
Vol.:(0123456789)

Purinergic Signalling 
https://doi.org/10.1007/s11302-024-10040-z

RESEARCH
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Abstract
Cancer cases have increased worldwide. Cutaneous melanoma (CM), a highly metastatic skin cancer, largely contributes to 
global statistical cancer death data. Research has shown that rosmarinic acid (RA) is a promising phenolic compound with 
antineoplastic properties. Thus, we investigated the effects of RA on apoptosis–inducing in melanoma cells, purinergic signal-
ing modulation, and cytokine levels. We treated SK–MEL–28 cells for 24 h with different concentrations of RA and assessed 
the apoptosis, CD39, CD73, and A2A expression, and cytokine levels. We found RA–induced apoptosis in melanoma cells. 
Regarding the purinergic system, we verified that RA downregulated the expression of CD73 and A2A, specially at high 
concentrations of treatment. Additionally, RA increased IL–6, IL–4, IL–10, IFN–γ, and TNF–α levels. Our in vitro results 
confirm RA's potential to be used to induce melanoma cell apoptosis, having CD73 and A2A as targets when reversion of 
immune suppression is desired. Further studies in animal models and clinical trials focusing on RA's modulation of purinergic 
signaling in melanoma are required.
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Abbreviations
ADA	� Adenosine deaminase
ADP	� Adenosine diphosphate
AMP	� Adenosine monophosphate
ATP	� Adenosine triphosphate
CBRJ	� Cell Bank of Rio de Janeiro
CM	� Cutaneous melanoma
DAMP	� Damage-associated molecular pattern
DMEM	� Dulbecco’s modified Eagle’s medium
ECM	� Extracellular matrix
FAK	� Focal adhesion kinase
IL-4	� Interleukin-4
IL-6	� Interleukin-6

IL-10	� Interleukin-10
IFN-γ	� Interferon-γ
PE	� Phycoerythrin
PI	� Propidium iodide
RT-qPCR	� Real-time quantitative polymerase chain 

reaction
RA	� Rosmarinic acid
TCA​	� Trichloroacetic acid
TME	� Tumor microenvironment
TNF-α	� Tumor necrosis factor-α
UV	� Ultraviolet

Introduction

Cancer incidence has increased globally in the twenty-first cen-
tury [40]. Among them, cutaneous melanoma (CM) has become 
a public health problem due to its ability to metastasize and its 
significant contribution to the global statistics data on cancer 
deaths [28, 38]. This neoplasm’s pathology originates from the 
malignant transformation of epidermal melanocytes mainly due 
to excessive or unprotected sunbathing, which leads to DNA 
mutations by ultraviolet (UV) radiation [7, 31].
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Even with new therapeutic possibilities, several side 
effects and possible pharmacological resistance still limit 
the effectiveness of cancer treatments [18]. When CM pro-
gresses to stages III and IV, these problems are more pro-
nounced [30]. In this context, phenolic compounds, such 
as rosmarinic acid (RA), have been indicated promising 
in an adjuvant therapeutic perspective associated with 
pharmacological use [10]. This phenolic acid is easily and 
naturally found in plants from Boraginaceae and Lami-
aceae families, such as rosemary (Rosmarinus officinalis 
L.) [34]. Some research has already shown the anticancer 
effect of RA in colon carcinoma [20], prostate cancer [19], 
and breast cancer [29]. Although works are showing the 
effects of RA in the field of cancer and of CM, the effects 
of RA in humans are still poorly understood.

Recently, the purinergic system, a ubiquitous and 
sophisticated cell–cell communication extracellular sign-
aling pathway [6], has been shown to play an essential 
role in cancer pathophysiology, such as in lung cancer 
[49], glioblastoma [1] and melanoma [27]. The molecules 
involved in this cell signaling pathway mainly include 
the nucleotides adenosine triphosphate (ATP), adenosine 
diphosphate (ADP), adenosine monophosphate (AMP) and 
the nucleoside adenosine (Ado), whose levels are regulated 
by ectonucleotidases NTPDase (CD39), 5′-nucleotidase 
(CD73) and adenosine deaminase (ADA). The signaling 

molecule’s action on P1 and P2 receptors is implicated in 
several cellular outcomes [5, 6].

Although other signaling pathways have shown a solid 
association with the anticancer action of RA, the potential 
for purinergic signaling modulation has yet to be explored in 
the experimental context. In a previous study, we proposed 
hypothetically that RA may be a modulator of the purinergic 
system [10]. Continuing to research RA properties, in this 
research we investigated the effects of RA on melanoma 
cell viability, purinergic signaling modulation, and cytokine 
levels. Thus, this is the first study that focused on experi-
mentally investigating the purinergic signaling as a target 
of RA in melanoma context.

Materials and methods

Chemicals, reagents and equipment

All chemicals and reagents used were of analytical 
grade, purchased from Sigma-Aldrich (Sigma-Aldrich, 
St. Louis, MO, USA) and Merck (Darmstadt, Germany). 
RA (99% purity) (Fig. 1) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Cell culture plates and 
flasks used for culture procedures were obtained from 
Gibco™ Thermo Fisher Scientific (Grand Island, NY, 

Fig. 1   Molecular structure of 
rosmarinic acid (RA).  Source: 
Pubchem
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USA) and Invitrogen Life Technologies (Carlsbad, CA, 
USA). Molecular biology reagents were purchased from 
Invitrogen and Applied Biosystems (Waltham, Massa-
chusetts, USA). Flow cytometry was analyzed in an 
Accuri™ C6 Plus cytometer (BD Biosciences) and by 
the FlowJo V10 software.

Cell culture and treatment with RA

The human metastatic melanoma cell line SK–MEL–28 
was purchased from the Cell Bank of Rio de Janeiro 
(CBRJ), Brazil. Cells were grown in flasks with Dul-
becco’s modified Eagle’s medium (DMEM) with glucose 
(4,500 mg/L), L–glutamine, containing antibiotics/anti-
fungal (1% penicillin/streptomycin) and supplemented 
with 10% fetal bovine serum. The cells were grown 
under adequate conditions in a humidified and controlled 
atmosphere of 5% carbon dioxide (CO2) at 37 °C. RA was 
dissolved in the appropriate culture medium to obtain 
different concentrations, and the cells were treated for 
24 h at concentrations of 400 µM and 800 µM according 
to previous studies that found optimal RA concentrations 
to be used [9]. The negative control group cells received 
only culture medium.

Apoptosis assay

The detection of the apoptosis-inducing capacity of RA 
was assessed by an Annexin V–FITC and propidium 
iodide (PI) apoptosis detection kit (BD Biosciences), used 
according to the manufacturer’s instructions. Briefly, after 
exposure to RA, cells were harvested and washed twice 
with cold PBS. Then, cells were resuspended at 1 × 106 
cells/mL in 100 μL binding buffer, mixed with 5 μL 
Annexin V–FITC and 5 μL PI (20 μg/mL), and then incu-
bated for 15 min at room temperature in the dark. Finally, 
the reaction was mixed with 400 μL binding buffer and 
read on the BD Accuri™ C6 Plus at every 20,000 events.

Gene expression of CD39 and CD73

We used the real-time quantitative polymerase chain reac-
tion (RT–qPCR) analysis to assess the gene expression of 
CD39 and CD73. First, we obtained the RNA from cell 
culture samples with TRIzol™ reagent (Invitrogen™) and 
quantified it spectrophotometrically (Thermo Scientific™ 
Varioskan™ LUX). Reverse transcription into cDNA was 
performed with a High-Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems™) by the addition to each 10 
μL sample of 10 μL of a mix containing 1 μL of Multi-
Scribe™ Reverse Transcriptase. The steps of the reaction 
were 25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 min, 
and a final hold step of 4 °C for 30 min, performed using a 

thermal cycler. The RT–qPCR reaction was performed using 
17 μL of a mix containing the SYBR Green PCR Master 
Mix (Applied Biosystems™) and 3 μL of the cDNA sample. 
The parameters used were a pre-activation step of 10 min at 
95 °C, followed by a cycling step of 40 cycles at 95 °C for 
15 s, 60 °C for 60 s, and finally, a melting step with a melting 
curve of 60 °C to 95 °C with an increase of 1 °C every 5 s. 
The relative expression of each gene was represented as the 
fold expression about the control and calculated using the 
comparative ΔΔCT value. GAPDH was used as the house-
keeping gene to normalize gene expression. The forward and 
reverse sequences of oligos (5′-3′) used for each gene were 
as follows: GAPDH (F): CTC​CTC​ACA​GTT​GCC​ATG​TA; 
GAPDH (R): GTT​GAG​CAC​AGG​GTA​CTT​TATTG; CD39 
(F): GCC​CTG​GTC​TTC​AGT​GTA​TTAG; CD39 (R): CTG​
GCA​TAA​CCT​ACC​TAC​TCT​TTC; CD73 (F): GTG​CCT​
TTG​ATG​AGT​CAG​GTAG; CD73 (R): TTC​CTT​TCT​CTC​
GTG​TCC​TTTG.

Assessment of CD39, CD73 and A2A protein 
expression

SK–MEL–28 cells were cultured under treatment condi-
tions for 24 h, followed by trypsinization using trypsin, 
and counted in a hemocytometer. Around 1 × 106 cells 
were centrifuged for 5 min at 400 g and washed twice 
with PBS with 10% FBS. The cell pellets were suspended 
and incubated for 30 min with purified mouse anti–human 
CD39 (clone A1 (RUO), catalog Nº. 567157), anti–human 
CD73 (clone AD2 (RUO), catalog Nº. 550257), and anti-
human A2A (catalog Nº. MA5–31611) antibodies conju-
gated with fluorescent phycoerythrin (PE) (BD Pharmin-
gen TM) (1:10). Then, the same number of cells was 
incubated without antibodies (non–stained). All samples 
were washed with PBS, and 10,000 events were immedi-
ately acquired by flow cytometry (BD ACCURI C6) and 
analyzed by FlowJo V10 software. Each target (CD39, 
CD73, and A2A) was analyzed separately and incubated 
with respective antibodies. The results were expressed as 
a percentage (%) of CD39 or CD73 or A2A positive cells 
relative to the control.

Enzymatic activity of ectonucleotidases

The hydrolysis of nucleotides such as ATP, ADP, AMP, 
and the nucleoside Ado was employed to evaluate the 
alterations in purinergic system enzyme activities. 
Briefly, after protein adjustments of cells, 20 μL of sam-
ples were added to the reaction mixture of each enzyme 
and pre-incubated at 37 °C for 10 min. The enzymatic 
reaction was initiated by adding the specific substrates 
for each enzyme: ATP and ADP for ATPase/ADPase and 
AMP for AMPase. After incubation at 37 °C for 70 min, 
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the reactions were stopped by the addition of trichlo-
roacetic acid (TCA, 10%), and the released inorganic 
phosphate due to ATP, ADP, and AMP hydrolysis was 
determined by using malachite green as the colorimetric 
reagent. A standard curve was prepared with KH2PO4. 
Controls were performed to correct for non-enzymatic 
hydrolysis. The absorbance was measured at 630 nm, and 
enzyme-specific activities were reported as nmol/Pi/min/
mg of protein [24, 39].

For the Ado breakdown, assessed by ADA activity, was 
performed based on the measurement of ammonia produced 
when this enzyme is activated, following a previously pub-
lished method (Giusti and Galanti, 1984). In brief, 50 μL of 
cell suspension reacted with 21 mM of adenosine (pH 6.5) at 
37 °C for 60 min. After incubation, the reaction was stopped 
by adding 167.8 mM sodium nitroprusside, 106.2 mM phe-
nol, and a sodium hypochlorite solution. Lastly, absorbance 
was read at 620 nm, and values were expressed as units/
liter (U/L).

Assessment of cytokine levels by flow cytometry

The levels of cytokines released from melanoma cells, 
interleukin–4 (IL–4), interleukin–6 (IL–6), interleukin–10 
(IL–10), interferon–γ (IFN–γ), and tumor necrosis factor–α 
(TNF–α), were verified by BD™ CBA Human Th1/Th2 
Cytokine Kit II (catalog Nº. 551,809) following the manu-
facturer’s recommendations. The method principle of the kit 
is based on the formation of sandwich complexes (capture 
bead/cytokine/fluorescent detection reagent) of cytokines 
with conjugated specific antibody beads of known size 
and fluorescence, whose intensity can be measured in flow 
cytometry equipment and is proportional to the cytokine 
level. Briefly, 50 µL of supernatant samples were mixed 
with 50 µL of Human Th1/Th2–II PE Detection Reagent 
in a microtube, followed by 3 h of incubation at room tem-
perature and protected from light. After time elapsed, the 
samples were washed with 1 mL of washing buffer and 
centrifuged at 200 g for 5 min. Then, the supernatant from 
each test tube was discarded, and the sandwich bead pellet 
was resuspended with 300 µL of buffer for analysis by flow 
cytometry.

Protein determination

We used the Bradford [4] method to assess the protein 
concentration in samples using bovine serum albumin as 
the standard. When necessary, the protein of samples was 
adjusted according to each protocol.

Statistical analysis

All measurements were statistically performed by anal-
ysis of variance followed by the appropriate post hoc 
test using GraphPad Prism 9 software. The differences 
between the untreated (CT) and treated cells were evalu-
ated by unpaired Student’s t–test or through the variance 
analysis one–way ANOVA followed by Tukey’s post hoc 
test. All data are expressed as mean ± standard devia-
tion. The differences in the probability of rejecting the 
null hypothesis at < 5% (P < 0.05) were considered sta-
tistically significant. Statistical significance was defined 
for p–values of *P < 0.05, **P < 0.01, ***P < 0.001 and 
****P < 0.0001.

Results

RA induces apoptosis in melanoma cells

The apoptosis-induced in melanoma cells after 24 h of RA 
treatment is shown in Fig. 2. It is notably that RA signifi-
cantly induced apoptosis in melanoma cells at concentra-
tions of 400 µM (P < 0.0001) and 800 µM (P < 0.0001) in 
comparison to control (Fig. 2A–B). These results showed 
that RA exhibits strong antineoplastic effects on melanoma 
cells through induction of apoptosis.

RA modulates expression of purinergic signaling 
components in melanoma cells

We searched for a possible modulatory effect of RA on the 
gene and protein expression of CD39 and CD73 in mela-
noma cells (Fig. 3A–F). After 24 h, the treatment with RA 
downregulated the gene expression of CD39 at concentra-
tion of 800 µM (P = 0.0183) when compared to the control 
group (Fig. 3A). However, this effect was no observed on 
the protein expression of CD39 (Fig. 3B–C). Regarding the 
CD73, we also found a reduction in gene expression at con-
centration of 800 µM (P = 0.0003), but in contrast to CD39, 
the protein expression of CD73 also was strongly reduced 
(P < 0.0001) in this treatment concentration (Fig. 3D–F).

In addition, we investigated the effect of RA on the pro-
tein expression of the A2A receptor (Fig. 4A–B). Interest-
ingly, we found that RA treatment was able to reduce A2A 
expression in melanoma cells at concentrations of 400 µM 
(P < 0.0001) and 800 µM (P < 0.0001) when compared to 
control.
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Fig. 2   Apoptosis-induced melanoma cells after treatment with RA. 
RA also significantly induced apoptosis of melanoma cells at con-
centrations of 400 µM and 800 µM (A–B). Control (CT). All experi-
ments were performed independently at least three times and in three 
replicates. Data are presented as mean ± SD. Statistical analysis: one–

way ANOVA followed by a post hoc Tukey’s multiple comparisons 
test. Values with P < 0.05 were considered statistically significant. 
*(P < 0.05); **(P < 0.01); ***(P < 0.001); ****(P < 0.0001). All data 
indicate differences from the control group

Fig. 3   Gene and protein expression of the CD39 and CD73. We 
employed RT–qPCR to assess the gene expression of CD39 and 
CD73 in melanoma cells. To verify the protein expression, we used 
flow cytometry. At concentration of 800 µM, the treatment with RA 
reduced the gene expression of CD39 (A) and of CD73 (D). Simi-
larly, the same RA treatment concentration was able to decreased of 
CD73 protein expression (E–F). There was no statistical significance 

for CD39 protein expression (B–C). Control (CT). All experiments 
were performed independently at least three times and in three rep-
licates. Data are presented as mean ± SD. Statistical analysis: one–
way ANOVA followed by a post hoc Tukey’s multiple comparisons 
test. Values with P < 0.05 were considered statistically significant. 
*(P < 0.05); **(P < 0.01); ***(P < 0.001); ****(P < 0.0001). All data 
indicate differences from the control group
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RA modulates activity of ectonucleotidases 
in melanoma cells

Figure 5 (A–D) shows the enzymatic activity of ectonu-
cleotidases in the hydrolysis of nucleotides ATP, ADP and 
AMP, and the Ado nucleoside after 24 h of treatment with 
RA. Curiously, at concentration of 800 µM, the treatment 
significantly decreased the ADP hydrolysis (P < 0.0001) 
(Fig. 5B). Likewise, the treatment with RA at concentration 
of 800 µM greatly reduced the AMP hydrolysis (P < 0.0001) 
(Fig. 5C). No statistical significance was observed in ATP 
hydrolysis and Ado breakdown (Fig. 5A and D).

RA modulates the cytokine levels in melanoma cells

We also investigated the levels of cytokines after 24 h of 
RA treatment (Fig. 6A–E). We found that RA is a phenolic 
compound that modulates the levels of cytokines in mela-
noma cells, such as IL–4, that had increased levels at con-
centrations of 400 µM (P = 0.0002) and 800 µM (P = 0.0005) 
in comparison to the control group (Fig. 6A). The levels 
of IL–6 were also increased at concentrations of 400 µM 
(P = 0.0045) and 800 µM (P = 0.0010) (Fig. 6B). We also 
found increased levels for IL–10 at concentrations of 400 µM 
(P = 0.0011) and 800 (P = 0.0016) of RA (Fig. 6C). The 
levels of IFN–γ were increased at concentration of 800 µM 
(P = 0.0152) (Fig. 6D). In addition, we detected elevated 
levels of TNF–α after treatment with RA in melanoma cells 
in 400 µM (P = 0.0007) and 800 µM (P = 0.0004) (Fig. 6E).

Discussion

Several studies have shown the multiple biological prop-
erties of RA, such as anti-inflammatory [25], anti–oxidant 
[35], and neuroprotection [16]. In the field of oxidative 
stress, Venza et al. [44] showed that the molecule ROS 
has a significant role in melanoma, being that high levels 
of ROS are involved in the pathophysiology of this cancer 
type. Interestingly, in a recent article, we proved that RA 
can reduce both intracellular and extracellular ROS levels 
in melanoma cells besides modulates genes related to cell 
death [9].

An important cell signaling pathway called puriner-
gic signaling, has been linked to pathophysiology of CM 
[27, 49]. Unfortunately, there is a poor prognosis in the 
advanced stages of CM due to insufficient effectiveness of 
available treatments [45]. Even if the evidence about RA's 
antineoplastic potential is highlighted, research on puriner-
gic signaling as a target of RA in the CM context needs to 
be improved. In a previous study, we hypothesized that RA 
may be a modulator of the purinergic system in melanoma 
context [10]. In this ground–breaking study, we proved that 
RA is able to downregulates the expression of CD73 and 
A2A, and modulates the ectonucleotidases activity. Taken 
all together, these purinergic signaling modulation cause 
increasing in the levels of several cytokines that culminates 
in apoptosis of melanoma cells.

In previous experimental work, we reported that RA 
has an antineoplastic effect on melanoma cells by reducing 

Fig. 4   Protein expression of the receptor A2A. After 24  h of treat-
ment with RA, the expression of the receptor A2A significantly 
decreased at both concentrations of 400  µM and 800  µM in mela-
noma cells (A–B). Control (CT). All experiments were performed 
independently at least three times and in three replicates. Data are 

presented as mean ± SD. Statistical analysis: one–way ANOVA fol-
lowed by a post hoc Tukey’s multiple comparisons test. Values 
with P < 0.05 were considered statistically significant. *(P < 0.05); 
**(P < 0.01); ***(P < 0.001); ****(P < 0.0001). All data indicate dif-
ferences from the control group
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viability [9]. Here we found that RA induces apoptosis at 
concentrations of 400 µM and 800 µM (Fig. 2A–B). Simi-
lar, a study involving CT26 colorectal cancer cells showed 
that RA reduces cell viability after 24 h of treatment [17]. 
Reports from the literature also showed that RA can induce 
apoptosis in breast [29] and prostate [19] cancer cells, but 
this effect had not been well explored in SK–MEL–28 line-
age until then. Thus, our results reinforce the antineoplastic 
effect of RA and add new findings in the melanoma context.

Sequentially, we continue searching for a possible modu-
latory effect on the components of the purinergic system. We 
found that RA significantly reduced the expression of the 
CD73 at concentration of 800 µM (Fig. 3D–F). In an animal 
model, tumor size reduction was related to CD73 inhibition 
[13]. In humans, overexpression of CD73 has been described 
in many cancer cell types, such as breast cancer, colorectal 
cancer, ovarian cancer, gastric cancer, and gallbladder can-
cer [14]. The expression and activity of CD73 seem to be 
associated with tumor invasion and metastasis [8]. It was 
also shown that patients with advanced melanoma have high 
rates of CD73 expression [32]. Thus, our results bring to 
light the possibility of RA pharmacotherapeutic applications 
having the CD73 as a target against melanoma. In addition, 

although associated with a hydrolytic activity, CD73 also 
has a non–enzymatic action, promoting cell migration in 
the extracellular matrix (ECM) through the activation of 
focal adhesion kinase (FAK) in melanoma cells [41]. Thus, 
together with our previous study in which we found that 
RA inhibits cell migration [9], now we have support to the 
hypothesis that this inhibition of adhesion of melanoma cells 
by may occurs by the effect of RA on CD73 expression.

Alterations in the enzymatic activity of ectonucleotidases 
were highlighted in previous studies involving patients with 
lung cancer [50], uterine cervical neoplasia [26], and mela-
noma [27]. Considering the studies above and the results 
presented in this work, which indicated that RA is a phenolic 
compound that modulates the expression of components of 
the purinergic system, we advanced our study to understand 
its action on the purinergic enzymatic cascade in detail. For 
this, assays to verify the enzymatic activity of ectonucleoti-
dases were performed. After 24 h of treatment, we found that 
RA interfered in the enzymatic activity of ectonucleotidases, 
reducing significantly the hydrolysis of ADP (Fig. 5B), but 
did not have the same effect on ATP hydrolysis (Fig. 5A). 
Although CD39 is an enzyme capable of hydrolyzing ATP 
into ADP and ADP into AMP [12], it is not the only enzyme 

Fig. 5   Enzymatic activity of 
ectonucleotidases. We assessed 
the ATPase/ADPase/AMPase 
activity on ATP, ADP, and 
AMP hydrolysis, respectively. 
In addition, we also assessed the 
breakdown of adenosine (Ado) 
by the ADA activity. Treatment 
of 800 µM for 24 h o RA signif-
icantly decreased the hydrolysis 
of ADP (B) and AMP (C) in 
melanoma cells. There was no 
statistical significance for ATP 
hydrolysis (A) and Ado break-
down (D) in both tested concen-
trations of RA. All experiments 
were performed independently 
at least three times and in three 
replicates. Data are presented as 
mean ± SD. Statistical analysis: 
one–way ANOVA followed by 
a post hoc Tukey’s multiple 
comparisons test. Values with 
P < 0.05 were considered statis-
tically significant. *(P < 0.05); 
**(P < 0.01); ***(P < 0.001); 
****(P < 0.0001). All data 
indicate differences from the 
control group
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with this function. Alkaline phosphatases (APs) can also 
specifically hydrolyze ADP into AMP [2], which may justify 
the reduction in ADP hydrolysis that we found, not being 

strictly related to a previous hydrolysis of ATP by CD39. 
The hydrolysis of AMP was also decreased at a concentra-
tion of 800 µM (Fig. 5C). These outcomes are explained 

Fig. 6   Cytokine levels. RA 
treatment increased the levels 
of cytokines IL–4 (A), IL–6 
(B), IL–10 (C), and TNF–α 
(E) in both concentrations 
of 400 µM and 800 µM. In 
the case of INF–ɣ, treatment 
with RA increased the levels 
of this cytokine at concentra-
tions of 800 µM (D). Control 
(CT). All experiments were 
performed independently at 
least three times and in three 
replicates. Data are presented as 
mean ± SD. Statistical analysis: 
one–way ANOVA followed by 
a post hoc Tukey’s multiple 
comparisons test. Values with 
P < 0.05 were considered statis-
tically significant. *(P < 0.05); 
**(P < 0.01); ***(P < 0.001); 
****(P < 0.0001). All data 
indicate differences from the 
control group
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by reduction in CD73 expression after treatment with RA 
(Fig. 3E–F), which promotes changes in the purinergic sign-
aling cascade and reduces Ado formation.

Regarding Ado, the CD73/ADA enzyme axis tightly regu-
lates the levels of this nucleoside at the end of the purinergic 
cascade. This is due to CD73 promoting the conversion of 
AMP into Ado, while ADA converts Ado into inosine by an 
irreversible deamination reaction [3]. Thus, the ADA is cru-
cial in controlling Ado levels [8]. The presence of increased 
levels of Ado in the tumor microenvironment (TME) is 
related to tumor immunosuppression [11]. Reduced ADA 
activity and increased P1 receptor expression (activated 
by Ado) in patients with advanced–stage lung cancer have 
been attributed to pro-tumor effects by increasing IL–6 and 
TNF–α levels and decreasing IL–17 and INF–γ [49]. How-
ever, in this study, we did not find statistical significance for 
ADA activity after treatment with RA (Fig. 5D), and thus, in 
opposition to the studies mentioned above, our results indi-
cated that purinergic cascade was more prone to a decrease 
in Ado formation in melanoma cells. Hence, our results rela-
tive to CD73 downregulation indicate that RA’s antineoplas-
tic effect may be linked to two mechanisms: reducing Ado 
production and inhibiting cell adhesion.

As shown, CD73 is responsible for converting AMP 
into Ado and thus exerts essential control over the immune 
response against tumors [8]. In cancer cells, the activa-
tion of the A2A receptor by Ado also participates in the 
immune response, promoting a pro–tumoral condition via 
the PIK3/AKT signaling pathway [42], with an increase in 
angiogenesis, tumor growth, and reduction of the immune 
response, such as IL–2, IL–6, and IFN–γ production [33, 
47]. Recently, it has been shown that simultaneous inhibi-
tion of CD73 and A2AR exhibits a synergistic effect against 
cancer [46]. Thus, the blockade of A2AR may be an exciting 
cancer immunotherapy [48]. In melanoma, blocking A2A is 
linked to restoring the antitumor immune response [36]. Kim 
et al. [21] suggested hypothetically that RA plays a negative 
allosteric role in regulating the A2A receptor. Intriguingly, 
found that RA significantly reduces the expression of A2A 
(Fig. 4A–B).

We must highlight that purinergic signaling closely con-
nects with the immune system, promoting many physiolog-
ical mechanisms. Interestingly, in this field, evidence has 
shown that melanocytes exhibit macrophage phagocytic-like 
functions and may actively participate in immune responses, 
particularly as antigen-processing or antigen–presenting 
cells [22]. Moreover, this cell type can produce cytokines, 
such as IL–4, IL–6, and IFN–γ, in inflammatory processes 
[15]. Considering that CM is derived from melanocytes 
and our results regarding the CD73 and A2A receptors, we 
searched for cytokine levels in melanoma cells after treat-
ment with RA. In this in vitro study, we found that RA 
treatment increased the levels of IL–4, IL–6, IL–10, IFN–γ, 

TNF–α (Fig. 6A–E) at the same concentrations as RA sig-
nificantly decreased A2A receptor expression.

Two cytokines involved in the immune response that 
play critical roles in the inflammatory process are IL–6 and 
IL–10. While IL–6 is an important pro-inflammatory media-
tor that induces acute phase responses and the production 
of other cytokines, IL–10 is related to the suppression of 
inflammation [37, 43]. Our study also showed increased 
cytokine levels, emphasizing IL–6 and IL–10. Although 
simultaneous increases in both IL–6 and IL–10 levels can 
be explained by the assumption that cytokine release is an 
inflammation regulatory balance, data from the literature 
supports that IL–6 may have growth-inhibitory effects 
against melanoma [23].

Conclusion

In an unprecedented-like manner, we proved that RA down-
regulated expression of CD73 and A2A in melanoma cells. 
Reduction in CD73 expression promoted a modulation in 
hydrolysis of ADP and AMP. All this purinergic signal-
ing modulations by RA, increased the levels of cytokines, 
reversing the immunosuppression, and led melanoma cells to 
apoptosis. Thus, our in vitro results confirm RA's potential 
to be used to induce melanoma cell apoptosis, having CD73 
and A2A as target when reversion of immune suppression 
is desired. We suggest further studies in animal models and 
clinical trials focusing on the modulation of purinergic sign-
aling by RA in melanoma.
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