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Abstract
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role 
of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plastic-
ity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components 
of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiol-
ogy under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to 
P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under 
diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the 
modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial 
communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses 
about the role of this interaction in physiological and pathological circumstances.
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Introduction

Chemical synapses are specialized junctions through which 
cells of the nervous system (NS) communicate with each 
other. At chemical synapses, the transfer of information 
between two neurons requires the release of neurotransmitter 
molecules, which act on the postsynaptic neuron by binding 
to the specific receptor localized at the plasma membrane, 
in a process known as neurotransmission.

Adenosine triphosphate (ATP) is abundantly present in 
the cytosol and is classically known to fuel power-consum-
ing reactions. Burnstock and colleagues first highlighted 
the role of ATP as a physiological modulator of synaptic 
transmission in the autonomic system, and subsequently, it 
was identified as a co-transmitter in parasympathetic and 
sympathetic nerves [1, 2]. At central nervous system (CNS) 
synapses, it is well-accepted that ATP acts as a transmitter 
or co-transmitter by being released with other neurotrans-
mitters, such as glutamate or GABA [3]. Interestingly, both 
spontaneous and evoked ATP release have been described 
in pyramidal neurons of the mouse cerebral cortex and fast 
synaptic currents and long-lasting enhancement of the popu-
lation spikes are induced by ATP release in the hippocam-
pus [4]. The extracellular concentration of ATP in the NS is 
determined by the balance between its release and enzymatic 
degradation, and different studies indicate that this nucleo-
tide is released by both neurons and glia [5, 6]. For instance, 
physiological and high-frequency stimulations modify that 
balance by increasing ATP release and thus its extracellular 
availability [7, 8]. In addition to exocytosis and considering 
that ATP molecules are not able to diffuse across the plasma 
membrane, the passage of ATP from the intracellular to the 
extracellular compartment is also mediated by mechanisms 
involving ATP-permeable channels as connexin or pannexin 
hemichannels (CxHCs or PanxHCs, respectively) [9, 10].

There are two fundamental classes of receptors for extra-
cellular ATP that work on different time scales. The metabo-
tropic P2Y receptors (P2Y1,2,4,6,11) are G-protein-coupled 
receptors involved in responses that can last several seconds 
through changes in gene expression [11–13]. The second 
class, the ionotropic P2X receptors (P2X1-7), comprises 
ligand-gated ion channels that mediate fast responses last-
ing milliseconds. These receptors can assemble as homo- or 
heterodimers; thus, the different combinations of subunits 
result in receptors with a wide variety of structural and bio-
physical properties [11–13].

In this review, we discuss the role of ATP, P2X7 receptor 
(P2X7Rs) and PanxHC interaction in the modulation of pre-
synaptic strength with a special focus on the participation of 
the neuron-glia crosstalk in this process. For a detailed view 
of the structure, expression and pharmacology of P2X7Rs, 
the following reviews are recommended [14, 1516].

The basic functioning of P2X7Rs

The P2X7Rs are ligand-gated ion channels permeable to 
 Na+,  K+, and, more significantly,  Ca2+, as all P2X recep-
tors. However, they display distinctive properties com-
pared to the other members of the family. Pioneer studies 
showed that they are the only ones that do not heterodi-
merize with other P2X subunits, being usually assembled 
with three to six P2X7 subunits [5, 17]. However, more 
recent evidence suggests a close association between 
P2X7 and P2X4 subunits [18, 19]. On the other hand, 
they have low affinity to ATP, requiring high levels of 
extracellular ATP (> 100 μm) for activation [17]. Interest-
ingly, P2X7Rs show plasticity, which leads to selective or 
non-selective currents. In this sense, milliseconds of ATP-
dependent activation results in the opening of small cat-
ion-selective channels, while a sustained activation—with 
a high concentration of ATP—increases the permeability 
to non-selective conductance, including organic cations 
and small peptides, in a process known as pore forma-
tion, which represents an intrinsic property of the channel 
itself [5, 17, 20–22]. Moreover, repeated stimulation with 
an agonist results in relevant changes in the amplitude 
and time course of the current evoked by the following 
applications [17, 23]. Notably, the C-terminal domain of 
the P2X7 subunit is suggested to be required for the pore-
forming process [24]. However, the molecular mechanism 
underlying this process remains still unclear and contro-
versial and two main hypotheses, the “pore-dilation” and 
the “pore-formation,” have been raised (reviewed in [21, 
25–27]). The first supports that upon sustained or repeti-
tive stimulation, the ion channel intrinsically dilates pro-
ducing a pore that allows the passage of large molecules 
(up to ~ 900 Da) [24, 28]. A proposed alternative to this 
hypothesis is that the channel dilation may involve the 
successive incorporation of new P2X7 subunits [28, 29]. 
Notably, a study performed by Karasawa and colleagues 
suggested that the pore dilation and thus channel perme-
ability could be modulated by the lipid microenvironment 
in the vicinity of P2X7Rs [27, 30]. Together, these data 
indicate that the “pore dilation” might be controlled by 
different cellular pathways. On the other hand, the “pore 
formation” is supported by different electrophysiology 
studies evidencing that the increased membrane permea-
bility could be mediated by the interaction of P2X7R with 
the ATP-permeable channel, Panx1, followed by cytoskel-
eton rearrangements [24, 31]. We will discuss the interac-
tion of P2X7Rs and Panx1HCs further above in the text. 
Electrophysiology and dye uptake studies performed in 
heterologous expression systems reveal that the property 
of increasing membrane permeability to large molecules is 
also observed in P2X2 and P2X4 receptors [5, 17, 20–22]. 
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Interestingly, Kim and colleagues showed that P2X7Rs are 
dephosphorylated upon activation, leading to a negative 
feedback control of the channel currents [32]. As other 
members of the family, P2X7Rs have cytoplasmic N- and 
C-terminal domains and two transmembrane regions sepa-
rated by an extracellular domain. The C-terminal domain 
is the longest of the P2X family and mediates several sign-
aling cascades by interacting with the actin cytoskeleton 
and different intracellular proteins, such as the heat shock 
proteins (Hsp90, Hsc71, Hsp70), phosphatidylinositol 
4-kinase (PI4K), and membrane-associated guanylate 
kinase (P55) [32, 33]. Interestingly, dephosphorylation 
of P2X7Rs also reduces the ability to mediate cytoskel-
etal rearrangements [32]. Thus, activation of P2X7Rs not 
only opens a cation-permeable channel, but it can partici-
pate in different signaling pathways by interacting with 
downstream components and promoting cytoskeleton 
rearrangements. In this sense, Armstrong and colleagues 
showed that bath application of the P2X7R agonist BzATP 
prevents neurotransmission at the mossy fiber–CA3 syn-
apses. Interestingly, the synaptic depression is blocked by 
applying 4-(4-fluorophenyl)2-(4-methylsulfinylphenyl) 
5-(4-pyridyl) imidazole, a strong antagonist of p38/MAP 
kinase activation. Altogether, these suggest that P2X7Rs 
modulate mossy fiber synaptic depression through the acti-
vation of p38/MAPK in rat hippocampus [34].

Basic functioning of Panx1HCs

The Panx1 protein forms large pore membrane chan-
nels permeable to ions and relative large molecules with 
physiological relevance supporting an autocrine/parac-
rine signaling. Panx1 is part of a family of membrane 
glycoproteins comprising three members (pannexins 1, 
2, and 3), being Panx1 the most ubiquitously expressed 
in the nervous system of mammals [35–37]. The protein 
is mostly detected in neurons but is also found in oli-
godendrocytes, astrocytes, and microglia [36, 38–41]. 
Interestingly, neuronal Panx1 could co-localize with the 
postsynaptic density protein, PSD95, suggesting a role in 
synaptic transmission [42]. Structurally, pannexins con-
sist of four α-helical transmembrane domains with cyto-
plasmic amino- and carboxy-termini; two extracellular 
and one intracellular loops link transmembrane domains 
[43–45]. Recent studies using single-particle cryo-elec-
tron microscopy (cryo-EM) at near-atomic resolution in 
different heterologous expression systems determined 
that Panx1 oligomerizes into heptamers in contrast to 
the hexameric conformation previously reported, form-
ing plasma membrane channels known as pannexons or 
PanxHCs [46–50].

Despite pannexons sharing some topological and perme-
ability properties with CxHCs or connexons, Cxs and Panxs 
do not show sequence homologies [44]. PanxHCs, like con-
nexons, exhibit a large central pore allowing interchange of 
ions and large molecules (up to 1.2 kDa) between the cytosol 
and the exterior [10]. Classically, Panx1HCs have been known 
as non-selective high conductance (~ 500 pS) and permeable 
channels permitting the passage of transmitters such as ATP 
and glutamate under diverse physiological and pathological 
conditions [43, 51–54]. However, current literature associ-
ates Panx1HCs with divergent unitary properties [55]. In 
addition to the high conductance/permeability conformation, 
recent studies reported an anion-permeable low conductance 
(~ 68–74 pS) conformation with no ATP permeability; this 
channel state shows selectivity for chloride ions and is acti-
vated uniquely by voltage [56, 57]. Likewise, dual voltage 
clamp recordings resolved in HeLa cells expressing human 
Panx1-YFP and rodent spinal astrocytes described low mean 
unitary conductance of ~ 42 and ~ 48 pS [58]. Discrepancies 
between unitary conductance and ATP permeation proper-
ties may be ascribed to different modes of Panx1 activation; 
actually, smaller-conductance Panx1HCs (up to ~ 100 pS) 
may co-exist with permeation of large molecules [55, 59]. In 
this line, caspase cleavage of the auto-inhibitory cytoplasmic 
carboxy-terminus (C-tail) of Panx1 associates with broadening 
of the central pore; progressive removal of C-tails has been 
associated with stepwise graded channel activation of multi-
ple discrete open states, each contributed by individual subu-
nits resulting in permeation of ions and large molecules [59]. 
Combining cryo-EM analysis, ATP release measurements, 
and electrophysiology, novel studies confirmed the passage 
of ATP through a heptameric Panx1 channel presenting small 
single-channel conductance [45–48]. In accordance, a gating 
mechanism involving two ionic-conducting pathways, a big 
main pore permeable to large molecules, and seven narrow 
tunnels located intracellularly and permeable to small anions 
has been reported. In normal conditions, the main pore is phys-
ically blocked by the C-terminal tail and thus anions—but not 
ATP—can solely pass through the side tunnels. Under patho-
logical conditions, the C-terminal tail is cleaved by caspase, 
and ATP is released through the main pore [48]. According 
to cryo-EM reconstructions, the Panx1 permeation pathway 
is exceptionally wide in the transmembrane and cytoplasmic 
portions thus supporting permeation of large molecule ATP 
or ethidium. Constriction sites would take place in the extra-
cellular domains where the conserved tryptophan ring (W74) 
in the first extracellular loop may act as a putative selective 
filter [45–48]. Hence, Panx1 seems to have multiple open pore 
configurations. Finally, the Panx1HC conductance/permeabil-
ity and kinetics are still a matter of investigation; stimulatory 
conditions may determine channel properties and conforma-
tional states [55, 60].
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Panx1HCs as dynamic routes for ATP release

Pannexons are typically known as paths for ATP release 
[10, 51, 61]. Released ATP triggers purinergic signal-
ing either by itself or through its metabolites (adeno-
sine diphosphate or ADP, monophosphate or AMP, and 
adenosine). This unconventional Panx1-dependent efflux 
of ATP constitutes a paradigmatic mechanism for non-
vesicular transmitter release [43]. In the NS, the release 
of glio- and neurotransmitters (glutamate, D-serine, and 
ATP) by neural cells via Panx1HCs has been implicated 
in synaptic plasticity in health and disease being the sub-
ject of an increasing number of publications [41, 62, 63]. 
Importantly, pannexons open under physiological extra-
cellular  Ca2+ concentrations and negative resting mem-
brane potentials and show poor voltage dependence [36, 
52, 64]. Pannexons can be activated by diverse mecha-
nisms (reviewed in [55, 65–67]) including purinergic 
(P2X4/7, P2Y1/2/6), alpha1-adrenergic, and glutamater-
gic (N-Methyl-D-aspartate) receptors [24, 68–70]. When 
activated by purinergic receptors, Panx1HCs behave as 
physiological regulators of ATP release; the outcome of 
this association is the so-called “ATP liberation induced 
by ATP.” Accordingly, ATP released through pannexons 
opens new pannexons by stimulating purinergic recep-
tors resulting in a positive feedback that reinforces the 
initial ATP signal [66, 71]. If maintained, this situation 
is potentially dangerous since channels might be kept in 
a permanent open state and ensuing exacerbated pan-
nexon activity would be deleterious [72]. Recent reports 
suggested that physiological activation of Panx1HCs by 
ATP might be transient in the presence of purinergic 
P2Y/P2X7 receptors due to the existence of an inhibitory 
mechanism or internalization of Panx1 [72–76]. While 
the most studied roles of Panx1HCs rely on their capabil-
ity to allow the release of ATP and the effects of puriner-
gic signaling, other alternative roles might be ascribed to 
the non-channel properties of Panx1 [77].

Pannexin1 as subunits of gap junction 
channels: the debate is open

Pannexins are considered the mammalian orthologs of 
innexins, the gap junctions of invertebrates, but in con-
trast to them (and to connexons), whether PanxHCs from 
opposing cells come together to generate gap junction 
channels remains controversial. Initial electrophysiologi-
cal studies carried out by Bruzzone and colleagues in 
paired oocytes of Xenopus indicated that exogenously 
expressed Panx1 assembles as intercellular channels 
forming either homomeric or heteromeric channels with 

Panx2, having both channel differential properties [36]. 
Dye coupling assays in C6 glioma cells loaded with sul-
forhodamine SR101 revealed enhanced dye coupling in 
Panx1-expressing cells supporting these primary observa-
tions [78]. Likewise, overexpression of Panx1 in human 
cell lines may induce the formation of gap junction 
channels permeable to  Ca2+ underlying the propagation 
of intercellular  Ca2+ waves [79]. Subsequent investiga-
tions questioned the capability of Panx1 to form cell–cell 
channels in appositional membranes under physiological 
and in vivo conditions. A main argument is the presence 
of N-glycosylated asparagine residues on Panx1 sec-
ond extracellular loop that would prevent docking [73, 
80–82]. In agreement with this, electrophysiological and 
functional studies performed in cell lines carrying dif-
ferent glycosylation patterns of expressed Panx1 showed 
that lower levels of Panx1 glycosylation associate with 
higher probabilities to find functional Panx1-formed gap 
junction channels [83]. Also, combining single-particle 
cryo-electron microscopy and patch-clamp electro-
physiology in a glycosylation-deficient mutant of Panx1 
allowed identifying a gap-junction-like structure [48]. 
Yet, experimental conditions promoting Panx1 glyco-
sylation have been recently discussed [84]. Additional 
arguments against Panx1-forming gap junctions are that 
recordings of Panx1-based junction currents require spe-
cial experimental conditions and may be contaminated 
with junction currents from connexin-based gap junction 
channels [81]. A more recent study elegantly performed 
by Sáez Laboratory using functional/electrophysiological/
pharmacological/genetic and in silico assays character-
ized Panx1-based cell–cell channels in transfected and 
endogenous human lines [84]. Thus, electrophysiologi-
cal recordings of exogenous human pannexin1 (hPanx1) 
cell–cell channels expressed in HeLa cells knocked out 
for Cx45 showed two states of hPanx1 intercellular chan-
nels: O-state with single-channel conductance of ∼ 175 
pS, a substate of ∼ 35 pS and low transjunctional voltage 
(Vj) sensitivity, and S-state, with single-channel conduct-
ance of ∼ 35 pS, asymmetry in Vj dependence and perme-
ability to DAPI. Remarkably, S-state hPanx1 intercellular 
channels were also recognized between TC620 cells, a 
human oligodendroglioma cell line that endogenously 
expresses hPanx1 [84]. Importantly, in silico approaches 
suggested that some arginine residues at the channel pore 
may be neutralized by hydrophobic interactions permit-
ting DAPI permeability. These novel findings reopen the 
debate about the possibility that Panx1HCs assemble as 
functional intercellular channels and, essentially, raise the 
question about the eventual role of Panx1-gap junction 
channels as morpho-functional substrates for electrical 
synapses under defined physiological circumstances [84].
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Panx1HC association with P2X7Rs

Panx1HCs functionally associate with ionotropic 
purinergic P2X7Rs. In addition to operating as a cati-
onic channel, prolonged stimulation (up to 20 min) of the 
ligand-gated ion P2X7R leads to the permeation of large 
molecules (up to 1 kDa) such as ATP [5, 85]. As we com-
mented above, the mechanisms underlying the permea-
tion of P2X7Rs to large molecules are subject of intense 
debate. In one possible scenario, pioneering studies done 
in macrophages suggested that Panx1HCs could function 
as the large pore of the P2X7R under prolonged activa-
tion [24]. In these cells, ATP gates P2X7Rs and opens a 
large transmembrane route allowing ethidium uptake and 
the release of the pro-inflammatory cytokine interleukin-
1beta (IL-1β), being these effects prevented by Panx1 
block. By using small interference RNA (siRNA) directed 
to Panx1 and a Panx1-mimetic inhibitory peptide, the 
authors inhibited the dye uptake elicited by P2X7Rs 
without affecting the ionic current and  Ca2+ entry asso-
ciated with P2X7R stimulation [24]. Some studies then 
reported that large plasma membrane pore opening upon 
P2X7R activation could occur in the absence of Panx1 
[86, 87]. The biphasic permeation properties of P2X7Rs 
were reported in systems not expressing Panx1 and under 
high agonist concentrations; intracellular residues of the 
channel pore seemed to be required for the pore dilatation 
under those circumstances [86].

What mechanisms link P2X7Rs and Panx1HCs? 
Increases in cytosolic  Ca2+ activate pannexons and ATP 
release; thus, opening of Panx1HCs would be triggered 
by the increase in intracellular  Ca2+ downstream P2X7R 
stimulation [9, 73, 88, 89]. Conversely, it has been 
reported that Panx1HC opening might be independent 
from extracellular  Ca2+ and direct protein–protein inter-
action could underlie Panx1HC activation as suggested 
by the fact that Panx1 co-immunoprecipitates with the 
P2X7R [24, 72]. A Src tyrosine kinase-dependent process 
might couple Panx1HC and P2X7R activation, while the 
carboxy-terminal region of P2X7Rs would be required 
to open Panx1HCs [53, 90]. To add more intricacy to 
the P2X7R/Panx1 interaction, a recent study performed 
in heterologous expression systems revealed that Panx1 
attenuates the P2X7R-dependent  Ca2+ entry. This P2X7R 
inhibition appears to be mediated by the C-terminal 
domain of Panx1 [91]. Interestingly, whether Panx1 atten-
uates or potentiates P2X7R-dependent signaling pathways 
seems to depend on the degree of P2X7R activation [92]. 
Hence, solid evidence supports the idea that Panx1 and 
P2X7R exert a modulatory influence on each other; how-
ever, the accurate mechanisms underlying the physical 
interaction between them remain to be clarified.

In this review, we will focus on pannexons expressed in 
neural cells and their acting in conjunction with P2X7Rs to 
contribute to the shaping of presynaptic neurotransmission.

P2X7Rs and Panx1HCs as modulators 
of presynaptic strength

Different studies described the presence of P2X7Rs in 
presynaptic terminals and functional data support a pivotal 
role of these receptors in presynaptic neuronal function [34, 
93–99]. Presynaptic P2X7Rs promote a wide range of effects 
on synapse functionality, including facilitation and/or inhibi-
tion. For instance, activation of P2X7Rs with the receptor 
agonist BzATP promotes neurotransmitter release in gluta-
matergic synapses in the cortex, hippocampus, cerebellum, 
spinal cord, and neuromuscular junction [93, 94, 100–102]. 
In isolated presynaptic terminals, pulses of ATP or BzATP 
induce an increase in presynaptic  Ca2+ availability, which 
is sensitive to P2X7R antagonists, suggesting that func-
tional P2X7Rs are present in presynaptic terminals [100, 
101, 103]. Interestingly, the P2X7R permeability to  Ca2+ 
is lower at depolarized membrane potentials compared to 
negative potentials. In this sense, it has been suggested that 
neurotransmitter release could be initiated through P2X7R 
activation, without presynaptic depolarization and voltage-
gated  Ca2+ channel opening, thus, also contributing to neu-
rotransmitter release at resting membrane potentials [94, 
104]. Furthermore, the P2X7R- mediated  Ca2+ currents are 
not desensitized and potentiated when the extracellular con-
centration of  Ca2+ or  Mg2+ is decreased. The high conduc-
tivity to  Ca2+ ions under physiological conditions provides 
P2X7Rs the alternative to act as presynaptic sources of  Ca2+ 
[100, 105, 106]. Either presynaptic P2X7R-mediated  Ca2+ 
signaling or P2X7R-activated intraterminal  Ca2+-dependent 
signaling messengers modulate neurotransmitter release in 
central and peripheral synapses [100, 102, 107, 108]. During 
the last years, Panx1 has emerged as an important modu-
lator of synaptic function. In the adult brain, the absence 
of Panx1 leads to changes in the dendritic arbor and excit-
ability of hippocampal neurons, preserving spontaneous 
activity [77]. Moreover, Panx1HCs, which are reported to 
open under resting membrane potential, are also essential 
regulators of synaptic plasticity in hippocampal synapses. 
For instance, the absence or blockade of Panx1HCs in adult 
mice favors LTP by modifying the threshold of synaptic 
plasticity induction and increases excitatory synaptic trans-
mission [109, 110]. Accordingly, a recent report showed that 
blocking Panx1HCs in hippocampal slices increases the syn-
aptic level of endocannabinoids and the activation of CB1 
receptors; as a consequence, GABAergic efficacy decreases. 
This effect shifts the excitatory/inhibitory balance toward 
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excitation and facilitates the induction of LTP in CA3-CA1 
synapses [111]. The functional significance of Panx1HCs in 
hippocampal synapses is suggested to be mediated by both 
pre- and postsynaptic mechanisms [109]. More recently, 
evidence suggests that neurotransmitter release probability 
(pr) and the size of the readily releasable pool (RRP) are 
affected in Panx1-knockout (Panx1KO) mice and thus gluta-
mate release [77]. In this line, we have recently reported that, 
in hippocampal dissociated cultures, neuronal Panx1HCs 
and P2X7Rs are required for the compensatory adjustment 
of presynaptic strength upon chronic inactivity [99]. In the 
ensuing paragraphs, we review recent advances regarding 
the role of ATP, P2X7Rs, and Panx1HCs in the modulation 
of presynaptic strength at central and peripheral synapses 
and address major research gaps that require more study.

ATP, P2X7Rs, and Panx1HCs regulate 
the presynaptic release of acetylcholine 
(ACh) at the neuromuscular synapse

During neuromuscular transmission, in addition to released 
ACh, ATP originating from both nerve terminals and muscle 
fibers accumulates at the synaptic cleft [112, 113]. Endog-
enous ATP and its hydrolysis products regulate the presyn-
aptic release of ACh [107, 108, 113–115]. Recent reports 
propose Panx1HCs as sources of synaptic ATP involved in 
purinergic regulation of neuromuscular junctions (NMJs). 
According to these studies, stimulation of P2X7Rs by the 
specific agonist BzATP in isolated hemidiaphragm neuro-
muscular preparations of Panx1KO mice enhances evoked 
ACh release through presynaptic activation of calmodulin, 
 Ca2+/calmodulin-dependent kinase II, and L-type of voltage-
dependent  Ca2+ channels. Effects induced by P2X7R stim-
ulation, i.e., increased quantal content of evoked endplate 
potentials (EPPs) and increased size of the readily releas-
able ACh pool, were not observed in wild-type mice yield-
ing to the suggestion that Panx1 normally inhibits the tonic 
enhancement of P2X7-evoked release of ACh [107]. This is 
counterintuitive since activated Panx1HCs boost neurosecre-
tion in other systems through a process involving P2X7R and 
amplification of cytosolic  Ca2+ signals [116, 117]. However, 
other purinergic receptors would come into play; at the frog 
neuromuscular junction, ATP co-released with ACh inhibits 
quantal ACh release from motor nerve terminals via metabo-
tropic P2Y receptors [118]. At mouse NMJs, the inhibitory 
actions of presynaptic purinergic P2Y13 and adenosine A1 
receptors activated by Panx1HC-released ATP and adeno-
sine would override the stimulatory effects of P2X7R, result-
ing in net inhibition of ACh release by Panx1HCs [107, 
113]. Noteworthily, the global Panx1KO mice used in mam-
malian NMJs studies do not discriminate the cellular ori-
gin of the Panx1HCs involved in the control of presynaptic 

ACh release. Interestingly, at the postsynapse, Panx1 acti-
vation enhances muscle contraction; in adult skeletal mus-
cles, Panx1HC opening mediates ATP efflux and influx of 
 Ca2+ and glucose, necessary for potentiation of contraction 
[119, 120]. Hence, the final effects of the P2X7Rs/Panx1HC 
interplay on muscle function (stimulatory or inhibitory) will 
depend on the cellular localization of Panx1HCs as well as 
on the actions of purinergic receptors other than P2X7Rs, 
also activated during the Panx1HC-mediated ATP discharge. 
What would be the physiological role of the tonic inhibition 
of ACh release by Panx1HCs in mouse NMJs? As proposed 
by others, Panx1HCs might be part of a feedback control 
mechanism through which transmitters could adjust the gain 
of synaptic strength [63, 121]. We speculate that, at mouse 
motor synapses, inhibition of ACh release by the Panx1HCs 
during high neuronal activity might avoid synaptic fatigue. 
According to this idea, the resultant effects on presynaptic 
ACh release, due to the stimulatory (P2X7R) and inhibitory 
(P2YR) actions of Panx1HC-released ATP, would contribute 
setting the moment-to-moment dynamic range of ACh syn-
aptic levels, within the NMJ which would efficiently perform 
in physiological conditions. However, further studies will be 
required to resolve this issue.

The neuroglial crosstalk in the modulation 
of synaptic strength

Different sources of evidence showed that the fine-tuned 
modulation of neurotransmission, that has been previously 
thought to only require the signaling between two neuronal 
cells, involves an intimate communication between glial cells 
and neurons. Thus, currently it is well-recognized that glial 
cells are not only passive support cells for neurons but also 
active players in neuronal network development and infor-
mation processing. At synapses, neuronal and non-neuronal 
cells are closely associated by the fine processes of both 
astrocytes and microglia that modulate synapse formation 
and function [122–124]. Added to their proximity to syn-
apses, astrocytes secrete a wide variety of chemical signals 
that control synaptic transmission. This led to the concept of 
“tripartite synapse,” a synapse composed of one presynaptic 
neuron, one postsynaptic neuron, and an astrocyte, shaping 
together a functional unit [124–128]. A tripartite synapse 
displays an intimate communication between the different 
cellular players through a bidirectional signaling pathway; 
neurons release neurotransmitters that bind to postsynaptic 
receptors and receptors on the adjacent astrocyte process, 
activating signaling pathways in the astrocytes which finally 
fine-tune synaptic function [127, 128]. Thus, brain function 
depends on the communication between neurons and glial 
cells that can activate a wide variety of molecular interac-
tions leading to the modulation of synaptic strength. In this 
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scenario, we next discuss recent findings that shed light on 
the role of P2X7Rs and their interaction with pannexons in 
the modulation of presynaptic strength in both central and 
peripheral nervous systems.

The P2X7R/Panx1 complex mediates 
astroglial D‑serine release: possible impact 
on presynaptic strength

Astrocytes synthesize and release D-serine, an endogenous 
neurotransmitter that acts as a co-agonist with glutamate 
at N-methyl-D-aspartate receptors (NMDARs) [129, 130]. 
In the brain, astrocyte D-serine controls NMDAR-mediated 
synaptic activity, long-term potentiation (LTP), long-term 
depression (LTD), and cognition [131–134]. Studies reveal 
that the rate of supply of D-serine to neurons controls the 
firing rate of these cells. Neurological (i.e., Alzheimer, 
epilepsy, stroke) and psychiatric (i.e., schizophrenia) dis-
orders typically exhibit alterations of extracellular D-ser-
ine. Then, the adequate function of NMDAR requires the 
fine adjustment of extracellular levels of this molecule 
[135]. Several molecular and cellular mechanisms mediate 
the D-serine efflux [136]. In particular, astrocytes secrete 
this neurotransmitter through a  Ca2+-independent activa-
tion of P2X7Rs that involves Panx1; additional releasing 
pathways include  Ca2+/SNARE-dependent exocytosis and 
Cx43HCs [137–139]. In cultured cortical astrocytes, stimu-
lation of glial P2X7Rs by ATP elicits D-serine discharge 
via Panx1HCs through a  Ca2+-independent PKC isozyme 
[137]. Formation of the P2X7R-Panx1 complex is essential 
for this effect, as pharmacological inhibition of the Panx-
1HCs and downregulation of Panx1 expression by shRNAs 
prevent the release of astrocyte D-serine triggered by the 
P2X7R agonist BzATP [137]. Whereas  Ca2+-dependent 
exocytosis of astrocyte D-serine controls synaptic plastic-
ity in the hippocampus and Cx43HC-mediated astrocyte-
released D-serine potentiates NMDAR-synaptic currents at 
the prefrontal cortex, the contribution of glial D-serine and 
P2X7R/Panx1HCs in neurotransmission and particularly in 
the presynapse is unknown [134, 138]. An eventual effect 
of glial D-serine on presynaptic NMDARs could be a pos-
sibility. In other brain regions, electrophysiological studies 
have shown that D-serine promotes glutamate release from 
nerve terminals acting through presynaptic NMDARs [140, 
141]. Besides, cortical astrocytes may provide D-serine to 
activate presynaptic NMDARs facilitating glutamate release 
[142]. Currently, future studies are required to unravel the 
role for astroglial D-serine and P2X7R/Panx1HC in neuro-
transmission, as well as to discriminate whether the differ-
ent molecular mechanisms involving its release (Cx43HCs, 
Panx1HCs, P2X7Rs, or exocytosis) operate under specific 
circumstances (i.e., health or disease) and trigger precise 

modulatory mechanisms (i.e., pre or postsynaptically), alone 
or concurrently.

Paracrine signaling by Panx1HCs 
and P2X7Rs sustains bidirectional 
interactions between neurons and satellite 
glial cells (SGCs) in peripheral sensory 
ganglia: implications for nociceptive 
afferent transmission

Ganglia primary neurons are the first relay in the sen-
sory pathways transmitting afferent information from the 
periphery (skin, muscles, organs, etc.) to the CNS (spinal 
cord and brainstem). The soma of these sensory neurons 
localizes in the peripheral dorsal root ganglion (DRG) or 
ganglia of sensory cranial nerves. The sensory neurons are 
pseudounipolar and their cell body gives origin to a short 
axon, which divides into two branches yielding a t-shaped 
bifurcation. One branch innervates the periphery while 
the other enters the CNS where it synapses with central 
neurons (second relay) localized in the posterior horn (for 
spinal nerve) or the medulla oblongata (for cranial nerves) 
[143]. Although action potential conduction from the 
periphery to axon terminals innervating the postsynaptic 
second relay might bypass the perikaryon without distor-
tion of the sensory information, the ganglia neuronal soma 
provides the unique possibility for regulating the afferent 
sensory transmission to the CNS [144]. Moreover, notably, 
there is no current morphological or functional evidence 
indicating that neurons within the peripheral ganglia chem-
ically synapse between each other, and sensory neurons 
principally rely on satellite glial cells (SGCs), the chief 
ganglia glial cells, to modulate their excitability through 
gliotransmission. Actually, cell bodies of sensory ganglia 
neurons are typically enwrapped by surrounding SGCs 
forming a “neuroglial unit” [145, 146]. Recent reports indi-
cate that interaction mediated by purinergic signaling and 
Panx1HCs sustains paracrine communication between sen-
sory neurons and SGCs contributing to regulate nocicep-
tion [147–153]. In murine visceral nodose-petrosal-jugular 
(NPJ) complexes, the SGCs Cx43HCs act together with 
P2X7Rs and Panx1HCs to mediate a paracrine neuroglial 
communication [149]. In this case, the pharmacological 
opening of glial CxHCs increases the frequency discharge 
in vagal axons projecting from the NPJ sensory neurons to 
the medulla, being this effect inhibited in Panx1KO mice. 
Single application of BzATP, a P2X7R agonist, to the NPJ 
complexes, also increases the electrical activity in sensory 
neurons. The oxidized ATP (oATP), an irreversible P2X7R 
antagonist, and probenecid, a Panx1 blocker, reduce the 
increased sensory discharge elicited by pharmacological 
CxHC opening. Panx1 is found in both sensory neurons 
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and SGCs [149, 154–156] whereas P2X7Rs are selectively 
expressed by satellite glial cells [147, 148, 153, 157, 158]. 
Since Panx1HC activation associates with P2X7R func-
tion, authors proposed that interactions between neuronal 
Panx1HCs, glial Cx43HCs, and P2X7Rs orchestrate the 
increase of NPJ sensory neuron activity [149]. In the dor-
sal root ganglia (DRG), stimulation of P2X7Rs by BzATP 
triggers cytosolic  Ca2+ increases in SGCs and neurons 
in vivo being these responses blocked by antagonists of 
P2X7Rs,  P2X3Rs, and Panx1 [153]. Then, in DRG, acti-
vated P2X7Rs could induce the paracrine release of glial 
ATP through opening Panx1HCs, which increases neu-
ron excitability in vivo through  P2X3Rs that are mainly 
expressed by sensory neurons [5, 157]. In turn, released 
ATP may result in the opening of neuronal Panx1HCs that 
would contribute to further ATP release [153]. Interest-
ingly, the study by Chen and colleagues also evaluated the 
impact of the SGC–neuron interaction in the modulation 
of afferent transmission [153]. In this regard, ganglionic 
application of BzATP increases the number of activated 
DRG neurons that respond to brush stimulation of the 
ipsilateral hind paw. In addition, the response of C-fibers 
to the electrical stimulation of the sciatic nerve increases 
after BzATP application to the L4 DRG and the ganglionic 
application of carbenoxolone (CBX), a Panx1 and Cx gen-
eral blocker, decreases the number of DRG neurons acti-
vated by peripheral high-intensity electrical stimulation. 
Hence, this work provides clear evidence that DRG neu-
ron activation triggered by P2X7R stimulation and Panx-
1HCs sensitizes sensory neurons to subsequent peripheral 
stimulation enhancing the nociceptive transmission from 
the periphery to central pathways [153]. In chronic patho-
logical pain, the initial injury induces hyperexcitability 
of primary afferent neurons from the ganglia (peripheral 
sensitization), leading to central hypersensitivity that per-
sists after the original injury. In pathological pain, Panx1 
is up-regulated as reported in murine trigeminal ganglia 
in a chronic orofacial pain model and in DRG after nerve 
injury [151, 156]. The Panx1 contribution to orofacial pain 
depends on the cell-type expressing the protein; targeted 
deletion of Panx1 in satellite glia completely blunts hyper-
sensitivity, while silencing Panx1 expression in sensory 
neurons reduces baseline sensitivity and hypersensitivity 
duration. The role of Panx1HCs in pathological orofacial 
pain might involve the increased release of the algogenic 
mediator ATP and cytokines [151]. Since as discussed, 
the interaction between P2X7Rs and Panx1HCs amplifies 
the nociceptive entry, we might speculate that this could 
represent a defense mechanism to enhance alert about the 
presence of a noxa. Finally, the contribution of Panx1HCs 
in nociceptive processing and pathological chronic pain 
points at this protein as a promising target for new thera-
peutic strategies [152].

Homeostatic role of the purinergic ATP/
P2X7R pathway and Panx1HCs: modulation 
of presynaptic strength under chronic 
inactivity

Homeostatic synaptic plasticity (HSP) is a form of plasticity 
displayed with the aim to stabilize the activity of neural cir-
cuits in response to chronic perturbations that can lead to irre-
versible damage. Compensatory mechanisms involve changes 
in pre- and postsynaptic strength and/or intrinsic neuronal 
excitability [159–161]. Consistent with a role of gliotrans-
mission in modulating basal synaptic strength, molecular 
mechanisms underlying neuron-glia bidirectional communi-
cation in PSH have been also described. Indeed, studies in 
hippocampal dissociated and entorhino-hippocampal slice 
cultures showed that tumor necrosis factor alpha (TNFα) is 
required for a postsynaptic form of HSP known as synaptic 
scaling [162–165]. Moreover, the role of TNFα in postsyn-
aptic homeostatic plasticity has been described for different 
neural functions including developmental plasticity, diverse 
addiction models, and response to psychiatric drugs [166].

A recent study using hippocampal dissociated cul-
tures has identified a pivotal role for gliotransmission 
in the compensatory adjustment of presynaptic strength 
upon chronic TTX exposure [99]. Evidence showed that 
the compensatory increase in the abundance of synaptic 
vGlut1 requires glial-derived ATP, astrocytic Cx43HCs, 
neuronal Panx1HCs, and presynaptic P2X7Rs, as sug-
gested by blocking experiments using specific antago-
nists. How may this homeostatic modulation occur? The 
precise relationship between these molecular players is 
the aim of future work, but one possible scenario is that, 
upon chronic activity blockade, neurons reduce the release 
of glutamate, which is sensed by astrocytes, leading to a 
sustained opening of Cx43HCs and thus enhancing ATP 
release. Acting as a gliotransmitter, ATP activates presyn-
aptic P2X7Rs, which are  Ca2+-permeable channels in a 
voltage-independent manner [101, 167, 168]. Interestingly, 
by using a  Ca2+ reporter targeted to presynaptic terminals 
of hippocampal dissociated neurons, Zhao and colleagues 
showed that adaptation to chronic inactivity involves an 
increase in presynaptic  Ca2+ in response to an action 
potential [169]. In this sense, another study performed in 
cortical dissociated neurons showed an extensive molecu-
lar remodeling of the presynapse upon chronic inactiv-
ity, with significant changes in the amount of different 
presynaptic proteins, such as Cav2.1 and P/Q-type  Ca2+ 
channels [170], suggesting that the increase in presynaptic 
 Ca2+ upon inactivity could be due to the rise in the abun-
dance of these channels. Interestingly, a more recent study 
found that low voltage–threshold T-type  Ca2+ channels 
participate in the homeostatic modulation of excitability 
and integrative properties in hippocampal dissociated and 
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organotypic slice cultures upon chronic TTX application 
[171]. On the other hand, the data shown by Rafael and 
colleagues opens up the possibility that the increase in 
presynaptic  Ca2+ upon chronic inactivity could be, at least 
in part, mediated by P2X7Rs. This seems to be due more 
to an enhanced activation and prolonged P2X7 channel 
opening, than to an increase in the presynaptic amount 
of these receptors upon chronic inactivity [99]. This is 
suggested by immunocytochemistry studies where the 
distribution and abundance of presynaptic P2X7Rs were 
not affected upon chronic TTX treatment, suggesting that 
the availability of these channels is not modified due to 
HSP [99]. Interestingly, neuronal Panx1HCs are suggested 
to cooperate with presynaptic P2X7Rs in the compensa-
tory adjustment of presynaptic strength [99]. Again, the 
abundance of Panx1HCs seems not to be affected upon 
chronic inactivity. In agreement with this and taking into 
account the documented interaction between P2X7Rs and 
Panx1HCs, it is tempting to hypothesize that chronic inac-
tivity triggers the release of ATP by astrocytes, activat-
ing presynaptic P2X7Rs, increasing the entrance of  Ca2+ 
to the presynaptic terminal, and activating presynaptic 
Panx1HCs. These channels may cooperate with P2X7Rs 
by increasing both the release of ATP (and potentiated 
P2X7R activation) and the entrance of  Ca2+ to the presyn-
aptic terminal by a positive feed-forward loop (Fig. 1). 
The precise functional crosstalk between these molecular 
components upon chronic inactivity awaits further stud-
ies. Thus, understanding the cell-specific mechanisms 
that control presynaptic P2X7Rs and Panx1HC function 

and interactions will enrich our knowledge about synaptic 
transmission.

Concluding remarks

Since the discovery of ATP as a transmitter, our knowledge 
about the role of this nucleotide and the purinergic receptors, 
particularly P2X7Rs, in the modulation of synaptic strength 
and plasticity has increased significantly. Purinergic signal-
ing has a crucial role in coordinating the molecular interac-
tion between the components of the tripartite synapse and 
thus modulating presynaptic strength, and much progress has 
been made in how this interaction impacts neuronal physiol-
ogy under basal and pathological conditions. On the other 
hand, Panx1HCs have emerged as important modulators of 
synaptic function under basal and activity-dependent condi-
tions. Thus, we may speculate that the strong influence of 
P2X7Rs and pannexons in presynaptic function could rely on 
their functional interaction, which could be based on specific 
features that both channels share. For instance, P2X7Rs and 
Panx1HCs are both active under resting membrane potentials 
and after presynaptic depolarization. Also, the extracellular 
concentration of ATP fine-tunes their activation and thus 
membrane permeability. However, the precise mechanisms 
underlying their interaction need to be elucidated. Hence, 
deciphering the cell- and tissue-specific mechanisms sustain-
ing the linking between P2X7Rs and Panx1HCs under certain 
conditions will be relevant to go deep in understanding syn-
apse physiology in both health and disease.

AMPAR
NMDAR

P2X7R Panx1HC
Cx43HC

Presynapse

Postsynapse

Basal ac�vity Chronic inac�vity

. . . . . . .. .. . ..
.. . .. . .. . . ... . .. ... .
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Neuronal-derived ATP
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Fig. 1  P2X7Rs and Panx1HCs modulate presynaptic homeostatic 
plasticity: hypothetical pathway. Upon chronic inactivity, astrocytes 
sense the reduction of glutamate concentration at the synaptic cleft 
and, consequently, increase the amount of ATP released by Cx43HCs. 
Glial-released ATP activates presynaptic P2X7Rs, enhancing the 
amount of  Ca2+ entering to the terminal and neurotransmitter release 

probability. Concomitantly, the increase in presynaptic  Ca2+ activates 
neuronal Panx1HCs and thus ATP release, strengthening the activa-
tion of P2X7Rs by a positive feedback loop and promoting the com-
pensatory increase in presynaptic function upon synaptic activity 
blockade
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