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Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of 
these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified 
according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled 
receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern 
of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-
inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating 
levels of prostaglandin  E2  (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by 
activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between  PGE2 and P2Y receptors 
on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a 
P2Y-dependent increase in calcium is blunted by  PGE2 whereas, under these conditions, macrophages exhibit reduced migratory 
capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
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MyD88  Myeloid Differentiation Primary Response 88
NLRP3  NLR Family Pyrin Domain Containing 3
NF-κB  Nuclear Factor κB
PAMPs  Pathogen-Associated Molecular Patterns
PL  Phospholipase
PG  Prostaglandin
PGE2  Prostaglandin  E2
EP  Prostaglandin  E2 Receptor
PKC  Protein kinase C
PKD  Protein kinase D
P2  Purinergic Receptors
TLR  Toll-Like Receptor

Inflammation specificities and factors 
involved

The regulation of the inflammatory response remains a 
central aspect in the understanding of many pathological 
processes [1–6]. The three phases that characterize inflam-
mation, i.e., initiation, extension, and repair/resolution, are 
controlled by a large number of factors with specific tempo-
ral and intensity patterns [7, 8]. These profiles vary between 
tissues and species, defining the course of the pathologi-
cal process and the impact on the organisms [9]. However, 
despite the selectivity of many inflammatory reactions, there 

is an overlap in the molecular pathways involved. This diver-
sity in the interactions between them defines specific fates 
in their control and the possible therapeutic interventions 
[10–12]. An example of this is the involvement of  P2X7 
receptor signaling in the activation of the NLRP3 inflam-
masome, which requires the involvement of an additional 
priming signal from the TLR2/4 pathway [13–17].

It is worth mentioning that the production of different 
bioactive lipids, such as prostanoids, is a common determi-
nant in the progression of inflammatory processes (Fig. 1) 
[18–20]. The most abundant prostanoids from pro-inflam-
matory macrophages are synthesized after the expression 
of cyclooxygenase 2 (COX-2), which catalyzes the first 
step in the biosynthesis of prostanoids from arachidonic 
acid [21–28]. The end products of the COX-2 pathway are 
the result of additional modifications via the action of cell-
specific prostaglandin synthases (Fig. 2) [29]. COX-2 is 
encoded by the PTGS2 gene in humans (Ptgs2 in rodents) 
and it is expressed in the early stages of inflammation. The 
transcription of the PTGS2 gene is extensively induced in 
many inflammatory cells and tissues, except in hepatocytes, 
where only after preliminary pathological changes (i.e., 
liver regeneration after partial hepatectomy) is the ability 
to express COX-2 recovered [26, 30, 31]. In the liver, this 
regulatory bias is only associated with hepatocytes, since 
Kupffer cells retain this pro-inflammatory activation [28, 
32–37]. This interesting mechanism reflects the fact that, 
under physiological conditions, the portal blood contains 
pathogen-associated molecular patterns (PAMPs) and dam-
age-associated molecular patterns (DAMPs), which do not 
activate COX-2 expression through cell surface receptors 
that recognize PAMP or DAMP [38, 39].

Dual role of prostaglandins in the regulation 
of inflammation

The prostanoids synthesized by the COX-2 pathway can act 
in opposite ways: they can exert pro-inflammatory actions, 
but they can also promote and activate anti-inflammatory 
mechanisms [40–43]. An example of this dual role is  PGE2, 
which is one of the major products of the COX-2 path-
way [44–50]. Other prostaglandins, such as prostaglandin 
15-deoxy-Δ12,14-prostaglandin  J2  (15dPGJ2) are potent anti-
inflammatory molecules because their chemical structure 
contains a cyclopentenone motif (due to the presence of 
α,β-unsaturated carbonyl groups). This chemical structure 
allows for non-enzymatic reactions with cysteine residues 
in proteins, via Michael addition modifications (Figs. 1 
and 2) [40, 51–53]. These Michael adducts have an impact 
on the enzyme activity and function of different proteins 
involved in the control of the inflammatory processes, such 
as the transcription factor NF-κB, which exerts an important 

Fig. 1  Time course of the serum levels of  PGE2 and 15-deoxy-
Δ.12,14-PGJ2  (15dPGJ2) in mice injected intraperitoneally with LPS. 
12-month-old male mice (n = 7) received 1 mg/kg body weight of E. 
coli LPS (serotype 0055:B5) and the serum levels of early pro-inflam-
matory  (PGE2) and anti-inflammatory  (15dPGJ2) prostaglandins 
were determined using specific ELISA kits. The graph represents the 
mean values and shows a minimal overlapping of both prostaglandins 
(unpublished results from the authors). The structures of  PGE2 and 
 15dPGJ2 are shown.  15dPGJ2 has a cyclopentenone structure which 
is responsible for its reactivity to perform Michael addition reactions 
on thiol groups from amino acids (a carbonyl group surrounded by α, 
β instaurations on the cyclopentenone ring; yellow stars and circle)
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activation of the pro-inflammatory response, and is inhibited 
by Michael addition of  15dPGJ2 [54]. In contrast, transcrip-
tion factors that repress the progression of inflammation, 
such as the peroxisomal proliferator-activated receptor γ 
(PPARγ) are activated by  15dPGJ2 by this post-translational 
modification via Michael addition [51, 55].

Mechanisms of action of prostaglandin  E2

In recent years, several groups have been interested in 
the role of prostanoids in the regulation of the inflam-
matory process. Our group focused on studying the 
effect of  PGE2 accumulation at sites of inflammation, 

Fig. 2  Schematic representation of the synthesis of PGs and pro-
resolving lipids from arachidonic acid. Cyclooxygenases (COX-1 
and COX-2) and lipoxygenases (5-LOX and 15-LOX) are the initial 
enzymes that direct the biotransformation of the arachidonic acid 
after activation of plasma membrane phospholipases. Red names/
lines, the main pro-inflammatory molecules; blue names/lines, the 

main anti-inflammatory/pro-resolving molecules; in black the mol-
ecules that play a dual role in inflammation. TX, thromboxane; LT, 
leukotriene; LX, lipoxin;  PGF2, prostaglandin  F2α (also known as 
dinoprost);  PGI2, prostacyclin; 15S-HpETE, 15-hydroperoxyicosa-
5,8,11,13-tetraenoic acid

Fig. 3  Signaling in response to  PGE2 biosynthesis. High throughput 
biosynthesis of  PGE2 is produced after the expression of COX-2 and 
activity of the prostaglandin E synthase.  PGE2 can be exported by the 
cells and act as an agonist of EP1 to EP4 receptors. Each EP receptor 
is coupled to specific G proteins that mediate their action. In addition 

to these plasma membrane receptors,  PGE2 can be incorporated into 
the cell via the PG transporter (PGT). In  PGE2 synthesizing cells, the 
intracellular presence of this PG can act on EP receptors present at 
the nuclear membrane. However, the role of these nuclear EP recep-
tors and the mechanisms of signaling are poorly characterized
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using cells and animal models deficient in COX-2 or 
expressing a transgene encoding COX-2, or by admin-
istering selective COX-2 inhibitors (called generically 
coxibs [56–58]), but maintaining the activity of COX-1, 
an enzyme that contributes to the synthesis of pros-
tanoids in healthy conditions [40, 45, 50, 59, 60].

Regarding the mechanism of action,  PGE2 binds to and 
activates specific G protein-coupled membrane receptors 
called E-type  PGE2 receptors (EP receptors; Fig. 3). Four 
different receptors, EP1 to EP4, have been identified from 
a biochemical and pharmacological point of view [44, 61]. 
Interestingly, these receptors are not exclusively expressed 
on the plasma membrane, but also on other intracellular 
membranes, such as the nuclear membrane [62]. Activation 
of EP1 promotes the mobilization of intracellular  Ca2+ stores 
through activation of the phosphoinositide 3-kinase pathway. 
This transient change in cytoplasmic  Ca2+ has an impact 
on ionic fluxes, cellular metabolism and organelle function 
(i.e., mitochondria), and activates  Ca2+-dependent enzymes, 
such as various isoforms of protein kinase C (PKC). There-
fore,  PGE2 induces  Ca2+- and PKC-dependent effects in 
cells expressing EP1 [63, 64]. A relevant fact of EP1 is that 
the expression profile in cells is different between humans 
and rodents, which makes it difficult to translate the results 
between different species [65].

The binding of  PGE2 to EP2 and EP4 receptors promotes 
the dissociation of the Gαs/Gβγ complex from the G pro-
tein-coupled receptor. The Gαs subunit stimulates adenylate 
cyclase activity, which increases the intracellular levels of 
cyclic AMP (cAMP) and, therefore, activates the protein 
kinase A-dependent pathway [61]. However, EP2 and EP4 
have partially non-overlapping functions: EP2 is mainly 
involved in smooth muscle cell relaxation, whereas EP4 acti-
vation exhibits pro- and anti-inflammatory functions ranging 
from vasodilation to angiogenesis, and metastasis progression 
[66, 67]. Unlike EP2/EP4, activation of EP3 leads to a reduc-
tion in intracellular cAMP levels [68]. These EP receptors are 
expressed on various cell types and provide the basis for thera-
peutic interventions, using selective agonists and antagonists. 
However, in addition to EP-mediated effects,  PGE2 can exert 
other actions, either by accessing the cytoplasm or through 
binding to additional receptors, for example through puriner-
gic signaling, although these mechanisms are less character-
ized, which explains the effects independent of pharmacologi-
cal targeting of the EP receptors [69].

Purinergic signaling in inflammation

Inflammation involves a large number of molecules, includ-
ing cytokines, chemokines, prostanoids, and extracellular 
nucleotides that are released during inflammation and acti-
vate myeloid and lymphoid immune cells [5, 48, 70–73]. 

Extracellular nucleotides (i.e. ATP and UTP) have been 
recognized as a new class of innate immune regulators that 
act through the P2 receptors and modulate the inflamma-
tory reaction [74–78]. These extracellular nucleotides, which 
are released at sites of inflammation due to infection or cell 
damage, contribute to immune cell activation, including 
cytoskeleton reorganization, cell migration, phagocytosis 
and exocytosis [72]. Extracellular nucleotides also exert 
tissue-specific actions. For example, in the brain, they have 
been associated with different pathologies affecting immune 
cells (microglia), such as neuropathic pain; indeed, target-
ing extracellular nucleotide signaling is a pharmacological 
therapeutic tool that is being investigated in clinical trials 
[76, 79–83]. Purine and pyrimidine nucleotide receptors are 
involved in many neuronal and non-neuronal mechanisms: 
in short-term signaling, they are involved in the regulation 
of neurotransmission, neuromodulation of inflammation 
and neurosecretion, promotion of platelet aggregation and 
vasodilation; and in long-term actions, they are associated 
with cell proliferation, differentiation, motility, cell-death in 
development and regeneration.

Currently, the accepted P2Y receptors are  P2Y1,  P2Y2, 
 P2Y4,  P2Y6,  P2Y11,  P2Y12,  P2Y13 and  P2Y14 [84]. Among 
the metabotropic P2Y receptors,  P2Y2,  P2Y4 and  P2Y6 are 
activated by uridine and adenine nucleotides [72, 74, 75, 78] 
and are coupled to phospholipase C (PLC) activation. As a 
consequence of the release of nucleotides into the extracellu-
lar medium, the agonistic action on P2Y receptors promotes 
an increase in the intracellular concentration of diacylglyc-
erol (DAG) and inositol triphosphate (IP3), which induces 
the release of calcium from intracellular stores and the acti-
vation of several signaling pathways [85, 86]. P2Y recep-
tors are expressed on various cell types and are functionally 
relevant in the activation of resident and circulating immune 
cells [5, 24, 71, 74, 87–90].

Crosstalk between  PGE2 and P2 receptors 
in macrophages

The interaction between purinergic signaling and prostanoids 
has been described in different cell types. In macrophages, 
exposure to UTP increases the expression of COX-2, and 
nitric oxide synthase 2 (NOS2) under pro-inflammatory con-
ditions [88, 91]. Macrophages can be polarized into pro-
inflammatory (‘classically activated’ or M1, using microbial 
stimuli such as LPS, or cytokines such as IFNγ) or anti-
inflammatory/pro-resolving phenotypes (‘alternatively acti-
vated’ or M2, using IL4 and/or IL13 as stimuli) [92–103]. 
Because macrophages can adopt different functional profiles 
this crosstalk between PGs and P2 signaling can contribute 
to the polarization of these cells. Therefore, the activation of 
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P2 receptors helps to modulate the function of macrophages 
in the context of the environmental signals that govern the 
fate of the inflammatory response.

The presence of locally elevated concentrations of extra-
cellular ATP promotes the activation of the  P2X7 receptor, 
while UTP and UDP, and lower concentrations of ATP act 
mainly through  P2Y2,  P2Y4 and  P2Y6, respectively [77, 78, 
85, 104–106]. Nevertheless, the contribution of  P2Y2/P2Y4 
or  P2Y4/P2Y6 heterodimers can also be considered in this 
regulatory hub [107, 108].

The signaling through the  P2X7 receptor in macrophages 
is by far the most studied purinergic pathway. This is 
because  P2X7 receptor activation participates in the regula-
tion of several stress signal pathways and, more importantly, 
activates the NLRP3 inflammasome cascade [109–111]. It is 
well known that  P2X7 activation by ATP contributes to the 
regulation of the innate response in macrophages: it favors 
the host defense against intracellular pathogens, an effect 
that is triggered by the release of reactive oxygen and/or 
nitrogen species [112, 113]. In addition to this, the activa-
tion of the NLRP3 pathway promotes the maturation of 
pro-inflammatory cytokines (i.e., IL-1β and IL-18), and an 
increase in the  PGE2 levels. The pathways involved include 
a rise in  Ca2+ influx and the activation of the MAP kinase 
signaling pathways [13, 16, 111].

Interestingly, the crosstalk between P2Y receptors and 
 PGE2 has also been reported in macrophages from  P2X7 
receptor-deficient mice, or after inhibition of the receptor 
with Brilliant Blue G as well as with the receptor antagonist 
A 438079, which indicates that the interaction between P2Y 
receptors and  PGE2 is independent of  P2X7 receptors [24, 
71, 88, 114, 115]. Furthermore, macrophages challenged 
with specific agonists of the  P2X7 receptors did not show 
the inhibitory effect of  PGE2 on  Ca2+-mobilization [71]. 
Regarding the role of the polarization phenotype of mac-
rophages on the expression levels of purinergic receptors, 
M1 and M2 differentiated cells exhibit similar values, both 
in RNA and protein levels. However, pro-inflammatory mac-
rophages display rapid and time-dependent repression of the 
levels of the downstream receptor-associated phospholipase 
C β1 and β2 isoenzymes, which contribute to the reduced 
signaling dependent on P2Y receptor activation [116, 117].

The effect of extracellular ATP on the progression of 
the anti-inflammatory phenotype in macrophages does not 
involve P2Y/P2X receptor-mediated processes but rather 
depends on pyrophosphate ATP bonds. The pathways 
involved promote a reorganization of the actin cytoskeleton 
that favors the clustering of these actin filaments, which 
ultimately contribute to the clustering and organization of 
the NLRP3 inflammasome complex. In addition, the par-
ticipation of ectonucleotidases seems to contribute to the 
transition of macrophages from a pro-inflammatory (M1) 
to an anti-inflammatory (M2) phenotype. This transition is 

believed to facilitate the resolution of the inflammatory reac-
tion accomplished by macrophages [118–120].

Interestingly, unlike naïve and M2 polarized mac-
rophages, M1 cells do not display the inhibitory effect of 
 PGE2 on  Ca2+ mobilization [24, 71]. These polarization 
specificities were observed in both rodent and human mac-
rophages. As for the mechanism by which M1 macrophages 
fail to show this  PGE2-dependent P2Y desensitization, it 
has been shown to occur at least two hours after the pro-
inflammatory challenge. This suggests that this is not the 
result of the rapid signaling elicited after TLR4 and/or pro-
inflammatory cytokine receptors engagement, but rather is 
due to secondary events in the signaling process. From a 
mechanistic point of view, the sustained response to P2Y 
receptors in the presence of  PGE2, as occurs in M1 mac-
rophages ensures the activity of the purinergic signaling in 
the early steps of inflammation [71, 88, 91, 115, 121]. As an 
extension, in platelets, a cross-desensitization between ADP 
and the thromboxane receptor signaling has been reported 
[122, 123]. All of these interactions play an important role 
in several inflammatory and degenerative disorders, such 
as multiple sclerosis, amyotrophic lateral sclerosis and 
Alzheimer´s disease [124–126]. Indeed, in these patholo-
gies, extracellular ATP exerts pro-inflammatory actions that 
cause the release of cytokines and the production of PG. 
Interestingly, this modulation could play an important role 
in the anti-inflammatory effects of  PGE2.

A relevant aspect in this context of the heterogeneity of 
P2Y/P2X receptors is the possible crosstalk between the 
P2X and P2Y receptor families [127–129]. An example is 
the synergism between both families in the activation of 
dendritic cells, which are necessary for the efficient initia-
tion of immune responses [130]. In addition to antigens, the 
presence of P2 agonists released by necrotic cells results in 
a synergistic activation and maturation of dendritic cells, 
and therefore, in more efficient signaling in T cells, leading 
to increased expression of pro-inflammatory mediators and 
adhesion molecules.

Molecular mechanisms involved in  PGE2‑P2Y 
receptor crosstalk

The pathways involved in the crosstalk between P2Y recep-
tors and  PGE2 on macrophages have been established using 
biochemical (inhibitors and activators of signal transduc-
tion pathways), pharmacological (mainly through the use of 
agonists and antagonists of the EP and P2Y receptors) and 
genetic (cells lacking  P2X7 receptor or COX-2; expressing 
a COX-2 transgene or expressing different constructs of the 
proteins that participate in the signal-transduction pathways) 
approaches [24, 71, 88, 115, 131, 132]. Based on the data 
from these different strategies it was concluded that PKD1 
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phosphorylation at S916 is a necessary condition to suppress 
 PGE2-dependent UTP-mediated  Ca2+-mobilization. In con-
trast, selective inhibition of PKD1 is sufficient to attenuate 
the effect of  PGE2 on P2Y signaling. PKDs are ubiquitously 
expressed and regulate various cellular processes, includ-
ing oxidative stress, gene expression, cell survival, vesicle 
trafficking and, interestingly,  P2X7 signaling, although their 
precise function in macrophages remains poorly character-
ized. Analysis devoted to identifying the PKD isoform(s) 
involved in this P2Y crosstalk showed that PKD1, which is 
regulated by extracellular ligands in macrophages, is spe-
cifically targeted [24, 71]. Furthermore, overexpression of 
PKD1 reduced the effect of UTP on  Ca2+ mobilization but 
when a vector encoding a catalytically inactive kinase of 
PKD1 was expressed, the response to UTP persisted and the 
inhibitory effect of  PGE2 was abolished (Fig. 4) [71].

In fact, an association of PKD1 with TLR9 and, in gen-
eral, with the MyD88-dependent pro-inflammatory innate 
immune responses has been described [133, 134]. Addition-
ally, PKCδ activation has been reported to act as an upstream 
PKD1 activation step. However, transfection of macrophages 
with constitutively active PKCδ constructs did not mimic the 
effects of  PGE2 on UTP-dependent  Ca2+ mobilization. How-
ever, expression in macrophages of a constitutively active 
PKCε, but not of other classical, new, or atypical PKCs, was 
sufficient to mimic the effects of  PGE2 on P2Y receptors in 
terms of  Ca2+ mobilization [71].

Regarding the role of macrophage polarization in 
this  PGE2-P2Y crosstalk, naïve and anti-inflammatory/
pro-resolving (M2) macrophages show this inhibitory 

interaction, but it was not observed in those that were 
polarized to M1 pro-inflammatory cells. Under these M1 
conditions,  PGE2-dependent phosphorylation of PKD1 at 
S916 is not observed, while naïve and M2 macrophages 
exhibit this PKD1 phosphorylation [24, 71]. This phos-
phorylation of PKD1 at S916 has been reported to corre-
spond to a fully activated PKD1. Moreover, activation of 
PKD1 has been associated with the response to upstream 
PKCs and/or activation of G-proteins and various receptor-
associated tyrosine kinases [135]. The  PGE2-dependent 
activation of PKD1 promotes DAGs release not only at 
the plasma membrane level but also from other compart-
ments, such as the endoplasmic reticulum and the Golgi 
apparatus. Interestingly, PKD activation plays a role in 
the crosstalk between P2Y and P2X receptors (Fig. 4). In 
line with this,  P2X4 receptor signaling favors the activa-
tion of phospholipase A2 (PLA2) and, in turn, the supply 
of substrates for COX-2 and, therefore, the increase in the 
release of  PGE2 that participates in the intercellular cross-
talk between P2X and P2Y receptors [107, 136].

The regulation of P2Y activity in macrophages, 
which involves the participation of  PGE2, has functional 
implications in the basic biological responses of these 
cells, such as metabolic activation and migration. In 
this regard, cell migration contributes to normal devel-
opment and differentiation. Recent data indicate that 
extracellular nucleotides can regulate the migration 
and attachment activities of “professional phagocytes” 
(macrophages, neutrophils and microglia) and other cell 
types (i.e., fibroblasts, endothelial cells, neurons and 

Fig. 4  Crosstalk between  PGE2 and P2Y receptors in macrophages. 
Pro-inflammatory macrophages express high levels of COX-2 that 
promote a rapid increase in  PGE2 synthesis and release. In pro-
inflammatory macrophages (M1-type),  PGE2 is unable to affect the 
signaling of P2Y receptors. However, naïve, resting, or alternatively 
activated macrophages (M2-type) exhibit an impaired P2Y receptor 
signaling that results in a blockade of  Ca2+-dependent mobilization. 
This inhibitory effect of  PGE2 depends on the activities of PKD1 

and PKCε and interferes with the different pathways modulated 
by the transient increase in  Ca2+ due to P2Y agonists. In cerebellar 
astrocytes the EP3 receptor is also involved. Red lines and arrows, 
pro-inflammatory pathways; blue lines and arrows, resting and anti-
inflammatory pathways. PKC, protein kinase C; PKD, protein kinase 
D; PKD-DN, a dominant-negative form of PKD; AKT, protein kinase 
B; P, phosphorylation
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keratinocytes) [137–139]. From a functional point of 
view, it has been shown that  PGE2 inhibits P2Y-depend-
ent macrophage migration, even in the presence of other 
chemoattractants. These chemotactic actions are com-
mon for several P2Y receptors, such as  P2Y2,  P2Y4, and 
 P2Y6 [140–142]. These observations are consistent with 
the fact that P2 receptors participate in a wide range of 
phagocytic and chemotactic actions, as described for 
 P2Y2,4,6 receptors in the phagocytosis of apoptotic bod-
ies by microglial cells. In addition to these signaling 
mechanisms, the EP3 receptors have been involved in 
the impairment of  Ca2+-mobilization by  PGE2 in cer-
ebellar astrocytes [88].

Interestingly,  PGE2 promotes the internalization of  P2Y4 
in fibroblasts transfected with COX-2, an effect that is sup-
pressed after the inhibition of COX-2 with the coxib DFU 
[24]. Moreover, the blockade in  Ca2+-mobilization by  PGE2 
has an important consequence in terms of the activation of 
different signaling pathways in fibroblasts, including acti-
vation of various PKCs and the energetic metabolism via 
activation of AMP-dependent protein kinase (AMPK) and 
inhibition of acetyl-CoA carboxylase (ACC) [24, 71]. Again, 
this regulatory network is suppressed when fibroblasts are in 
an inflammatory environment. Recent trends in tissue repair 
of inflammatory lesions have focused on the interaction 
between stromal cells, such as macrophages and fibroblasts. 
Based on these observations, it can be proposed that target-
ing the stromal microenvironment is likely to be an impor-
tant and promising strategy for future anti-inflammatory and 
pro-resolution therapies.

In summary, the translation of basic studies on the inter-
actions between prostaglandin synthesis and the signaling 
through P2Y and P2X receptors in the immune system to 
clinical trials can result in the development of new therapeu-
tic options to modulate the course of inflammatory diseases.
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