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Human hepatopathies are a diagnostic challenge, with many distinct diseases having similar clinical signs and laboratory

findings. Naturally occurring canine hepatic disease provides an excellent model for human diseases and similar diagnostic

dilemmas exist; differentiating canine congenital portosystemic vascular anomalies (PVA) from acquired hepatopathies is difficult

and traditionally requires invasive diagnostic procedures. The emerging post-genomic science of metabolomics is concerned with

detecting global changes of populations of endogenous low molecular weight metabolites in biological samples and offers the

possibility of identifying surrogate profiles of disease. Metabolomics couples sensitive metabolite analysis with sophisticated pattern

recognition techniques. In this study, a metabolomic strategy has been employed to assess metabolite changes in the plasma of dogs

with congenital PVA and acquired hepatic disease. Plasma samples were collected from 25 dogs, comprising 9 dogs with congenital

PVA, 6 with acquired hepatopathy and 10 with non-hepatic disorders. Low molecular weight metabolites were analyzed by liquid

chromatography-mass spectrometry (LC-MS). Following identification of metabolites, multivariate data analysis was used to

compare profiles amongst groups. The analysis demonstrated significant disturbances in the plasma bile acid and phospholipid

profiles of dogs with portovascular anomalies. In contrast to traditional laboratory parameters, the metabolomic strategy was able

to produce a clear segregation between all three study groups. In conclusion, this study demonstrates the potential of metabolomics

as a diagnostic tool for naturally occurring hepatic disease. With further validation, this approach will improve diagnostic

capabilities, provide an insight into pathogenetic mechanisms, and ultimately inform therapeutic decision making in clinical

hepatology.

KEY WORDS: metabonomics; portovascular anomalies; liver; hepatopathy; dogs; mass spectrometry.

1. Introduction

The liver is the most metabolically diverse organ of
the body, and is involved in a number of critical meta-
bolic processes. This organ is sensitive to many patho-
logical insults, and the result of dysfunction leads to an
array of clinical signs and symptoms. Clinicians can
utilize such metabolic derangements in diagnosis. Con-
ventional diagnostic approaches have typically focussed
on a small number of biomarkers, which are charac-
teristic of a particular disease state. Although, for some
diseases with a straightforward cause and effect rela-
tionship, this approach can reliably group a population
into affected and unaffected individuals, such links are
difficult to establish for complex multifactorial diseases
(German et al., 2003). In many cases, no single bio-
marker is sufficiently specific to provide a definitive
diagnosis. Clinicians must, therefore, combine tests to
diagnose the disease accurately, and use pattern recog-
nition to differentiate conditions which lead to similar

clinical signs. However, the ability to make a correct
diagnosis is often limited by the number of variables
that the clinician can assimilate in parallel.

Thousands of low molecular weight metabolites exist
in the body fluids and tissues. Metabolite profiles can be
altered by a variety of physiological and pathological
processes, and therefore global changes in such profiles
may signal the presence of a particular disease state
(Nicholson et al., 2002; Griffin and Shockcor, 2004).
Metabolomics is an emerging post-genomic science that
uses analytical techniques such as nuclear magnetic
resonance (NMR) spectroscopy and mass spectrometry
to measure low molecular weight metabolites in bio-
logical samples (Griffin, 2003; Dunn et al., 2005; Wilson
et al., 2005). Advanced statistical analysis is then
employed to maximize the recovery of information and
interpret the large data sets that are generated. Whilst
still in its infancy, metabolomics is already beginning to
make a significant impact in biological and medical
research. Metabolomic strategies have been employed to
characterize metabolic perturbations resulting from
altered gene function in biological systems (Raamsdonk
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et al., 2000; Roessner et al., 2001; Allen et al., 2003) and
as a means of assessing the toxicological effects of
chemical compounds (Waters et al., 2002; Lindon et al.,
2003; Nicholson et al., 2003). To date there have been
few studies, which focus on naturally occurring disease
states. However, metabolomic approaches are increas-
ingly being employed by investigators as a means of
characterizing metabolic alterations in body fluids and
tissues of humans and animals in order to improve
clinical diagnosis and explore the pathogenesis of dis-
eases (Brindle et al., 2002; Lamers et al., 2003; Yang
et al., 2004).

Congenital portovascular anomalies (PVA; also
known as portosystemic shunts, PSS) have been recog-
nized in many species, and are the most common con-
genital liver disease in dogs (Center, 1996). In all cases,
an abnormal vascular communication exists between the
portal and systemic venous circulations, which allows
blood from splanchnic organs to bypass the liver and
avoids normal hepatic metabolism. The reduced ability
of the liver to detoxify and excrete waste results in
dramatic changes in the levels of a wide range of
metabolites. PVA are associated with hyperammona-
emia and disturbances in the concentrations of aromatic
and branched chain amino acids in the plasma of
affected dogs have been reported (Schafer et al., 1985).
The disease state is characterized by the development of
neurological (dementia, staggering, circling, central
blindness, tremors, seizures and coma) and systemic
(stunting, poor body condition, polydipsia, polyuria,
vomiting and diarrhoea) signs. Whilst congenital PVA
are rare abnormalities of liver vasculature in humans,
surgically induced transjugular intrahepatic portosys-
temic shunts (TIPS) are a valuable tool in the manage-
ment of patients with cirrhosis and treatment of
complications of portal hypertension (Watanabe, 2000;
Rosado and Kamath, 2003). Interestingly, a common
complication of TIPS is hepatic encephalopathy.
Therefore, congenital PVA in dogs can provide an
excellent animal model with which to study hepatic
dysfunction.

Diagnosis of congenital PVA in dogs can be prob-
lematic because a number of acquired hepatic diseases
can also arise in young dogs, and the presenting clinical
signs can be identical. Congenital PVA are typically
diagnosed by a combination of laboratory analyses, and
diagnostic imaging. Although diagnosis can be achieved
in most instances there are numerous pitfalls. Pre-
liminary investigations include routine haematological
and clinical chemistry analysis, and measurement of
fasting and post-prandial bile acid concentrations.
However, none of these tests are pathognomonic for
congenital PVA and often can not differentiate from
acquired PVA. Alternatively, the abnormal shunting
vessel can be detected by abdominal ultrasonography,
but the technique is technically challenging and many
shunts are missed (Center, 1996). At present, the most

informative diagnostic approach is intravenous porto-
venography. However, this technique also requires
considerable expertise and given the requirement for
general anaesthesia and celiotomy, it is invasive and not
without risk. Therefore, additional non-invasive diag-
nostic modalities are urgently required. Our overall
hypothesis is that metabolomics will provide a powerful,
non-invasive, diagnostic tool for both human and vet-
erinary hepatology. To test this hypothesis we have
employed metabolomic strategies to assess the pertur-
bations of the metabolite profiles in the plasma of dogs
with congenital PVA and compared them with dogs
with acquired liver disease.

2. Materials and methods

2.1. Study animals

The study involved 25 dogs referred to the Depart-
ment of Veterinary Clinical Sciences, University of
Liverpool. Of these dogs, 15 were referred for the
investigation of suspected hepatic disease (table 1).
After diagnostic investigations, these dogs were assigned
to two groups; Group 1 (n=9) represented dogs with a
final diagnosis of congenital portovascular anomaly
(PVA); Group 2 (n=6) represented dogs with a final
diagnosis of an acquired hepatopathy. The remaining
dogs (n=10) were assigned to Group 3, and were a
control population, referred for unrelated i.e. non-
hepatic disorders over the same period of study as the
clinical cases (table 1). The study was performed in
adherence to the University of Liverpool Animal Ethics
Guidelines and the owners of all animals participating in
the study gave written consent.

2.2. Clinical investigations and diagnosis

The exact diagnostic investigations performed
depended upon the presenting signs of the individual
case. All dogs had routine haematological analysis,
whilst the majority of dogs (5/9, 4/6 and 7/10 for Groups
1, 2 and 3, respectively) had routine urinalysis (dipstick,
specific gravity by refractometer, sediment analysis).
Fasting (9/9, 6/6 and 8/10; for Groups 1, 2 and 3,
respectively) and post-prandial (9/9, 4/6 and 4/10; for
groups 1, 2 and 3, respectively) bile acid concentrations,
and abdominal ultrasonography (9/9, 4/6 and 7/10; for
Groups 1, 2 and 3, respectively) were also performed in
most cases. All routine laboratory investigations were
performed by the diagnostic laboratories in the Depart-
ment of Veterinary Pathology, University of Liverpool.

Definitive diagnosis of congenital PVA was made at
celiotomy either by direct visualization of the
anomalous blood vessel (n=4) or by direct visualization
and portovenography (n=5). Seven dogs had extra-
hepatic PVA, of which 5 were portocaval, one was
porto-azygous and one was a communication between a
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gastric vein and the vena cava. The remaining two dogs
had intrahepatic PVA, one of which was right divi-
sional, and the other was left divisional. Definitive
diagnosis of acquired hepatopathy was made by histo-
pathological assessment of hepatic biopsy specimens in
most cases, collected either at celiotomy (n=1), lapa-
roscopy (n=3), or postmortem examination (n=1). In
the remaining case, a presumptive diagnosis of gluco-
corticoid hepatopathy was made after documenting
dramatic increases in liver enzymes (alkaline phoso-
phatase and alanine aminotransferase), whilst the dog
was undergoing high-dose glucocorticoid therapy
(prednisolone at a dosage of 2 mg/kg). Elevated fasting
serum bile acid concentrations were documented and
fine needle aspiration cytology revealed findings con-
sistent with vacuolar hepatopathy. Hepatic parameters
had been normal prior to glucocorticoid use. The spe-
cific clinical investigations performed in the control dogs
varied depending on reason for referral. However, there
was no evidence of hepatic disease, and an alternative
diagnosis was documented in every case.

Blood was collected from the dogs by jugular vene-
puncture for routine haematological and biochemical
analyses.Any surplus heparinized plasma (approximately
1 mL) was used for the study, aliquoted into 20 lL units,
and immediately stored at )20 �C for metabolite analy-
ses. All the investigative procedures performed were for

the direct benefit of the patient. After diagnosis, all ani-
mals were treated according to standard hospital proto-
cols and received the most appropriate therapy.

2.3. Statistical analysis of clinical data

Statistical analysis was performed using Minitab for
Windows release 14.1 (Minitab Inc., State College, PA,
USA). Prior to statistical analysis, all continuous data
were assessed for normal distribution. Given that none
of the data for any outcome were normally distributed,
data were logarithmically transformed and again asses-
sed for normal distribution. The data for age and fasting
bile acid concentrations were normalized by this trans-
formation. When a square root transformation was used
instead, data for post-prandial bile acid concentrations
were normalized. Therefore, parametric tests were
employed (after appropriate transformation).

The order of statistical analysis was as follows:
baseline data (e.g. age, gender, neuter status) amongst
groups first were compared with either a one-way
analysis of variance (ANOVA) (age) or Chi squared
tests (gender and neuter status). The data were then used
in quantitative analyses among groups, using one-way
ANOVA. Post hoc analysis was performed with Tukey’s
pairwise comparisons. The level of significance for all
statistical tests was set at p<0.05.

Table 1

Clinical information for all cases

Case Breed Gender Age Diagnosis

Group 1: Congenital PVA

1 Miniature Schnauzer F 36 EH PVAa (portocaval)

2 Bichon Frise NMb 11 EH PVA (portocaval)

3 Miniature Schnauzer M 30 EH PVA (portocaval)

4 West Highland White Terrier NFc 24 EH PVA (portoazygous)

5 Mixbreed M 4 IH PVAd (right divisional)

6 Miniature Dachshund F 7 EH PVA (portocaval))

7 Boarder Terrier M 84 EH PVA (portocaval))

8 Bichon Frise F 6 EH PVA (gastrocaval)

9 Labrador M 12 IH PVA (left divisional)

Group 2: Acquired Hepatopathy

10 Mixbreed NF 60 Cirrhosis

11 Staffordshire Bull Terrier M 22 Cholangiohepatitis

12 Boxer NM 68 Steroid hepatopathy

13 Cocker Spaniel NF 70 Vacuolar hepatopathy

14 Yorkshire Terrier M 156 Hepatocellular carcinoma

15 Mixbreed NF 13 Portal vein hypoplasia

Group 3: Controls

16 Miniature Schnauzer F 14 Nasal foreign body

17 German Shepherd Dog M 60 Osteosarcoma

18 Mixbreed M 5 Campylobacter

19 Yorkshire Terrier NM 36 Idiopathic epilepsy

20 Weimaraner F 24 Myaesthenia gravis

21 Mixbreed M 168 Laryngeal paralysis

22 Cavalier King Charles Spaniel M 7 Leukoencephalopathy

23 Weimaraner M 10 Prostatitis

24 Rottweiler NM 51 Supraventricular dysrhythmia

25 Boxer M 3 Eosinophilic enteritis

All ages reported in months. a Extra-hepatic portovascular anomaly, b Neutered male, c Neutered female, d Intrahepatic portovascular anomaly.
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2.4. Extraction of low molecular weight metabolites

The plasma samples were thawed at room tempera-
ture and mixed thoroughly prior to analysis. The low
molecular weight metabolites in plasma were extracted
in organic solvents. A 50 lL aliquot of plasma was then
extracted with 200 lL of acetonitrile. The mixture was
left to stand at room temperature for 10 min and was
then centrifuged at to remove the precipitated plasma
proteins.

2.5. Liquid chromatography-mass spectrometry
(LC-MS)

The low molecular weight metabolites were then
analyzed by liquid chromatography-mass spectrometry
(LC-MS) as previously described (Plumb et al., 2003;
Lenz et al., 2004a, b). All mass spectrometric analyses
were performed using a Micromass Q-TOF micro mass
spectrometer (Waters Corporation, Manchester, UK)
equipped with a Z-Spray electrospray source and cou-
pled to a Waters Alliance 2795XC HPLC system.

Samples (10 lL) were injected on to a Waters Sym-
metry C18 reverse phase LC column (2.1· 100 mm,
3.5 lm) held at 40 �C. The column was eluted using a
water/acetonitrile gradient at a flow rate of 600 lL/min.
Themobile phases both contained 0.1% (volume/volume,
v/v) formic acid. The gradient conditions were 0–20%
acetonitrile over 4 min, followed by 20–95% acetonitrile
over 4–8 min. The gradient was held for 1 min and then
returned to 0% acetonitrile at 9.1 min. The flow rate was
split to 120 lL/min into the mass spectrometer.

The mass spectrometer was operated in both the
positive and negative ion mode. The positive and neg-
ative ion data was acquired separately in two runs. The
capillary voltage was set to 3200 V in the positive mode
and 2600 V in negative ion mode. The cone voltage was
set to 30 V. The source temperature was set at 120 �C
with a cone gas flow of 50 L/h, the desolvation heater at
250 �C and a desolvation gas flow of 500 L/h. Data were
collected in centroid mode using a LockSpray interface
with a scan time of 0.4 s and an inter-scan delay of 0.1 s.
Leucine enkephalin was used as the lockmass standard
at a concentration of 0.5 ng/lL in acetonitrile:water +
0.1% (v/v) formic acid in positive ion mode
([M+H]+=556.2771) and 1 ng/lL in acetonitrile:water
+ 0.1% (v/v) formic acid in negative ion mode ([M-
H])=554.2615). The LockSpray frequency was set as
5 s and the lockmass was averaged over 10 scans. Mass
spectra were acquired over the mass to charge ratio
range (m/z) 50–850. Metabolites were identified using
liquid chromatography-tandem mass spectrometry (LC-
MS/MS). Product ions were detected over a scanning
range of m/z 50–850. The collision voltage was set
between 30 and 70 V and argon was used as the collision
gas at a pressure of 15 p.s.i. Identification of the
metabolites was confirmed by comparison with
authentic standards.

2.6. Data processing and statistical analysis of metabolite
data

The raw LC-MS data was initially processed using the
MarkerLynx (version 1.0) applications manager software
(Lenz et al., 2004a, b). The software incorporates a peak
deconvolution package which allows detection and
retention time alignment of the peaks eluting in each date
file across the whole dataset. MarkerLynx extracts com-
ponents utilizing exact mass chromatograms and lists
detected peaks as theirmass and retention time alongwith
their associated intensities.

Chromatographic peaks in the raw data files are
detected by extracting nominal mass chromatograms
and tracking the apex of the peaks in the chromato-
grams. The spectra from each of the detected peaks are
saved as retention time and exact mass pairs along with
associated intensities which can be saved as either nor-
malized or absolute intensities. Once all the data has
been extracted it is aligned within user defined mass and
retention time windows. If necessary retention time
correction can be applied using an internal standard.
Once collected the data were then interpreted by prin-
ciple component analysis (PCA) within MarkerLynx
applications manager.

Partial least squares-discriminant analysis (PLS-DA)
was performed by exporting the processed data to
SIMCA-P+ (version 10.0) multivariate data analysis
software package (Umetrics, Sweden). PLS-DA models
were originally constructed using all the samples and the
information supplied regarding their class membership.
To validate the PLS-DA model an observation from
each class was excluded in turn and a new model gen-
erated. The coefficients from each model were then
taken and sorted in ascending order. The models were
then compared to check that the order of the potential
biomarkers were the same or similar between the dif-
ferent models. The models were also validated by pre-
dicting the excluded observations and checking their
classifications against the models. If the probability of
belonging to a class is >0.65 then this is considered
positive. If the probability of belonging to a class is
>0.35 to 0.65 then it is considered to be borderline and
below that it is considered not to belong to that class.

3. Results and discussion

3.1. Clinical data

The clinical data from all cases is summarized in
table 1. Preliminary statistical analyses did not reveal
any significant differences in age, gender or neuter status
between groups (p>0.14 for all). Further, a number of
breeds were represented in all groups, and a particular
breed bias was not obvious in any one group. However,
given the small numbers of dogs in each group, the true
effect of breed could not be determined. In the future,
larger studies will be required to make certain that
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chance differences between such groups are not simply
the effect of a chance association with a particular breed.

Prior to metabolomic analysis, we first assessed the
ability of routine diagnostic investigations to differenti-
ate the three clinical groups. Haematological and
routine clinical chemistry results are reported in table 2.
Although typical abnormalities were documented in
Group 1 (including microcytic anaemia and low albu-
min concentrations), similar findings were evident in
group 2 dogs. Therefore, none of the parameters mea-
sured could reliably distinguish cases with congenital
PVA from dogs with acquired hepatic disease. Signifi-
cant differences amongst groups were noted for both
fasting and post-prandial bile acid concentrations
(p<0.0001 for both). However, the group ranges for bile
acid concentrations overlapped (table 1). Therefore,
measurement of bile acid concentrations could not be
used to differentiate accurately between dogs with PVA,
dogs with acquired hepatic disease and controls. Simi-
larly, multivariate data analysis of the conventional
biochemical and haematological parameters was able to
separate control and affected populations of dogs, but
was unable to fully discriminate animals with congenital
PVA from those with acquired hepatopathies (data not
shown).

3.2. Negative ion mode LC-MS analysis

Plasma low molecular weight metabolites were char-
acterized by LC-MS in both the positive and negative ion
modes. The mass spectral data were then processed by
multivariate analysis. Initial analyses employed an
unsupervised statistical method, PCA. PCA is a pattern
recognition method that reduces the dimensionality of
data to a number of summary variables, principle com-
ponents (PC). The PC are designed so that they encap-
sulate most of the variation present within the collected
data. Data plotted using PC reveals inter-sample rela-
tionships via their spatial proximity. Trajectories can be
identified in PC values between sample groups which
reflect the perturbation of multiple metabolic pathways.

PCA can generate two main outputs, a scores plot
and a loadings plot. A PCA scores plot displays any
natural clustering or separation within a data set. The
variability within each PC factor is attributed to the
original measured individual and combined variables
within the data set. This plot allows physiological or
pathological similarities or differences to be explored. A
PCA loadings plot identifies the relative contribution of
individual ions to each PC and thus the most influential
contributors to the natural sample class clustering.

Table 2

Traditional laboratory analyses in all cases

Parameter Clinical group p Value

1. Congenital PVA 2. Acquired hepatic 3. Controls

Haematology

Haemoglobin 12–18 g/dL 15.2 (12.6–16.6) 12.0 (6.3–16.0)a 15.7 (12.9–19.3)b 0.026

PCV 35–55% 43 (35–47) 34 (16–47) 43 (35–53) 0.066

RBC 5.40–8.00· 1012/L 7.00 (6.31–8.10)a 5.56 (2.65–6.69)b 6.63 (4.77–7.85) 0.012

MCV 65–75 fL 61.2 (56–66.6) 62.4 (62–70) 64.0 (61.7–73.1) 0.074

MCHC 34–37 g/dL 34.7 (31.0–36.1)a 36.0 (34.0–38.2) 36.3 (35.0–38.6)b 0.021

WBC 6.0–18.0· 109/L 14.0 (7.8–21.8) 16.6 (4.6–35.2) 15.3 (9.2–40.9 0.715

Platelets 200–500· 109/L 216 (26–443) 176 (60–335) 280 (198–371) 0.217

Serum biochemistry

Total protein 57.0–78.0 g/L 53 (38–61)a 55 (51–76) 65 (63–76)b 0.022

Albumin 23.0–31.0g/L 27 (18–31)a 27 (25–30) 29 (28–36)b 0.045

Globulins 27.0–40.0.0 g/L 28 (17–33)a 28 (26–46) 35 (27–43)b 0.047

Urea 3.5–6.0mmol/L 2.3 (1.1–3.9)a 2.7 (2.0–18.3) 5.9 (4.3–11.9)b 0.001

Creatinine 60–100 lmol/L 48 (36–92) 50 (32–163) 83 (49–118) 0.103

Sodium 140–153 mmol/L 148 (144–151) 152 (144–153) 149 (146–152) 0.651

Potassium 3.80–5.30 mmol/L 4.60 (3.74–6.16) 4.34 (3.99–5.10) 4.52 (4.20–5.14) 0.679

Calcium 2.20–2.70 mmol/L 2.39 (1.66–2.72)a 2.13 (1.73–2.81)a 2.74 (2.46–3.04)b 0.008

Phosphate 0.80–2.00 mmol/L 1.48 (0.94–2.30) 1.46 (0.83–1.63) 1.67 (1.32–2.89) 0.353

Cholesterol 3.2–6.5 mmol/L 3.8 (3.2–5.7) 4.6 (3.6–6.7) 6.1 (3.7–7.5) 0.113

ALT 7–50 IU/L 272 (13–833) 249 (111–1400) 60 (27–280) 0.063

ALP 0–100 IU/L 366 (118–2650) 454 (53–943) 198 (98–1160) 0.324

Bile acids

Fasting 0–15 lmol/L 97 (16–321)a 12 (1–203)b 2 (1–4)b <0.0001

Post-prandial 0–25 lmol/L 199 (66–462)a 75 (36–268)a 4 (1–9)b <0.0001

Results reported as median (range) for all parameters. PCV=packed cell volume; RBC=red blood cells; MCV=mean corpuscular volume;

MCHC=mean corpuscular haemoglobin concentration; WMC=white blood cells; ALT=alanine aminotransferase; ALP=alkaline phospha-

tase; groups with different superscripts are significantly different from each other at the level shown in the final column (p-value).
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Following PCA the data sets were processed using
more powerful supervised statistical method, PLS-DA.
PLS-DA like PCA is a projection method and is a
classification method based on the regression extension
of PCA. The regression against a dummy variable
defining class identity yields latent variables explaining
maximum separation between known classes of samples.
The interpretation of the scores gives information about
class separation while interpretation of loadings gives
information about variables responsible for separating
the predefined classes.

The principle components analysis (PCA) scores plot
(PC1 versus PC2) of the negative ion data is shown in
figure 1. Each point represents a single dog plasma
sample. Control samples cluster in one area of the plot
while samples exhibiting biochemical differences caused
by disease states appear in regions away from the con-
trols. The PCA was unable to discriminate fully between
the different cohorts of plasma samples; there was con-
siderable overlap of plasma samples from Group 2 (dogs
with acquired hepatopathies) and Group 3 ("controls"),
whilst the Group 1 dogs (congenital PVA) tended to
cluster away from the other groups of dogs (figure 1).
The results indicated that the major separation was
achieved with PC1 and PC 2. No real improvement
could be obtained in the separation by looking at PC3.

A trend plot was employed to interpret the data. In
this plot the peak intensity for a particular analyte in the
loadings plot is compared across the entire sample set,
enabling those metabolites which are reduced or ele-
vated in the disease state to be rapidly identified
(table 3). PCA loading plots identified several metabo-
lite ions whose levels appeared to be significantly

disturbed (figure 2). The ions most responsible for the
variance in the scores plot are indicated in the loading
plot by their distance from the origin. The peaks are
labelled according to their mass to charge ratio (m/z)
and chromatographic retention time.

Two of the most significant metabolite ions, which
increased in some of the dogs with congenital PVA were
at m/z 498.2909 and 514.2858. Analysis by tandem mass
spectrometry (MS/MS) generated ions at m/z 80, which
corresponds to a sulfite (SO�3 ) moiety (Mills et al.,
1998). These metabolites have been identified as [M-H])

ions of the conjugated bile acids, taurochenodeoxycholic
acid (C26H45NO6S, [M-H]) theoretical =498.2890,
error=1.9 mDa, 3.8 ppm) and taurocholic acid
(C26H45NO7S, [M-H]) theoretical=514.2839,
error=1.9 mDa, 3.7 ppm) respectively.

Other ions at m/z 540.3302, 564.3301 and
568.3621 were decreased in intensity. These are
believed to correspond to the formate adducts [M+45])

of 16:0-lysophosphatidylcholine (C24H52NO7P,
[M+HCOO]) theoretical=540.3301, error=0.1 mDa,
0.2 ppm) 18:2-lysophosphatidylcholine (C26H50NO7P,
[M+HCOO]) theoretical=564.3301, error=0.6 mDa,
1.1 ppm) and 18:0-lysophosphatidylcholine
(C26H54NO7P [M+HCOO]) theoretical=568.3614,
error=0.7 mDa, 1.2 ppm) respectively (also see positive
ion mode data). LC-MS/MS analysis gave rise to ions
relating to the loss of the formate and [M-H]) ions of
fatty acids from the lysophospholipids. The assignment
of these ions is consistent with previous reports (Fang
et al., 2003).

Having established the existence of clustering
behaviour between the cohorts with PCA, more

Figure 1. PCA scores plot (PC1 versus PC2) with Pareto scaling of plasma metabolites generated by LC-MS in negative ion mode.

Circles=group 1 (congenital PVA); triangles=group 2 (acquired hepatopathy); squares=group 3 (controls). Each point represents a single dog

plasma sample. Samples exhibiting biochemical differences caused by the disease states are represented by points in regions away from the

controls.
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powerful, supervised statistical methods were then used
to maximize the separation between the groups of
plasma samples. To determine whether it was possible to
distinguish congenital PVA from acquired hepatic dis-
ease and control groups, the LC-MS data was processed
using partial least squares-discriminant analysis (PLS-
DA). The PLS-DA scores plot is shown in figure 3.

PLS-DA revealed greater discrimination between the
plasma samples from the control and congenital liver
disease groups (figure 4). PLS-DA models were gener-
ated using the data from only 2 groups at a time e.g.
controls and congenital PVA (figure 4). The models
were then reconstructed excluding one sample from each
group and the group membership of the excluded sam-
ples was then predicted. This process was repeated for
each group with every sample being excluded and pre-
dicted. This resulted in 18 of the 25 samples being
correctly predicted (probability p>0.10) with 6 being

borderline to being borderline/correctly predicted
(0.10>p>0.05) and the remaining sample number 10
being wrongly classified as a congenital PVA. Although
encouraging these findings provide only a preliminary
separation because of the small number of animals in
the study. A more rigorous approach would be to use a
training and validation data, and an independent test set
to prove whether their PLS-DA model is valid or not.

3.3. Positive ion mode LC-MS analysis

The LC-MS data in positive ion mode using PCA was
also unable to distinguish fully the different groups of
disease and control dogs, although the congenital PVA
dogs (Group 1), tended to cluster away from the
acquired hepatopathies (Group 2) and controls (Group
3) as observed in negative ion mode (data not shown).

The supervised technique PLS-DA was again used to
maximize the separation between the classes. As only
limited numbers of samples were available, the robust-
ness of the models were again tested by generating
models with one sample from each class excluded and
the model used to predict the class membership of the
excluded samples. Figure 5 shows the PLS-DA scores
plot (PC1 versus PC3) of group 1 (congenital PVA) and
group 2 (acquired hepatopathy). Eleven of the 15 sam-
ples in groups 1 and 2 were correctly classified (proba-
bility p>0.10), 2 were borderline to being correctly
predicted (0.10>p>0.05) and samples 3 and 10 were
wrongly classified. Sample 10 was again misclassified as
congenital PVA as was observed in negative ion mode.

The intensity of ions at m/z 496.3400 (16:0-lys-
ophosphatidylcholine, C24H50NO7P, error=)5.0 mDa,
)10.1 ppm) and 524.3700 (18:0-lysophosphatidylcho-
line, C26H54NO7P, error=)2–2 mDa, )4.2 ppm) was
reduced. The identities have been confirmed by exact

Table 3

LC-MS identification of plasma metabolite ions

Calculated m/z Ion Elemental

composition

Metabolite

identification

Negative ion mode

498.2889 [M-H]) C26H45NO6S Taurochenodeoxyocholic

acid

514.2838 [M-H]) C26H45NO7S Taurocholic acid

540.3301 [M+HCOO]) C24H50NO7P 16:0-lysosphatidylcholine

564.3301 [M+HCOO]) C26H50NO7P 18:2-lysosphatidylcholine

568.3614 [M+HCOO]) C26H54NO9P 18:0-lysosphatidylcholine

Positive ion mode

m/z

496.3403 [M+H]+ C24H50NO7P 16:0-lysosphatidylcholine

524.3716 [M+H]+ C26H54NO7P 18:0-lysosphatidylcholine

758.5700 [M+H]+ C42H80NO8P Phosphatidylcholine-34:2

786.6013 [M+H]+ C44H84NO8P Phosphatidylcholine-36:2

810.6013 [M+H]+ C46H84NO8P Phosphatidylcholine-38:4

Figure 2. PCA loadings plot (PC1 versus PC2) of negative ion data. The ions most responsible for the variance in the scores plot are indicated in

the loadings plots by their distance from the origin. The peaks are labelled according to their chromatographic retention time and m/z.
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mass LC-MS/MS product ion analysis against authentic
standards (table 3). On LC-MS/MS analysis, the lyso-
phospholipids readily fragmented to produce an ion at
m/z 184 (figure 6), which is attributable to the phos-
phocholine head group (Lehmann et al., 1997). In
addition, ions at m/z 758.5676 (postulated as [M+H]+

of C42H80NO8P theoretical mass=758.5700, 786.5939
([M+H]+ of C44H84NO8P theoretical mass=786.6013)
and 810.5992 (postulated as the [M+H]+ of
C46H84NO8P theoretical mass 810.6013,
error=)2.1 mDa, )2.6 ppm), showed an increased
intensity in the PVA samples. LC-MS/MS
analysis indicated that these ions correspond to

phosphatidylcholine-34:2, phosphatidylcholine-36:2 and
phosphatidylcholine-38:4 respectively.

Although preliminary, our results suggest that this
experimental approach might be able to distinguish
different forms of liver disease in dogs. The numbers of
dogs in each study group were small but, despite this,
the metabolomic strategy could separate the three
groups with ease. Metabolomic strategies have
successfully differentiated groups of similar size in a
recent experimental model of infections with Schistoso-
ma infection (Wang et al., 2004). This would suggest
that metabolomics will prove to be more powerful than
conventional laboratory diagnostics, a supposition

Figure 3. Negative ion PLS-DA scores plot (PC1 versus PC2) with Pareto scaling. Circles=group 1 (congenital PVA); triangles =group 2

(acquired PVA); squares=group 3 (control samples).

Figure 4. Negative ion PLS-DA scores plot (PC1 versus PC2) of group 1 and group 3. Circles=group 1 (congenital PVA); squares=group 3

(control samples).
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which is supported by the fact that other clinical
parameters could not be used to separate the groups in
the current study.

The PCA studies showed overlap of the dogs with
acquired liver disease. These disorders may have
different aetiologies and therefore comprise a pheno-
typically diverse group of animals. Nonetheless, using
chemometric tools it was possible to distinguish fully
this group of dogs. The three-dimensional PLS-DA with
Pareto scaling of the negative ion data gave the best

separation between classes. The loadings plot indicated
that there was a significant increase in specific bile acids
of dogs with PVA, as might have been expected because
elevations in the concentrations of plasma bile acid
commonly occur in a broad spectrum of general liver
diseases and are routinely used as part of diagnostic
investigations of PVA. However, no single biomarker
for PVA was identified; rather a combination of
metabolites seemed to be responsible, although this
requires further investigation. This finding supports

Figure 5. Positive ion PLS-DA scores plot (PC1 versus PC3) of group 1 and group 2. Circles=group 1 (congenital PVA); triangles=group 2

(acquired PVA).

Figure 6. LC-MS/MS product ion spectra (positive ion mode) of ion at m/z 496 from dog plasma (top) and 16:0-lysophosphatidylcholine

standard (bottom).
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profiling of multiple low molecular weight metabolites
to diagnose liver disorders (Mustaq et al., 1999). The
identification of specific biochemical profiles, directly
related to the disease states may also provide a greater
insight into the pathogenesis of certain forms of hepatic
dysfunction. These results demonstrate the ‘power’ of
metabolomics in being able to detect subtle changes in
the profile of other endogenous low molecular weight
metabolites in body fluids and tissues.

One concern with the results of the current study is
that the control population might not have been truly
representative of normal individuals. The choice of
appropriate control group for clinical studies is a con-
tentious issue in both human and veterinary medicine. A
group of normal individuals has the advantage that the
true effect, of a particular disease can be seen. However,
when attempting to develop a diagnostic test, normal
animals are not necessarily the best control population
because the clinician is attempting to differentiate a
particular disease (e.g. hepatic disease) from a range of
‘differential diagnoses’ (e.g. alternative diseases which
present with similar clinical signs). For canine hepatic
disease, differential diagnoses include neurological or
neuromuscular disorders (which produce signs similar to
hepatic encephalopathy e.g. seizures), and gastrointes-
tinal disorders (which can cause vomiting and
diarrhoea). Therefore, for clinical studies the use of
normal animals as controls is criticised and a ‘hospital
control’ population is preferred, which would include
patients from the same hospital population, ideally, with
diseases that cause clinical signs mimicking the disease
of interest. This latter strategy was chosen for the
current study, and it is of note that five of 10 individuals
in the control group had diseases which were potential
differential diagnoses for liver disease (e.g. Campylo-
bacter infection, idiopathic epilepsy, myasthenia gravis,
leukoencephalopathy, eosinophilic enteritis). Neverthe-
less, the current study is small and preliminary, and
further validation with a larger population is now
required.

4. Concluding remarks

This preliminary investigation supports the concept
of a global approach for characterizing the metabolite
disturbances associated with liver disease. Further
studies are still needed to analyze samples from larger
cohorts of patients. In time, this should enable the
technique not only to diagnose diseases in a similar
manner and differentiate conditions with similar clinical
presentations, but to provide prognostic information.
This will allow the most appropriate treatment to be
given at an early stage. This work suggests that
metabolomic-based strategies may play an invaluable
role in the future diagnosis and management of liver
disease in humans and in veterinary species.
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