.,
1999; Ott et al., 2003; Sumner et al., 2003; Castrillo and
Oliver, 2004; Goodacre et al., 2004). With the intro-
duction of novel methods and instrumentation, the
comprehensiveness of metabolite detection has reached
a new level (Webb et al., 1986; Sauter et al., 1991;
Halket et al., 1999; Fiehn, 2000, 2002; Roessner et al.,
2000). Recently, we introduced GC-TOF-MS analysis of
ultra-complex plant extracts for the detection and
quantification of several hundreds of metabolites in a
single sample (Weckwerth et al., 2001, 2004a, b). This
method provides a hitherto unknown magnitude of
metabolite detection due to a unique combination of
high resolution gas chromatography with a rapid and
sensitive time-of-flight mass analyzer (Watson et al.,
1990; Leonard and Sacks, 1999; Veriotti and Sacks,
2001). It further accelerates the analyses thereby
increasing sample throughput. These two features make
this one of the best methods to describe metabolite
dynamics in living systems.

Rapid analysis allows the biological system to be
described based on many replicate samples. Independent
replicates exhibit high biological variance, even though
growth, harvest, and extraction are performed under
strictly controlled conditions (Weckwerth, 2003;
Weckwerth et al., 2004b). These systems snapshots are a
strong and characteristic reflection of the molecular
phenotype (Kell and Mendes, 2000; Cooper et al., 2002;
Weckwerth et al., 2004b) and can be exploited using
multivariate data analysis and supervised machine
learning techniques (Cao et al., 1999; Kell, 2002;
Goodacre, 2003; Goodacre et al., 2004). For instance,
highly-correlated metabolite pairs can be determined
and used to visualize ‘‘co-regulated’’ metabolite clusters
and metabolic network topologies (Weckwerth et al.,
2004a). By comparing differential metabolic networks,
such as those of mutant and control plants, regulatory
effects are revealed (Weckwerth, 2003; Weckwerth et al.,
2004a).

The complexity of regulatory organization inherently
implies that molecular phenotypes are not phenomena
that can be understood in the context of single gene
expressions or perturbations, but rather as the output
of interactive biochemical networks (ter Kuile and
Westerhoff, 2001) constituted by co-regulated components
of transcripts, proteins, and metabolite levels (Weckwerth
et al., 2004b). Though not per se containing causality
(Wagner, 1997), co-regulation of gene and protein
expression analysis and the resulting metabolic pheno-
type correspond well to our understanding of the causal
genotype–phenotype interplay (Cooper et al., 2002;
Urbanczyk-Wochniak et al., 2003; Ihmels et al., 2004).
From this, it is evident that co-regulation and causal

connectivity can be defined best if variables of different
levels are analyzed. Gene function is ultimately con-
nected to the corresponding protein action. Proteins
carry out all of the catalytic, recognition, structural, and
other activities necessary to exert the functional prop-
erties associated with the genes. Therefore, proteomics
offers the most direct characterization of the function of
individual genes at the molecular level.

In the present work, we explore a novel strategy for
identifying of time-dependent system regulation and
biomarkers using integrative metabolite and protein
profiling. The comprehensive profiling of biological
samples requires both statistical and novel data-mining
tools to reveal significant correlations. Here, an inte-
grative approach is presented founded on independent
components analysis (ICA) and revealing an optimized
separation of biologically significant processes. Based on
the unbiased identification of hundreds of individual
compounds, the process enables the identification of
characteristic biomarkers in the context of metabolite–
protein correlation networks.

2. Materials and methods

2.1. Reagents

Chemicals were purchased from Sigma (Taufkirchen,
Germany), except D-sorbitol)3 C6, DL-leucine-2,3,3-d3,
and L-aspartic acid-2,3,3-d3 which were obtained from
Isotech (Miamisburg, USA). Acetonitrile was from J.T.
Baker (Deventer, Netherlands), Endoproteinase Lys-C
from Boehringer (Mannheim, Germany), and Poros-
zyme� Immobilized Trypsin from Applied Biosystems
(Foster City, USA).

2.2. Plant material and harvest

Arabidopsis thaliana plants Col-0 (wild type) and a
plastidic PGM mutant (Caspar et al., 1985) were culti-
vated simultaneously under identical phytotron condi-
tions set as follows: The temperature and light
conditions were 160 lE for 8 h followed by 16 h at 0 lE
(darkness). Relative humidity and temperature condi-
tions were set to 70% and 20�C during the light and dark
period, respectively.

Plants were harvested at the developmental stage 5.10
(Boyes et al., 2001) at six different time points per day,
with 10 different plants per time point and genetic
background, respectively. Enzymatic activity was quen-
ched by immediately freezing the plants in liquid nitro-
gen. Tissues were stored at )80�C until further analysis.

2.3. Extraction procedure and sample preparation for
metabolite and protein analysis

Frozen leaf tissue was individually homogenized
under liquid nitrogen using a prechilled mortar and
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pestle. Approximately 20 mg powdered material was
used for analysis. Simultaneous extraction of metabo-
lites and proteins from individual plants was performed
as described (Weckwerth et al., 2004b) with slight
modifications. For metabolite extraction, 1 mL of the
extraction mixture containing methanol/chloroform/
water (2.5:1:0.5 v:v:v) and 10 lL of an internal standard
solution containing 2 mg/mL of each D-sorbitol)13C6,
DL-leucine-2,3,3-d3, and L-aspartic acid-2,3,3-d3 was
added. Soluble metabolites were extracted by mixing the
solution at 4�C for 10 min. After centrifugation for
6 min at 20,000 rpm, the supernatant was separated into
chloroform and water/methanol phases. The aqueous
phase was used for metabolite analysis.

Samples were derivatized by dissolving the dried
metabolite pellet in 20 lL of methoxyamine hydro-
chloride (40 mg/mL pyridine) and shaking the mixture
for 90 min at 30�C. After addition of 180 lL of N-
methyl-N-trimethylsilyltrifluoroacetamid (MSTFA), the
mixture was incubated at 37�C for 30 min with vigorous
shaking. A solution of even-numbered fatty acid
methylesters, methylcaprylate (C8-ME), methylcaprate
(C10-ME), methyllaurate (C12-ME), methylmyristate
(C14-ME), methylpalmitate (C16-ME), methylstea-
rate (C18-ME), methyleicosanoate (C20-ME), methyl-
docosanoate (C22-ME), lignoceric acid methylester
(C24-ME), methylhexacosanoate (C26-ME), methyloc-
tacosanoate (C28-ME), and triacontanoic acid methy-
lester (C30-ME) (each 0.8 mg/mL CHCl3) was spiked
into the derivatized sample prior to injection into the
GC. Proteins were dissolved from the remaining pellet
with 1 mL of freshly prepared protein extraction buffer
(8 M urea, 50 mM Tris, 200 mM methylamine, 1%
b-mercaptoethanol, pH 7.5). Subsequent protein
extraction was performed with water-saturated phenol.
Proteins were precipitated with ice-cold acetone at
)20�C over night and washed two times with ice-cold
methanol to remove residues of b-mercaptoethanol. The
dried protein pellets were redissolved in protein extrac-
tion buffer and the resulting complex protein mixture
was then digested in two steps using endoproteinase
Lys-C (1:100) and Poroszyme� Immobilized trypsin
according to the manufacturers instructions. The pro-
tein digest was desalted with SPEC C18 columns. After
lyophylisation the pellet was stored at )20�C until use.
For LC-MS/MS shotgun analysis three protein pellets
were pooled before enzymatic digestion. All measure-
ments were performed in triplicates.

2.4. GC-TOF-MS analysis

The GC-TOF-MS analysis was performed on an
HP 5890 gas chromatograph with deactivated stan-
dard spit/splitless liners containing glasswool (Agilent,
Böblingen, Germany). One lL sample was injected in
the splitless mode at 230�C injector temperature. GC
was operated on a MDN-35 capillary, 30 m · 0.32 mm

inner diameter, 25 lmfilm (SUPELCO, Bellefonte,USA),
at constant flow of 2 mL/min helium. The temperature
program started with 2 min isocratic at 85�C, followed
by temperature ramping at 15�C/min to a final tem-
perature of 360�C which was held for 8 min. Data
acquisition was performed on a Pegasus II TOF mass
spectrometer (LECO, St. Joseph, MI) with an acquisi-
tion rate of 20 scans s)1 in the mass range of m/z =
85–600.

The obtained data were analyzed at first by defining a
reference chromatogram with the maximum number of
detected peaks over a signal/noise threshold of 50.
Afterwards all chromatograms were matched against the
reference with a minimum match factor of 800. Com-
pounds were annotated by retention index and mass
spectra comparison to a user defined spectra library.
Selected fragment ions specific for each individual
metabolite were used for quantification.

2.5. LC-MS shotgun protein analysis

Prior to MS analysis, pellets of protein digests were
dissolved in 5% FA. 200 lg per sample are concentrated
on a pre-column and subsequently loaded onto a 50 cm
silica-based C18 RP monolithic column (Wienkoop
et al., 2004a). Elution of the peptides was performed
using a 4 h gradient from 100% solvent A (5% ace-
tonitril, 0.1% formic acid in water) to 100% solvent B
(90% acetonitril, 0.1% formic acid in water) using the
Agilent nano HPLC system (Agilent, Böblingen,
Germany) with a flow rate of 400 nL per min. Eluting
peptides were analyzed with an LTQ mass spectrometer
(Thermo Electron, San Jose) operated in a data-
dependent mode. Each full MS scan was followed by
three MS/MS scans, in which the three most abundant
peptide molecular ions were dynamically selected
for collision-induced dissociation (CID) using a nor-
malized collision energy of 35%. The temperature of the
heated capillary and electrospray voltage were 150�C
and 1.9 kV, respectively. After MS analysis, DTA files
were created from raw files and searched against a data-
base (http://www.arabidopsis.org/) using Bioworks 3.1.
WithDTASelect, a list of identified proteins was obtained
using the following criteria: Xcorr: )1 2.0, )2 1.5, )3 3.3
(Peng et al., 2003) for hits with at least two different
peptides. For quantitative analysis, CONTRAST was
used to compare identified proteins and peptides from
different runs (Tabb et al., 2002). These peptides were
extracted from the chromatogram and peak areas inte-
grated according to Weckwerth et al. (2004b).

2.6. Statistical data analysis

All data were normalized to mg fresh weight and
stable isotope-labeled standard compounds. Statistical
tests were performed in MATLAB 6.5 (Mathworks,
Natick, MA) on the basis of log-transformed data.
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The threshold value chosen for the Pearson correla-
tion was 0.85. Significance levels for Pearson correla-
tions r were computed depending on the number of
metabolite pairs n (equal to the number of samples) by
calculating t-scores given by t=r(n ) 2)0,5 /(1 ) r2)0,5

and controlled for potential impact of outliers by robust
fit assessments. Critical t-score was set corresponding to
the common used p-value of 0.001. As additional crite-
rion for correlations accepted we defined a variance
threshold based on the results of the measurements of
replicates. Correlations were found relevant, if the
coefficient of variation of metabolites involved was
above 30% and thus exceeded the analytical error (see
figure 1). Thus correlations between pairs of metabolites
were considered only if these requirements corre-
sponded.

Independent components analysis (ICA) was applied
in combination with principal components analysis
(PCA) as pre-processing and the measure of kurtosis as
evaluation criterion. The dimensionality of the data was
first reduced by PCA to a set of three principal com-
ponents (PCs). ICA was then applied to this reduced
dataset and the extracted independent components were
ranked by the kurtosis measure. The contributions of
each metabolite/protein to a independent component
can be obtained by combining the transformation
matrix W of PCA with the transformation matrix V of
ICA to a direct transformation U = W*V. The ele-

ments of the ith vector in U represent the individual
contributions to the ith independent component (ICi).

For more details see Scholz et al. (2004). The ICA
algorithm used in this article is CuBICA4 (Blaschke and
Wiskott, 2004).

3. Results and discussion

3.1. Combined metabolite and protein extraction

When performing simultaneous analyses of intracel-
lular metabolites and proteins extracted from a biolog-
ical sample, several aspects of sample preparation are
crucial. First, all enzymatic activity must be quenched as
rapidly as possible to avoid protein degradation and to
stop metabolism. Second, a full spectrum of metabolites
must be extracted to get a clear and full picture of the
metabolic state of the organism. Third, the extraction
procedure must be rapid and efficient to avoid undesired
post-extraction reactions of the metabolites (such as
oxidation) that could interfere with unambiguous
metabolite identification and quantification. This holds
especially true when profiling plant tissues, where the
harvesting process and sample preparation must be
tightly controlled to ensure high accuracy (Weckwerth,
2003). Recently, we developed an integrative extraction
protocol for the co-extraction of metabolites and pro-
teins from the same biological sample using an ice-cold
methanol/chloroform/water mixture for rapid quench-
ing and for metabolite extraction (Weckwerth et al.,
2004b).

In this procedure, urea was used as a chaotropic
reagent to denature and solubilize proteins during
extraction and enzymatic digestion prior to LC-MS
analysis. However, urea is susceptible to decomposition,
yielding ammonium cyanate, which leads to artificial
modifications of cysteine, lysine, or arginine side chains.
This may result in false identifications of proteins via
peptide sequencing. To overcome this limitation we
modified the method slightly by using a protein extrac-
tion and digestion buffer that contains methylamine, a
scavenger of cyanate (Lippincott and Apostol, 1999).

3.2. GC-TOF-MS for metabolite profiling in the
starchless A. thaliana mutant PGM

The well-studied starchless A. thaliana mutant PGM
was chosen as a model system. PGM plants lack plas-
tidic phosphoglucomutase, an enzyme that catalyzes the
reversible interconversion of glucose 1-phosphate and
glucose 6-phosphate. One of the distinguishing charac-
teristics of the mutant is that it accumulates relatively
large quantities of sucrose, glucose, and fructose in both
leaf and stem tissue (Caspar et al., 1985). Thus, pleio-
tropic effects at the metabolite level are expected to be
pronounced. Sugar accumulation in PGM plants leads
to an increase in the kinase activity associated with

Figure 1. PCA of log-transformed metabolite data from samples

harvested after 4 h of light for Arabidopsis thaliana wild type and

mutant plants. Each measurement (containing in total 80 quantified

metabolites) is represented by a dot. The analytical error including the

technical error occurring during extraction, derivatization, and mea-

surement is diminutive compared to measurements of individual plant

samples representing the biological variance. The biological variability

is in multiple excess of the variability caused by technical limitations.
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sucrose-phosphate synthase (SPS), a highly regulated
enzyme that catalyzes the penultimate step in sucrose
synthesis in plants. This increase may correspond to a
downregulation of SPS within the pathway (Winter and
Huber, 2000; Glinski et al., 2003). Studies at the tran-
scriptional level revealed widespread changes in the
PGM plants compared to the WT (Gibon et al., 2004a,
b; Thimm et al., 2004).

The plants were grown in an 8 h light/16 h dark
regime. Samples for metabolic profiling were prepared
as described in the experimental section. For PGM
samples that were harvested in the middle of the light
period, significantly increased amounts of carbohydrates
such as glucose, sucrose, and fructose were observed
that interfered with the dynamic range of the detector.
Therefore, measurements of dilution series were per-
formed. The analysis of the chromatographic runs was
performed using the Pegasus software package (Leco).
Spectra were compared to a user-defined database,
containing the specific fragmentation patterns of about
600 metabolites (Weckwerth et al., 2004a). To provide
additional criteria for identification and to overcome
variations in column temperature and flow-rate, the
retention index procedure described by Kovats (Kovats,
1958) was performed with a few modifications. Due to
the occurrence of n-alkanes in lipid metabolism of
higher plants (Collister et al., 1994), even-numbered
fatty acid methyl esters (FAMEs) ranging from C8 to
C30 were used as retention index markers. Specific
retention indices calculated with the help of FAMEs
were also included in the user library. Therefore, two
criteria were used for unambiguous compound identifi-
cation: (i) the metabolite-specific fragmentation pattern
and (ii) the relative retention time corrected by Kovats
indices.

To get statistically relevant data it is necessary to
perform replicate measurements. From repeat measure-
ments of the same sample we determined the ‘‘analytical
error’’ as the sum of all possible technical errors that
occur during the extraction, derivatization, GC-TOF-MS
analysis, and data evaluation of each individual metab-
olite. For this purpose pooled plant leafmaterials fromA.
thaliana Col-0 WT and PGM mutants harvested in the
middle of the light and dark periods, respectively, were
extracted, derivatized, and analyzed in 10 replicates.

For accurate quantification the use of internal stan-
dards is required. However, in metabolite profiling the
adoption of stable isotope-labeled standards for each
compound to be identified is critical because of an
undesired increase in sample complexity. Therefore, the
applicability of three different stable isotope-labeled
internal standards for the quantification of polar
metabolites was settled on. For that, all metabolites
identified were normalized to these stable isotope-labeled
standards. As a result, sugars and sugar acids could be
best quantified via D-sorbitol)13C6, amino acids via
DL-leucine-2,3,3-d3, and TCA cycle intermediates via

L-aspartic acid-2,3,3-d3. The coefficient of variation (CV)
for the quantification of sugars and sugar acids was
below 20% RSD; for amino acids and TCA cycle inter-
mediates a maximum CV of 24% was determined.
Moreover, the analytical errors determined for the
analysis of samples harvested during the dark did not
differ significantly from the analytical errors obtained
for samples harvested during the light period (data not
shown). A PCA analysis of the results is shown in
figure 1. The biological fluctuation of independent
samples exceeds the analytical precision several fold
(Weckwerth, 2003; Weckwerth et al., 2004b). Based on
this approach we defined the variance threshold for
significant metabolite correlations. The variances and
the correlations or their differences are the basis of
multivariate data analysis (see below).

Samples were taken throughout the 8 h/16 h day/
night rhythm. As expected, in the PGM plants these
measurements revealed strongly increased sugar con-
tents during light periods (see figure 2a–c) (Caspar
et al., 1985). From these data, metabolite correlation
networks were constructed (Weckwerth and Fiehn,
2002; Weckwerth, 2003; Weckwerth et al., 2004a). Sig-
nificant differences were immediately visible between
WT and PGM plants (see figure 3). For example, the
increased sugar levels tended to show a strong correla-
tion in the PGM plants whereas no correlation was
apparent in the WT. It is known that the PGM plants
have a strongly increased acid invertase activity con-
verting sucrose directly to glucose and fructose (Caspar
et al., 1985). Thus, this is a good example to explain the
network topology of the correlations on a biochemical
level. However, although differential network analysis
reveals differences in biochemical regulation as dis-
cussed recently (Steuer et al., 2003; Weckwerth, 2003;
Weckwerth et al., 2004a) correlations per se give only
hints to altered pathway activities and cannot be
explained straightforward (Steuer et al., 2003; Camacho
et al., 2005). Another, less expected finding was a highly
correlated amino acid and urea cycle intermediate clus-
ter (see also below) in PGM plants not found in the WT
(see figures 3 and 6). This cluster points to altered C/N
partitioning, which has been hinted at previously in
studies of transcriptional regulation (Gibon et al.,
2004b; Thimm et al., 2004). The involvement of the urea
cycle in this process could point to enhanced protein
degradation and carbon utilization. However, this is
only conjecture.

The correlation matrix combining all time points
immediately reveals significant differences between
PGM and WT plants (see figure 4). An inversely
co-regulated cluster of amino acids is connected to most
of the sugar compounds. Again, this is a clear indication
that sugar accumulation in PGM plants is regulated
inversely to nitrogen metabolism. Intriguingly, this is
in close agreement with studies on potato tubers
(Roessner-Tunali et al., 2003).
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3.3. LC-MS shotgun protein analysis as a tool for rapid
identification and quantification of proteins

High throughput GC/MS metabolite profiling meth-
ods are a prerequisite for systems biology, enabling the
analysis of in vivo dynamics in real-world samples
(Weckwerth, 2003). In this study, we explored the pos-
sibility of achieving similar throughput with LC-MS-
based protein profiling (Wienkoop et al., 2004b). Highly

complex tryptic peptide mixtures of non-fractionated
protein samples were analyzed using one-dimensional
reversed phase chromatography coupled to mass spec-
trometry. Long monolithic columns providing high peak
resolution capacity were employed (Wienkoop et al.,
2004a). Due to this restriction the scale of identified and
quantified proteins was relatively small (40 proteins; see
table 1). However, the question arose whether the data

Figure 2. Box plots of selected metabolites representative of samples collected from WT and PGM plants at different time points (8 h day/16 h

night) (for details see text). (a) Glucose, (b) Fructose, (c) Sucrose, (d) Putrescine (e) Spermidine, (f) Glycerate, (g) Glycine.

Figure 3. Metabolite correlation networks in PGM and WT plants at the 4 h day time point. For a detailed description of criteria used to define

correlations as significant see section 2.6. Differences in the network structure were pronounced (for details see text and Weckwerth, 2003;

Weckwerth et al., 2004a).
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reveal interesting protein marker that make it possible
to distinguish between PGM and WT plants as well as
between day and night samples. Indeed, figure 5a shows
a protein PCA plot that nicely distinguishes between
mutant and WT plants. Changes due to diurnal rhythm,
however, are only visible for the mutant. Taken together,
the protein data mirror the biology behind the experi-
mental setup.

3.4. Integrative metabolite/protein multivariate data analysis
improves phenotyping and enables biomarker selection
embedded in dynamic metabolite–protein networks

Supervised analysis methods such as discriminatory
analysis tend to enhance non-specific effects in ‘‘noisy’’
data with small sample numbers and many variables.
Therefore, we have chosen PCA and ICA, called unsu-
pervised techniques, to identify inherent biological
characteristics independently of experimental back-
ground information. PCA is a well-established tech-
nique for dimensionality reduction and visualization
(Diamantaras and Kung, 1996). In the field of meta-
bolomics, PCA has become a popular tool for visualiz-
ing datasets and for extracting relevant information
(Fiehn et al., 2000; Viant, 2003; Goodacre et al., 2004).
However, PCA is only powerful if the biological ques-
tion is related to the highest variance in the dataset.
Different techniques exist to extend PCA. Several
extensions are non-linear PCA (Scholz and Vigário,
2002), or locally linear embedding (Roweis and Saul,
2000). Due to the limited number of samples in high-
dimensional datasets, linear alternatives might be more
reliable. A promising linear technique is ICA. Similar to
PCA, ICA provides a set of components which can be

seen as new variables. The components are linear com-
binations of the original variables (metabolites/proteins)
and represent specific directions in the original data
space. In contrast to PCA these components are con-
structed in order to minimize the dependence and are
therefore termed independent components (ICs). Inde-
pendence is a stronger condition than non-correlation in
PCA and gives often more meaningful components. The
components of ICA are not required to be orthogonal.
There is a large variety of methods for performing ICA
(Hyvärinen et al., 2001; Cichocki and Amari, 2002).
Usually ICA is applied to datasets having a large
number of samples and only a small number of vari-
ables. Molecular data, in contrast, impose a large
number of variables (metabolites, proteins) compared to
a relatively small number of samples. Applying ICA
directly to this high-dimensional dataset is questionable
and the results are usually of no practical relevance.
Furthermore, ICA extracts as many components as the
dataset has dimensions. The components have by
default no order, and hence a criterion is needed to rank
the components. For that we use the kurtosis measure
which is a classical measure of non-Gaussianity. Con-
sequently, to apply ICA, we first reduce the dimen-
sionality by PCA, thereby maintaining all of the relevant
variances. Then ICA is applied to this reduced dataset
and the extracted independent components are ranked
by the kurtosis measure. For more details see Scholz
et al. (2004). We applied both PCA and ICA to the
metabolite, protein and an integrated dataset containing
all the metabolite and protein data together. Data nor-
malization enabled the comparison of profiling data
originating from different instruments such as GC-TOF-
MS data and iontrap data (LCQ). The quantitative data
received here do not represent absolute concentrations,

Figure 4. Correlation matrix averaging all data points throughout a diurnal rhythm. The inversely correlated cluster of N-rich amino acids and

sugars for PGM plants in contrast to the WT plants (circled) is clearly visible. This effect was pronounced in the PGM plants where it was most

likely triggered by sugar accumulation and carbon mobilization (see text for detailed discussion).
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Table 1

Proteins identified and quantified via peak integration

AGI-Code Annotation

At1g06680.1 68414.m00708 photosystem II oxygen-evolving complex 23 (OEC23) JBC 14:211–238 (2002); identical to 23 kDa polypeptide

of oxygen-evolving comlex (OEC) GB:CAA66785 GI:1769905 [Arabidopsis thaliana]

At1g13440.1 68414.m01570 glyceraldehyde 3-phosphate dehydrogenase, cytosolic, putative/NAD-dependent glyceraldehyde-3-phosphate

dehydrogenase, putative very strong similarity to SP_P25858 Glyceraldehyde 3-phosphate dehydrogenase, cytosolic

(EC 1.2.1.12) Arabidopsis thaliana; contains Pfam profiles PF02800: Glyceraldehyde 3-phosphate dehydrogenase C-terminal

domain, PF00044: Glyceraldehyde 3-phosphate dehydrogenase NAD binding domain

At1g13930.1 68414.m01635 expressed protein weakly similar to drought-induced protein SDi-6 (PIR:S71562) common sunflower (fragment)

At1g19100.1 68414.m02376 ATP-binding region, ATPase-like domain-containing protein-related low similarity to microrchidia [Homo

sapiens] GI:5410257; contains non-consensus splice site (GC) at intron 8

At1g51965.1 68414.m05859 pentatricopeptide (PPR) repeat-containing protein contains Pfam profile PF01535: PPR repeat

At1g67090.1 68414.m07629 ribulose bisphosphate carboxylase small chain 1A/RuBisCO small subunit 1A (RBCS-1A) (ATS1A) identical to

SP_P10795 Ribulose bisphosphate carboxylase small chain 1A, chloroplast precursor (EC 4.1.1.39) (RuBisCO small subunit

1A) Arabidopsis thaliana

At2g21170.1 68415.m02511 triosephosphate isomerase, chloroplast, putative similar to Triosephosphate isomerase, chloroplast precursor:

SP|P48496 from Spinacia oleracea, SP|P46225 from Secale cereale

At2g28190.1 68415.m03423 superoxide dismutase [Cu–Zn], chloroplast (SODCP)/copper/zinc superoxide dismutase (CSD2) identical to

GP:3273753:AF061519

At2g30790.1 68415.m03754 photosystem II oxygen-evolving complex 23, putative expression not detected; similar to SP_O49344

(GI:28800560 (OEC23) Arabidopsis; Non-identical EST and protein matches suggested a possible frameshift in exon 1

(a 4 base deletion between 73745 and 73746) and a different start for exon 2 (base 73645).

At2g35370.1 68415.m04336 glycine cleavage system H protein 1, mitochondrial (GDCSH) (GCDH) identical to SP|P25855 Glycine

cleavage system H protein 1, mitochondrial precursor Arabidopsis thaliana

At2g37220.1 68415.m04566 29 kDa ribonucleoprotein, chloroplast, putative/RNA-binding protein cp29, putative similar to SP|Q43349 29

kDa ribonucleoprotein, chloroplast precursor (RNA-binding protein cp29) Arabidopsis thaliana

At2g39730.1 68415.m04877 ribulose bisphosphate carboxylase/oxygenase activase/RuBisCO activase identical to SWISS-PROT:P10896

ribulose bisphosphate carboxylase/oxygenase activase, chloroplast precursor (RuBisCO activase, RA)[Arabidopsis thaliana]

At3g01500.1 68416.m00074 carbonic anhydrase 1, chloroplast/carbonate dehydratase 1 (CA1) nearly identical to SP|P27140 Carbonic

anhydrase, chloroplast precursor (EC 4.2.1.1) (Carbonate dehydratase) Arabidopsis thaliana

At3g14210.1 68416.m01796 myrosinase-associated protein, putative similar to GB:CAA71238 from [Brassica napus]; contains Pfam

profile:PF00657 Lipase/Acylhydrolase with GDSL-like motif

At3g15360.1 68416.m01948 thioredoxin M-type 4, chloroplast (TRX-M4) nearly identical to SP_Q9SEU6 Thioredoxin M-type 4,

chloroplast precursor (TRX-M4) Arabidopsis thaliana

At3g16890.1 68416.m02159 pentatricopeptide (PPR) repeat-containing protein contains Pfam profile PF01535: PPR repeat

At3g26650.1 68416.m03330 glyceraldehyde 3-phosphate dehydrogenase A, chloroplast (GAPA)/NADP-dependent glyceraldehydephosphate

dehydrogenase subunit A identical to SP_P25856 Glyceraldehyde 3-phosphate dehydrogenase A, chloroplast precursor

(EC 1.2.1.13) (NADP-dependent glyceraldehydephosphate dehydrogenase subunit A) Arabidopsis thaliana

At3g27690.1 68416.m03457 chlorophyll A–B binding protein (LHCB2:4) nearly identical to Lhcb2 protein [Arabidopsis thaliana]

GI:4741950; similar to chlorophyll A–B binding protein 151 precursor (LHCP) GB:P27518 from [Gossypium hirsutum];

contains Pfam PF00504: Chlorophyll A–B binding protein

At3g27830.1 68416.m03471 50S ribosomal protein L12–1, chloroplast (CL12-A) identical to ribosomal protein L12 GB:X68046 [Arabidopsis

thaliana] (J. Biol. Chem. 269 (10), 7330–7336 (1994))

At3g47070.1 68416.m05111 expressed protein

At3g50820.1 68416.m05565 oxygen-evolving enhancer protein, chloroplast, putative/33 kDa subunit of oxygen evolving system of

photosystem II, putative (PSBO2) identical to SP:Q9S841 Oxygen-evolving enhancer protein 1–2, chloroplast precursor

(OEE1) [Arabidopsis thaliana]; strong similarity to SP_P23321 Oxygen-evolving enhancer protein 1–1, chloroplast precursor

(OEE1) (33 kDa subunit of oxygen evolving system of photosystem II) (OEC 33 kDa subunit) (33 kDa thylakoid membrane

protein) Arabidopsis thaliana

At3g55800.1 68416.m06200 sedoheptulose-1,7-bisphosphatase, chloroplast/sedoheptulose-bisphosphatase identical to SP|P46283

Sedoheptulose-1,7-bisphosphatase, chloroplast precursor (EC 3.1.3.37) (Sedoheptulose-bisphosphatase) (SBPASE)

(SED(1,7)P2ASE) Arabidopsis thaliana

At4g02530.1 68417.m00346 chloroplast thylakoid lumen protein SP:022773; TL16_ARATH

At4g03280.1 68417.m00447 cytochrome B6-F complex iron–sulfur subunit, chloroplast/Rieske iron–sulfur protein/plastoquinol-plastocyanin

reductase (petC) identical to gi:9843639; identical to cDNA rieske iron–sulfur protein precursor (petC) GI:5725449

At4g05180.1 68417.m00778 oxygen-evolving enhancer protein 3, chloroplast, putative (PSBQ2) identical to SP_Q41932 Oxygen-evolving

enhancer protein 3–2, chloroplast precursor (OEE3) (16 kDa subunit of oxygen evolving system of photosystem II) (OEC

16 kDa subunit) Arabidopsis thaliana; similar to SP_P12301 Oxygen-evolving enhancer protein 3, chloroplast precursor

(OEE3) (16 kDa subunit of oxygen evolving system of photosystem II) (OEC 16 kDa subunit) Spinacia oleracea; contains

Pfam profile PF05757: Oxygen evolving enhancer protein 3 (PsbQ)

At4g05320.3 68417.m00812 polyubiquitin (UBQ10) (SEN3) senescence-associated protein; identical to GI:870791

At4g10340.1 68417.m01699 chlorophyll A–B binding protein CP26, chloroplast/light-harvesting complex II protein 5/LHCIIc (LHCB5)

identical to SP_Q9XF89 Chlorophyll A/B-binding protein CP26, chloroplast precursor (Light-harvesting complex II protein 5)

(LHCB5) (LHCIIc) Arabidopsis thaliana; contains Pfam profile: PF00504 chlorophyll A–B binding protein; chlorophyll

a/b-binding protein CP26 in PS II, Brassica juncea, gb:X95727
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but arbitrary units. To ensure a comparable scale the
measurements of each metabolite and protein were first
divided by the median over all measurements of one
metabolite or protein. This allows a direct comparison
of different metabolite or protein levels. A high relative

change in concentration is then still represented by a
high variance. Subsequent log-transformation increases
the importance of low valued metabolites and com-
presses the upper end of measurement scale and thus
leads to more balanced variables. Furthermore, the

Table 1

Continued

AGI-Code Annotation

At4g21280.1 68417.m03075 oxygen-evolving enhancer protein 3, chloroplast, putative (PSBQ1) (PSBQ) identical to SP_Q9XFT3

Oxygen-evolving enhancer protein 3–1, chloroplast precursor (OEE3) (16 kDa subunit of oxygen evolving system of

photosystem II) (OEC 16 kDa subunit) Arabidopsis thaliana; similar to SP_P12301 Oxygen-evolving enhancer protein 3,

chloroplast precursor (OEE3) (16 kDa subunit of oxygen evolving system of photosystem II) (OEC 16 kDa subunit) Spinacia

oleracea; contains Pfam profile PF05757: Oxygen evolving enhancer protein 3 (PsbQ)

At4g23920.1 68417.m03440 UDP-glucose 4-epimerase, putative/UDP-galactose 4-epimerase, putative/Galactowaldenase, putative similar to

UDP-galactose 4-epimerase from Arabidopsis thaliana SP_Q42605, Cyamopsis tetragonoloba GI:3021357 [AJ005082]

At4g28660.1 68417.m04096 photosystem II reaction center W (PsbW) family protein contains Pfam profile: PF03912 photosystem II

reaction center W protein, PsbW

At4g28750.1 68417.m04111 photosystem I reaction center subunit IV, chloroplast, putative/PSI-E, putative (PSAE1) identical to

SP|Q9S831; similar to SP|P12354 Photosystem I reaction center subunit IV, chloroplast precursor (PSI-E) Spinacia oleracea;

contains Pfam profile PF02427: Photosystem I reaction center subunit IV/PsaE

At5g06240.1 68418.m00697 expressed protein

At5g18740.1 68418.m02224 expressed protein predicted proteins – Arabidopsis thaliana; expression supported by MPSS

At5g24430.1 68418.m02879 calcium-dependent protein kinase, putative/CDPK, putative similar to calcium/calmodulin-dependent protein

kinase CaMK1 [Nicotiana tabacum] gi_16904222_gb_AAL30818

At5g25980.1 68418.m03090 glycosyl hydrolase family 1 protein contains Pfam PF00232: Glycosyl hydrolase family 1 domain; TIGRFAM

TIGR01233: 6-phospho-beta-galactosidase; identical to thioglucosidase (GI:871992) [Arabidopsis thaliana]; similar to

myrosinase precursor (EC 3.2.3.1)(Sinigrinase) (Thioglucosidase) SP_P37702 from [Arabidopsis thaliana]

At5g47020.1 68418.m05795 glycine-rich protein strong similarity to unknown protein (emb_CAB87688.1)

At5g66570.1 68418.m08392 oxygen-evolving enhancer protein 1–1, chloroplast/33 kDa subunit of oxygen evolving system of photosystem

II (PSBO1) (PSBO) identical to SP:P23321 Oxygen-evolving enhancer protein 1–1, chloroplast precursor (OEE1) (33 kDa

subunit of oxygen evolving system of photosystem II) (OEC 33 kDa subunit) (33 kDa thylakoid membrane protein)

[Arabidopsis thaliana]

ATPB_ARATH (P19366) ATP synthase beta chain (EC 3.6.1.34)

PSAC_ARATH (P25252) Photosystem I iron–sulfur center (Photosystem I subunit VII) (9 kDa polypeptide) (PSI-C)

RBL_ARATH (O03042) Ribulose bisphosphate carboxylase large chain precursor (EC 4.1.1.39) (RuBisCO large subunit)

Figure 5. PCA and ICA of the protein data, metabolite data, and the integrative protein/metabolite data matrix. The clearest unsupervised

discrimination among the four conditions (PGM, WT, day, night) was found with ICA on the integrative dataset. One data point belonging to

WT night was, however, not separated. (a) PCA proteins, (b) ICA proteins, (c) PCA metabolites, (d) ICA metabolites, (e) PCA metabolites/

proteins, (f) ICA metabolites/proteins.
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influence of potentially outliers is reduced. The often
used standardization to 0 mean and 1 variance treats
each variable equally; as a result this transformation
ignores the experimental variation. Therefore, we deci-
ded not to use this so-called z-transformation. Appli-
cation of PCA/ICA to the protein data demonstrated
that the projections were able to distinguish among the
four experimental conditions (WT, PGM, day, and
night; figure 5a, b). This is a valuable demonstration
that the relatively small dataset of 40 quantified proteins
is able to unravel the experimental and biological design.
The diurnal rhythm in the WT, however, is observed in
neither the ICA nor the PCA plot of the proteins.

The metabolites show a different grouping compared
to the protein data. PGM and WT are clearly distin-
guishable, but the diurnal rhythm exhibits a quite
unexpected behavior. Some metabolites exhibit a time
delay into the next period of light or darkness before
being metabolized to the representative homeostatic
state. Thus, the three day and night points have a
strong overlap but show the expected order according
to the sampling time (see figure 5c, d). However, the
separation is not as clear as that observed for the
protein data.

Discrimination amongst all four conditions (day,
night, PGM, WT) is best for the combined analysis of
metabolites and proteins (see figure 5e, f). ICA has the
highest discriminating power: the separation of PGM
and WT plants as well as the day/night separation of
the diurnal rhythm is improved (see figure 5f). Most
important, the different biological states are assigned
unambiguously to different independent components:
the separation of PGM/WT on the first independent
component and the diurnal rhythm on the second
independent component. For each component the
metabolites and proteins with the highest contribution
to the component can be identified, as shown in
table 2.

In ICA the metabolite variances are more balanced
with protein variances (data not shown) yielding an
opportunity to define proteins as biomarkers in a
context of dynamic metabolite networks. This is an
important extension of existing methods where protein
differences are ranked based on their quantitative
changes to a reference sample. Two classes of proteins
displayed high factors: First, components of the
photosynthetic machinery (PSAC_ARATH;
At3g27690.1; At4g03280.1; At2g30790.1) and second,
proteins of the Calvin cycle (At3g26650.1; RBL_AR-
ATH) (see table 2). However, several proteins having a
strong dominance in the loadings do not belong to either
class, for instance an expressed protein (At1g13930.1)
with weak homology to drought-induced protein in
sunflower and unknown function. Since this protein
contributes more to the separation of PGM/WT than to
the diurnal rhythm it is a primary candidate for further
functional studies.

Several metabolites displayed high weights on the
components. As expected, sugar accumulation (sucrose,
fructose and glucose – the causal effect of PGM defi-
ciency) contributed strongly to the separation of PGM
and WT as well as to the grouping of the day/night
rhythm. However, the strongest weights for the diurnal
rhythm are found for the photorespiratory intermediates
glycerate and glycine (Geiger and Servaites, 1994) (see
table 2 and figure 2f, g), indicating that photorespira-
tion in addition to CO2 fixation has a strong impact in

Table 2

Factor loadings of the ICA derived from the reduced data set obtained
by PCA

ICA: loadings IC 1 (PGM/WT

separation)

ICA: loadings IC 2 (diurnal

cycle)

0.07 Glyc )0.17 Gly

0.04 Asn )0.16 GlycA

)0.04 PSAC_ARATH )0.1 Rib

)0.04 At3g26650.1 0.09 Man

0.04 Orn/Arg 0.08 Pro

0.03 Put 0.07 Urea

0.03 At3g27690.1 0.07 SucA

0.03 Gly )0.07 At5g25980.1

)0.03 At1g13930.1 )0.07 At3g27690.1

0.02 Fru )0.06 At2g30790.1

0.02 Lys )0.06 Suc

)0.02 FumA )0.06 PyrA

0.02 Ile 0.05 Glc

0.02 SalA )0.05 At1g13930.1

0.02 IAN )0.05 At3g27830.1

0.02 Citn )0.05 Met

)0.02 At4g03280.1 0.05 PSAC_ARATH

)0.02 Pro 0.04 Glu

)0.02 At4g05320.3 )0.04 At4g10340.1

0.02 b-Ala 0.04 IAN

)0.02 At4g02530.1 )0.04 At1g06680.1

0.02 Phe 0.04 At3g16890.1

0.02 Psi 0.03 RBL_ARATH

)0.02 At2g30790.1 0.03 myo-IN

0.02 Val 0.03 Asn

)0.02 Gln )0.03 G6P

0.02 CHO10 0.03 Asp

)0.02 At1g13440.1 )0.03 ATPB_ARATH

0.01 At4g28750.1 )0.03 Ala

)0.01 Glc 0.02 AA

0.01 CHO9 0.02 At4g03280.1

)0.01 CHO8 0.02 At3g26650.1

)0.01 MalA 0.02 pGlu

)0.01 At1g06680.1 )0.02 Ser

0.01 At3g55800.1 0.02 Glyc

0.01 CHO7 0.02 At1g67090.1

0.01 Ala )0.02 Citn

0.01 Met 0.02 CHO7

0.01 At5g25980.1 0.02 At1g13440.1

)0.01 SinA 0.02 Asc

)0.01 Man 0.02 ThrAL

0.01 CHO1 0.02 P

0.01 At4g10340.1 )0.02 Spd

)0.01 myo-IN 0.02 GA

)0.01 At3g16890.1 ...

0.01 Urea
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the day/night rhythm and is not strongly altered by
sugar accumulation or carbon utilization in the PGM
plants (Gibon et al., 2004b).

There are many other metabolites that unexpectedly
show a very different behavior in the WT compared to
PGM, for instance urea cycle intermediates, polyamines
(see also figure 2d, e) and other amino acids such as
proline and glutamate with high loadings (see table 2).
These differences directly point to altered pathways in
PGM plants (see figure 6) with respect to the control
plant as discussed above.

Figure 7 is a demonstration of the pronounced effect
of the diurnal rhythm found in the PGM plants based
on the integrative metabolite/protein dataset. The diur-
nal trajectory in the PCA plot which denotes for the
behavior of the plant during a day/night cycle is seen
easily.

Summarizing, multivariate data analysis of the inte-
grative metabolite–protein data matrix enables the
visualization of inherent time-dependent biological
characteristics and, consequently, the identification of
the most discriminatory metabolites and proteins
embedded in a dynamic network of correlations.

4. Concluding remarks

Here we propose a process that integrates quantita-
tive metabolite and protein data at a systems level.
Application of multivariate data analysis demonstrated
that extraction of inherent biological information is
improved using such integrative data. Therefore, we
think that the method is useful for future diagnostic
technology and for the identification of biomarkers
embedded in dynamic biochemical networks. The
exploitation of biological variance and amplitudes of
fluctuation of independent samples – in contrast to
averaging replicates – will be valuable for characterizing
biological systems. Our efforts are now directed towards
extending the protein profiling method, so as to have
representative protein candidates for all kinds of meta-
bolic pathways in hand.
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