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Abstract
Since the discovery of ATP as an extracellular signalling molecule in 1972, purinergic signalling, mediated by extra-
cellular purines and pyrimidines has been identified in virtually all mammalian tissues and is implicated in regulating 
fundamental cellular processes. In recent years, there has been an increasing focus on the pathophysiology and poten-
tial therapeutic interventions based on purinergic signalling. A vast range of compounds targeting purine receptors are 
in clinical development, and many more are in preclinical studies, which highlights the fast growth in this research 
field. As a tribute to Professor Geoffrey Burnstock’s legacy in purinergic signalling, we present here a brief review of 
compounds targeting purine receptors that are in different stages of clinical trials. The review highlights the 50-year 
journey from basic research on purinergic receptors to clinical applications of therapies targeting purine receptors.
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The concept of purinergic signalling, first proposed in 
1972 [1] refers to the role of extracellular nucleosides 
and nucleotides, most notably adenosine and adenosine 
5′-triphosphate (ATP), as signalling molecules. It was ini-
tially viewed that these molecules act as neurotransmitters, 
but subsequent studies extended their roles to the regula-
tion of numerous cellular processes, including cell prolif-
eration, differentiation, migration, and apoptosis [2]. Since 
1972, four subtypes of P1 (adenosine) receptors, seven 
subtypes of ATP-gated ion channels (P2X receptors) and 
eight subtypes of P2Y G protein-coupled receptors have 
been cloned and sequenced [3, 4]. An increasing focus on 

the role of these receptors in disease and their therapeutic 
potential as pharmacological targets for drug development 
has been apparent in recent years [4, 5]. Several decades 
following the early pioneering work of Professor Geoffrey 
Burnstock, the therapeutic potential of purinergic signal-
ling is widely recognised, and translational studies have 
enabled therapeutic compounds to reach clinical trials. As 
a tribute to Professor Geoffrey Burnstock, we have pre-
pared this brief review of compounds now in Phase I to 
Phase IV clinical trials and presented several case studies 
to describe the translational journey of therapies targeting 
purine receptors to clinical practice.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11302-022-09896-w&domain=pdf
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Studies and reports for inclusion in this review were 
selected according to the criteria outlined below. An 
overview of therapies targeting purine receptors was 
provided by 110 articles containing 18 reviews, 86 
original research papers, two expert opinion papers, one 
research abstract, one editorial paper, and two commen-
tary papers. Comparative and randomized controlled tri-
als, including clinical trials from Phase I to Phase IV 
and prospective studies, were included in this review. 
Three databases were used in the search: the National 
Institute of Health (NIH) National Library of Medicine 
Registry [6], the European Clinical Trials Registry [7] 
and the MEDLINE database (as of 5 March 2022). Key 
search words were  P2X1,  P2X2,  P2X3,  P2X4,  P2X5,  P2X6, 
 P2X7 receptors,  P2Y1,  P2Y2,  P2Y4,  P2Y6,  P2Y11,  P2Y12, 
 P2Y13,  P2Y14 receptors, adenosine  A1 receptor,  A2A 
receptor,  A2B receptor,  A3 receptor, and the individual 
drug compound names. A total of 669 clinical studies 
were identified after the initial search. No restrictions 
were applied on the date of study commencement, com-
pletion, or status. The clinical trial identification num-
ber, stage of development (Phase I–IV), target disease/
conditions, trial status, availability of results, statistical 
significance for the indicated primary outcome measure, 
completion of study dates, and publications associated 

with the trial were recorded (Tables 1, 2, 3). Where the 
results were published, only articles reported in English 
were included as references.

Compounds in clinical trials

Data from the clinical registries showed that 38 compounds, 
all agonists and antagonists targeting purine receptors, are 
currently in clinical development (Tables 1, 2, 3). Four com-
pounds target the  P2X3 receptor, and five the  P2X7 receptor 
(Table 1). For P2Y receptors, three compounds target the 
 P2Y2 receptor and different generations of the same com-
pound target the  P2Y12 receptor (Table 2). Six compounds 
target the  A1 receptor, ten compounds the  A2A receptor, one 
the  A2B  receptor, and one the  A3 receptor (Table 3, Fig. 1A). 
These compounds are in different stages of clinical trial. 
In Phase I, eleven compounds target  P2X7,  P2Y2,  A2A, and 
 A2B receptors. Seventeen compounds targeting  P2X3,  P2X7, 
 P2Y12,  A1,  A2A, and  A3 receptors are in Phase II. Only three 
compounds are in Phase III, targeting  A1,  A2A, and  A3 recep-
tors. Six ligands targeting  P2Y2,  P2Y12 and  A2A receptors 
are in Phase IV under post-approval surveillance evalua-
tion (Fig. 1A). The greater number of compounds target-
ing the  A2A and  P2X7 receptors highlights their potential 

Table 1  Current registered clinical trials involving P2X receptor agonists/antagonists

Target Compound/ Drug Mode of 
Action

Condition Latest Phase 
(I-IV)

Trial Identifier Status Date Completed Outcome [Ref]

P2X3 MK-7264/AF-219 
(Gefapixant)

Antagonist Chronic cough II NCT01432730 Completed February 2013 Significant [8]
NCT02477709 Completed August 2015 Significant [6]
NCT02502097 Completed July 2016 Not Significant [9]

BAY1817080 
(Eliapixant)

Antagonist Drug interactions I NCT04252300 Completed December 2020 N/A [6]
Chronic cough II NCT04562155 Completed July 2021 N/A [10]
Endometriosis II NCT04614246 Completed May 2022 N/A [6]

S-600918 Antagonist Chronic cough II NCT04110054 Completed December 2020 N/A [6]
BLU-5937 Antagonist Refractive chronic cough II NCT04678206 Completed November 2021 N/A [6]

Chronic pruritus NCT04693195 Completed October 2021 N/A [6]
P2X7 BIL010t * (BSCT 

10%)
Antibody Basal cell carcinoma I NCT02587819 Completed April 2014 N/A [11]

JNJ-54175446 Antagonist Major depressive disorder, 
Inflammation

I NCT03088644 Completed November 2017 N/A [6]

JNJ-55308942 Antagonist I NCT03437590 Completed October 2018 N/A [6]
CE-224,535 Antagonist Rheumatoid arthritis IIa NCT00628095 Completed February 2009 Not signficiant [12]
GSK1482160 Antagonist Inflammatory pain I NCT00849134 Completed April 2009 N/A [6]

(Significant) Indicates that the study has been successfully completed and primary outcomes are statistically significant (P < 0.05), (Not Significant) 
indicates that the study has been successfully completed, but primary outcomes are not statistically significant, (N/A) indicates that the study has 
been completed, but results have not been published, or primary outcomes are unknown. *BLT010t is a polyclonal sheep antibody that binds to 
the P2X7 receptor but is not an agonist or antagonist [11]
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Table 2  Current registered clinical trials involving P2Y receptor agonists/antagonists

Target Compound/ 
Drug

Mode of 
Action

Condition Latest 
Phase 
(I-IV)

Trial Identifier Status Date Completed Outcome [Ref]

P2Y2 Pyridoxine  
hydrochloride

Antagonist Regulation of blood flow I NCT03738943 Completed June 2021 N/A [6]

Pyridoxal-5- 
Phosphate

Antagonist Regulation of blood flow I NCT03738943 Completed June 2021 N/A [6]

Diquafosol Agonist Dry eye syndrome/ diabetic dry eye IV NCT04668118 Active N/A N/A [6]
NCT04952987 Recruiting N/A N/A [6]
NCT05193331 Not yet recruiting N/A N/A [6]

P2Y12 Clopidogrel/ 
Ticagrelor/ 
Prasugrel 
+ Aspirin 
(Acetyl 
salicylic acid) 
DAPT with/ 
without an 
underlying 
disease.

Antagonist Coronary artery aneurysm, Acute 
coronary syndrome, cerebral 
aneurysm, endovascular proce-
dures, transient ischemic attack, 
stroke, chronic obstructive 
pulmonary disease, severe aortic 
valve stenosis, transcatheter 
aortic valve implantation

IV NCT02410083 Completed December 2015 N/A [6]
NCT02049762 Completed January 2017 N/A [6]
NCT02049762 Completed January 2017 N/A [6]
NCT04014803 Recruiting N/A N/A [6]
NCT04483583 Recruiting N/A N/A [6]
NCT03581409 Completed January 2021 N/A [6]
NCT04570345 Recruiting N/A N/A [6]
NCT02748330 Completed December 2018 N/A [6]
NCT04484259 Recruiting N/A N/A [6]
NCT02224066 Completed August 2018 Significant [13]
NCT01584791 Completed February 2012 Not significant [14]
NCT02018055 Completed January 2021 Significant [15]
NCT01830491 Completed December 2009 Not significant [16]
2014-003599-21 Completed N/A N/A [7]

III 2015-005630-21 Ongoing N/A N/A [7]
Clopidogrel/ 

Ticagrelor/ 
Prasugrel 
(dosing/ 
comparative/ 
optimization) 
with/ without 
an underly-
ing disease/ 
genotype 
variation.

Antagonist Acute coronary syndrome, symp-
tomatic aortic stenosis with/ 
without an underlying specific 
disease eg. Diabetes mellitus 
type II, chronic kidney disease, 
chronic asthma, migraine, limb 
ischemia, atherosclerosis, Sickle 
cell disease

IV NCT01994941 Completed August 2015 Significant [17]
NCT02618837 Active N/A N/A [6]
NCT02224274 Completed June 2016 Significant [18]
NCT02215993 Completed October 2014 N/A [6]
NCT02060786 Completed June 2013 Significant [19]
NCT02064985 Completed November 2014 Significant [20]
NCT02639143 Completed December 2017 N/A [6]
NCT03387826 Completed January 2019 Not significant [21]
NCT03774394 Recruiting N/A N/A [6]
NCT01587651 Completed February 2013 Significant [6]
NCT02663713 Completed June 2017 N/A [21]
2013-002734-20 Completed October 2020 Not significant [7]
NCT03672097 Completed August 2020 Significant [22]
NCT01603082 Completed June 2014 Significant [23]
NCT01014624 Completed June 2010 Significant [24]
NCT04331145 Completed February 2022 Significant [13]
NCT01706510 Completed April 2014 N/A [6]
NCT01305369 Completed December 2011 N/A [6]
NCT01864005 Completed March 2014 Significant [6]
NCT02054663 Completed February 2015 Non-significant [25]
NCT02065479 Completed April 2019 Significant [26]
NCT01951001 Completed October 2018 Significant [27]
NCT01523366 Completed May 2013 Significant [6]
NCT01523392 Completed September 2013 Significant [28]
NCT02777580 Recruiting N/A N/A [6]
NCT02518464 Completed October 2017 Not significant [29]
NCT03489863 Completed March 2019 Significant [6]
2013-001636-22 Completed May 2017 Significant [30]
NCT04001894 Completed December 2020 N/A [6]
NCT02931045 Completed December 2019 Significant [31]
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Table 2   (Continued)

Target Compound/ 
Drug

Mode of 
Action

Condition Latest 
Phase 
(I-IV)

Trial Identifier Status Date Completed Outcome [Ref]

NCT01765400 Completed December 2015 N/A [6]
NCT01823510 Completed May 2016 Significant [32]
NCT04654052 Recruiting N/A N/A [33]
NCT01365221 Completed January 2014 Not significant [34]
NCT02287909 Completed March 2018 Significant [35]
NCT02505399 Completed May 2018 N/A [6]
NCT02742987 Completed June 2015 N/A [6]
NCT00140465 Completed July 2005 N/A [6]
NCT01950416 Completed December 2014 N/A [6]

NCT01626534 Completed February 2014 N/A [6]
NCT02587260 Completed February 2017 Not significant [36]
NCT02026219 Completed December 2014 N/A [37]
NCT04755387 Recruiting N/A N/A [6]
NCT01463163 Completed April 2012 Not significant [38]
2011-003320-12 Completed March 2013 Significant [7]
2012-002404-41 Ongoing N/A N/A [7]
NCT01789814 Completed July 2014 Significant [6]
NCT01962428 Completed December 2015 N/A [6]
NCT01538446 Completed May 2016 Significant [39]
NCT01957540 Completed December 2015 Not significant [40]
NCT00724880 Completed December 2007 N/A [6]
NCT03462498 Active N/A N/A [41]
NCT03008083 Recruiting N/A N/A [42]
NCT02601157 Recruiting N/A N/A [43]
2012-005514-18 Completed N/A N/A [7]
2021-001418-12 Ongoing N/A N/A [7]

2011-004064-29 Completed February 2013 Not significant [7]

2006-006695-38 Ongoing N/A N/A [7]
2016-004959-80 Ongoing N/A N/A [7]
2014-004238-25 Completed November 2015 Significant [7]

III 2019-002391-13 Ongoing N/A N/A [7]
2020-004887-24 Ongoing N/A N/A [7]
NCT04739384 Recruiting N/A N/A [44]
NCT03357874 Recruiting N/A N/A [21, 45]
NCT03649711 Active N/A N/A [21]
NCT05077683 Recruiting N/A N/A [6]
2015-000850-39 Ongoing N/A N/A [7]

II NCT04766437 Recruiting N/A N/A [6]
2006-002618-37 Completed October 2007 Significant [7]

Clopidogrel/ 
Ticagrelor/ 
Prasugrel + 
opioids

Antagonist ST-Elevation Myocardial  
Infarction

IV NCT03400267 Completed November 2019 N/A [6]
NCT01536964 Completed March 2013 N/A [6]

NCT02217878 Completed June 2015 Significant [46]
2017-002671-26 Ongoing N/A N/A [7]

Prasugrel/ 
Ticagrelor + 
Vorapaxar

Antagonist Myocardial infarction IV NCT02545933 Completed January 2020 Significant [47]

Clopidogrel + 
omeprazole 
and pantopra-
zole

Antagonist Secondary prevention of ischemic 
events and coronary artery stent 
thrombosis.

I NCT01170533 Completed August 2010 Not significant [48]

Cangrelor Antagonist Acute Coronary Syndrome I NCT00696566 Completed March 2008 N/A [6]
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in pharmacotherapy (Table 3). The  A2A and  P2X7 receptors 
have gained more attention, likely due to their involvement 
in inflammatory and immune processes [55]. For example, 
 A2A receptor agonists can suppress peripheral inflammation, 
and antagonists are used as adjuvant treatments for neuro-
inflammatory diseases [54].  P2X3,  P2X4,  P2X7 receptors 
have been implicated in signalling pathways for pathologi-
cal pain [65, 66]. In particular, activation of  P2X3 subtype 
expressed in the central terminals of dorsal root ganglia 
increases nociception by sensitizing nerve fibers associ-
ated with the transmission of pain [65]. Blocking  P2X3 
activities by selective  P2X3 antagonists shows promise in 
reducing pain associated with inflammatory, neuropathic, 
chronic, and cancer-induced conditions in preclinical studies 
[65].  P2X7 receptors have also gained attention due to their 
role in regulating inflammation and the innate and adap-
tive immune responses [67]. Many studies have focused on 
manipulating the relation between  P2X7 receptor activation 
and subsequent release of inflammatory cytokines, which 
can promote cell proliferation or apoptotic cell death [55]. 
For example, the  P2X7 receptor is implicated as a mediator 
of cancer invasion and metastasis; hence, it has been inves-
tigated as a target to inhibit cancer progression [11, 55]. As 
inflammation and immune processes are involved in most 
pathologies, sixteen different conditions were identified as 

targets for purine receptor-based therapies with P1 or P2 
receptor ligands under clinical trial (Fig. 1B). Advanced 
cancer and complications associated with acute coronary 
syndrome (ACS) and/or cardiovascular disease (CD) appear 
to be the most targeted, with five different compounds in 
development for each condition. However, not all com-
pounds were successful in providing significant clinical 
outcomes. It is not uncommon for compounds to result in 
less than optimal clinical efficacy when tested in humans 
despite displaying promising efficacy in preclinical animal 
studies [66]. For example,  P2X7 subtype-specific antago-
nist AZD9056 showed promising results in an in vivo rat 
model by suppressing symptoms of rheumatoid arthritis 
[68, 69]. However, AZD9056 failed to show efficacy for 
rheumatoid arthritis in a Phase IIa study (NCT00520572). 
Another unsuccessful example is Rolofylline (KW-3902), 
an  A1 receptor antagonist investigated for preventing renal 
dysfunction. Although Rolofylline appeared to show poten-
tial benefits in improving kidney function in patients with 
congestive heart failure in a Phase II trial (NCT00159614) 
[70], it failed to show efficacy in Phase III clinical trials 
(NCT00354458, NCT00328692) [56] (Table 3). Although 
there is no definitive explanation for why some trials fail to 
show clinical efficacy, factors that may influence outcomes 
include inter-species differences in receptor function or 

Table 2   (Continued)

Target Compound/ 
Drug

Mode of 
Action

Condition Latest 
Phase 
(I-IV)

Trial Identifier Status Date Completed Outcome [Ref]

IV NCT03247738 Completed December 2018 Significant [49]
NCT04005729 Completed November 2021 N/A [6]
NCT04634162 Completed November 2021 N/A [6]
NCT04668144 Recruiting N/A N/A [6]
NCT03551964 Recruiting N/A N/A [6]
NCT02943369 Completed December 2017 N/A [6]
NCT02733341 Completed October 2018 Significant [50]
NCT04927949 Recruiting N/A N/A [6]
NCT02978040 Completed December 2019 Significant [51]
2016-000195-19 Completed October 2017 N/A [7]
2019-001285-15 Ongoing N/A N/A [7]

III 2015-005071-25 Ongoing N/A N/A [7]
2016-002586-64 Ongoing N/A N/A [7]

Selatogrel 
(ACT-246475)

Antagonist Acute myocardial infarction II NCT03487445 Completed November 2018 Significant [52]

NCT03384966 Completed September 2018 Significant [53]
2018-000765-36 Completed November 2018 N/A [7]
2017-003332-36 Completed September 2018 Significant [7]

(Significant) Indicates that the study has been successfully completed and primary outcomes are statistically significant (P < 0.05), (Not significant) 
indicates that the study has been successfully completed, but primary outcomes are not statistically significant, (N/A) indicates that the study has 
been completed, but results have not been published, or primary outcomes are unknown
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Table 3  Current registered clinical trials involving adenosine receptor agonists/antagonists

Target Compound/ Drug Mode of 
Action

Condition Latest Phase 
(I-IV)

Trial Identifier Status Date completed Outcome [Ref]

A1 PBF-680 Antagonist Atopic asthma II NCT03774290 Completed March 2020 N/A [6]
NCT01939587 Completed July 2014 N/A [6]
NCT02635945 Completed November 2019 N/A [6]
2017-003663-35 Ongoing N/A N/A [7]

GW493838 Agonist Peripheral neuro-
pathic pain

II NCT00376454 Completed June 2003 N/A [6]

BAY1067197 
(Neladenoson 
bialanate)

Agonist Heart failure II NCT02040233 Completed April 2015 N/A [6]
NCT03098979 Completed June 2018 Not significant [54]
NCT02992288 Completed May 2018 Not significant [55]
2016-003839-38 Completed May 2018 Not significant [7]
2016-004062-26 Completed June 2018 Not significant [7]
2013-001287-34 Completed March 2015 N/A [7]
2013-002522-23 Completed April 2015 N/A [7]

Tonapofylline Antagonist Renal insuffi-
ciency, Conges-
tive heart failure

II/III NCT00709865 Completed December 2009 N/A [6]

DTI-0009 
(Selodenoson)

Agonist Atrial fibrillation II NCT00040001 Completed N/A N/A [6]

KW-3902  
(rolofylline)

Antagonist Congestive heart 
failure

III NCT00354458 Completed July 2009 Not significant [56]
NCT00328692 Completed July 2009 Not significant [56]

A2A Regadenoson 
(CVT-3146/ 
Lexiscan)

Agonist Lung transplant I NCT03072589 Recruiting N/A N/A [57]
Myocardial perfu-

sion imaging
III NCT00208312 Completed June 2005 Significant [58]

NCT00208299 Completed August 2006 N/A [6]
Sickle cell disease II NCT01788631 Completed December 2016 Not significant [59]

KW-6002 (Istra-
defylline)

Antagonist Parkinson’s 
disease

III 2004-002844-93 Completed March 2007 Significant [7]
2004-000817-20 Completed October 2005 Not significant [7]
2015-003887-34 Completed December 2017 N/A [7]
2013-002254-70 Completed October 2016 Significant [7]
2019-002951-40 Ongoing N/A N/A [7]
NCT02610231 Completed December 2017 N/A [6]
NCT01968031 Completed October 2016 N/A [6]
NCT00957203 Completed March 2012 N/A [6]
NCT00955526 Completed February 2011 N/A [6]
NCT00199420 Completed December 2005 N/A [6]
NCT00199407 Completed January 2006 N/A [6]
NCT00203957 Completed February 2007 N/A [6]

NCT00199394 Completed November 2005 N/A [6]
NCT00199368 Completed May 2007 N/A [6]
NCT00955045 Completed October 2003 N/A [6]

V81444 Antagonist Parkinson’s 
disease

I NCT02764892 Completed March 2013 N/A [6]

PBF-509 
(NIR178)

Antagonist Non-small cell 
lung cancer

I/II NCT02403193 Completed November 2021 Significant [60]
II NCT03207867 Recruiting N/A N/A [6]

Parkinson’s 
disease

I NCT02111330 Completed May 2014 N/A [6]
NCT01691924 Completed October 2013 N/A [6]

Inupadenant Antagonist Antitumour activ-
ity (Advanced 
cancer, lung 
cancer, head 
and neck can-
cer, melanoma)

I/II NCT05060432 Recruiting N/A N/A [6]
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pharmacology, variation in pharmacological profile of com-
pounds for homomeric and heteromeric receptor complexes, 
and inter-individual variation in receptor function due to 
single nucleotide polymorphisms [65, 66]. Furthermore, the 
ubiquitous nature of purinergic receptor expression through-
out the body can potentially increase the risk of side effects 
that may outweigh clinical benefits [71]. However, there are 
many examples of successful drug development. BIL010t 
(formerly known as BSCT), a non-functional form of the 

 P2X7 receptor (nf-P2X7) antibody used as topical therapy 
for basal cell carcinoma [11], and PBF-509, a potent  A2A 
receptor antagonist for the treatment of non-small cell lung 
cancer [60], were both well-tolerated and safe in Phase I/II 
trials [11] (Table 3).

The development of therapeutics generally follows 
an exhaustive translational research path from discovery 
to clinical trial. Approximately 38 compounds targeting 
purine receptors are at different stages of development, 

Table 3  (continued)

Target Compound/ Drug Mode of 
Action

Condition Latest Phase 
(I-IV)

Trial Identifier Status Date completed Outcome [Ref]

SYN115 Antagonist Imaging in 
Cocaine 
dependence

I NCT00783276 Completed January 2013 Significant [61]

BVT.115959 Agonist Diabetic neuro-
pathic pain

II NCT00452777 Completed January 2008 N/A [6]

Ciforadenant Antagonist Renal cell cancer, 
metastatic cas-
tration resistant 
prostate cancer

I NCT02655822 Completed July 2021 N/A [6]

Radiotracer [18F]
MNI-444*

Radio 
tracer for 
positron 
emission 
tomogra-
phy (PET)

Parkinson’s dis-
ease imaging

I NCT05009199 Recruiting N/A N/A [62]

Marker [123]
MNI-420*

Radio tracer 
for PET

Parkinson’s 
disease and 
Huntington’s 
disease imaging

I NCT00970229 Completed May 2015 N/A [63]

A2B PBF-1129 Antagonist Locally advanced 
or metastatic 
non-small cell 
lung cancer

I NCT03274479 Recruiting N/A N/A [6]

A3 PBF-1650 Antagonist Psoriasis I NCT03798236 Completed May 2019 N/A [6]
PBF-677 Antagonist Glaucoma I NCT02639975 Completed June 2016 N/A [6]

Ulcerative colitis II NCT03773952 Completed May 2021 N/A [6]
CF101 Agonist Plaque psoriasis III NCT03168256 Active, not 

recruiting
N/A N/A [6]

Rheumatoid 
arthritis

III 2016-003682-26 Ongoing N/A N/A [7]

CF102 Agonist Advanced 
Hepatocellular 
Carcinoma

II NCT02128958 Completed December 2021 Not signficant [64]

Advanced 
Hepatocellular 
Carcinoma with 
Child-Pugh 
Class B Cir-
rhosis

II 2014-000489-23 Completed March 2019 Not significant [7]

Chronic hepatitis C I/II NCT00790673 Completed July 2011 N/A [6]

(Significant) Indicates that the study has been successfully completed and primary outcomes are statistically significant (P < 0.05), (Not sig-
nificant) indicates that the study has been successfully completed, but primary outcomes are not statistically significant, (N/A) indicates that 
the study has been completed, but results have not been published, or primary outcomes are unknown. *[18F] MNI-444 and [123]MNI-420 are 
selective A2A receptor radiotracers used to study neurodegenerative and neuropsychiatric disorders in vivo to support drug-discovery studies 
targeting A2A receptors [62, 63]
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and the most extensively studied are the  P2Y12 recep-
tor-based antiplatelet agents clopidogrel, ticagrelor and 
prasugrel. These are all approved for treating complica-
tions associated with the ACS as percutaneous coronary 
intervention (PCI) [72]. Diquafosol (previously known as 
INS365), a  P2Y2 receptor agonist, is another approved 
drug that has been commercially successful in treating 
dry eye syndrome [73]. To illustrate the translational 
journey from basic science to clinical trials, we present 
case studies of diquafosol, and a family of  P2Y12 receptor 
antagonists.

P2Y2 receptor agonist: diquafosol

Diquafosol (Tetrasodium ophthalmic solution 3%; INS365, 
Prolacria, DIQUAS®) is a synthetic dinucleotide deriva-
tive of naturally occurring uridine 5′-triphosphate (UTP), 
acting as a potent  P2Y2 receptor agonist [74]. Diquafo-
sol targets  P2Y2 receptors expressed in ocular tissues, 
including palpebral and bulbar conjunctival epithelium, 
conjunctival goblet cells, corneal epithelial, and meibo-
mian glands [74]. It is used to treat dry eye syndrome by 
stimulating tear fluid secretion from conjunctival goblet 
cells, promoting ocular surface hydration and stabilization 
of the tear film, independent of tear fluid secretion from 
lacrimal glands [73].

For details on the current use of diquafosol and its toler-
ance by patients, the reader is directed to a review by Keat-
ing et al., 2015 [75]. Here, we will focus on the discovery 
and translational journey. Basic science discoveries for the 

target receptor of diquafosol,  P2Y2, were published in early 
2000–2003. Early work identified  P2Y2 receptor mRNA 
expression to be highly conserved across species, from rhe-
sus monkeys to white rabbits, with expression observed in 
the conjunctiva, cornea, ciliary body, lens, and pigmented 
epithelium [76]. Pharmacological and functional evidence of 
diquafosol action on  P2Y2 receptors has stemmed from sev-
eral cell line and animal models, including non-transformed 
bovine ciliary epithelial cells [77], human non-pigmented 
ciliary epithelial cells [78], rabbit ciliary epithelial cells 
[79], and dry-eye rat model [74]. Earlier in 1999, diquafo-
sol was developed as a  P2Y2-specific agonist INS365 (note, 
the name subsequently changed to diquafosol), effective in 
airway clearance in sheep [80]. At that time, Inspire Phar-
maceuticals had already announced its potential use for dry 
eye syndrome [81]. The effect of diquafosol on ocular tissues 
for dry eye treatment was published in 2001 [74]. These pre-
clinical studies were important in demonstrating the mecha-
nism of action of  P2Y2 receptor agonists on eye physiology. 
For example, diquafosol administration in rabbit conjunctiva 
led to stimulation of  Cl− and water transport from the sero-
sal to mucosal conjunctival epithelium [82]. The observed 
increase in tear fluid secretion was dependent on the dose of 
diquafosol with no significant change in tear fluid composi-
tion [82, 83]. From a clinical viewpoint, a therapeutic effect 
of diquafosol was demonstrated using the rat dry-eye model, 
as the application of diquafosol (3.0% or 8.5%) resulted in a 
1.5-fold transient increase in tear fluid secretion accompa-
nied by a decline in corneal permeability (51% compared to 
controls). Both effects resulted in an overall improvement 
in ocular surface hydration [74]. Additionally, diquafosol 

Fig. 1  Summary of therapeutic compounds in clinical trials targeting 
purine receptors for specific diseases/conditions. (A) Therapeutic com-
pounds targeting purine receptors in clinical development from Phase 

I–IV. (B) Purine receptors targeted for specific diseases/conditions in 
clinical development from Phase I–IV, created with BioRender.com



443Purinergic Signalling (2022) 18:435–450 

1 3

improved ocular surface health and mitigated corneal epi-
thelial damage caused by superficial punctate keratopathy. 
An instillation of diquafosol was associated with an increase 
in Periodic acid-Schiff (PAS)-stained positive goblet cells 
in the rat dry-eye model [74] and a significant decrease in 
corneal fluorescein staining scores compared to controls in 
a diabetic rat model [84].

Following substantial research and publications between 
2000 and 2003, diquafosol was granted priority in the 
review process by the FDA in 2003 as a diquafosol tetra-
sodium ophthalmic formulation [85, 86], driving a cascade 
of clinical trials. The translation of the potential therapeutic 
effects observed in the preclinical studies can be illustrated 
by two pivotal Phase IIb and Phase III clinical trials. Both 
were randomized, double-blind, multi-centre trials, with 
a primary outcome measure defined as improving corneal 
and conjunctival epithelial damage after 4 weeks [87, 88]. 
In the Phase IIb (NCT01189032) study involving 286 par-
ticipants, a greater dose-dependent reduction in fluorescein 
corneal staining scores in week 4 was reported in patients 
receiving either 1% or 3% diquafosol (DQS) [87]. However, 
when examining the maintenance of fluorescein corneal 
staining scores at week 6, only the 3% DQS group scores 
were significantly different from placebo controls (P = 0.005) 
[87]. Both 1% and 3% DQS groups showed a decrease in 
fluorescein corneal staining scores (1% DQS, P = 0.037; 3% 
DQS, P = 0.002) and rose bengal corneal staining scores (1% 
DQS, P = 0.007; 3% DQS, P = 0.003) compared to placebo 
at week 4 [87]. This study included subjective dry eye sen-
sation symptom scores as a secondary outcome measure. 
Patients receiving DQS showed a significant improvement in 
this secondary outcome measure compared with the placebo 
(1% DQS, P = 0.003; 3% DQS, P = 0.033) [87]. Concerning 
dosage, 3% DQS was superior to 1% DQS in efficacy [87]. 
The efficacy of 3% DQS was also superior to 0.1% sodium 
hyaluronate ophthalmic solution [89]. Similar to the Phase 
IIb study, both fluorescein and rose bengal corneal staining 
scores showed significant improvement in both treatment 
groups at weeks 2 and 4 (P < 0.05), although the 3% DQS 
treatment group exhibited greater improvement in mucin 
coating on the ocular surface at week 4 than 0.1% sodium 
hyaluronate [89]. Similar improvement in subjective dry-eye-
related symptoms and corneal and conjunctival fluorescein 
staining scores was also observed in a larger Phase III study 
involving 3196 patients with dry eye disease conducted over 
two months (P < 0.001) [88]. Adverse reactions to 3% DQS 
treatment affected 6.3% of patients, including eye discharge, 
eye irritation, and eye pain [88]. Additional information 
regarding the effectiveness of 3% DQS as an intervention 
for dry-eye syndrome was delineated in a Phase IV study 
involving 580 patients with dry eye disease [90]. It was a 
prospective, multi-centre, open-label observational study 
conducted over 12 months [90]. Significant improvements 

in fluorescein corneal staining scores were observed at 3, 
6, 9 and 12 months with DQS treatment (P < 0.001) [388]. 
Moreover, DQS treatment was associated with a significant 
reduction in other outcome measures such as Dry Eye-related 
Duality of Life Scores, ocular symptoms scores, and impact 
on daily life scores (P < 0.001) [90]. However, it should be 
noted that the open-label design of this study can be sub-
ject to bias in favor of DQS treatment in efficacy measures 
[90]. The study population included a higher proportion of 
elderly patients (42.8%, ≥ 70 years), which should also be 
taken into consideration [90]. DQS 3.0% ophthalmic solution 
was approved as an intervention for dry eye in 2010 by the 
Ministry of Health in Japan [91] and is now widely available 
in other countries, including South Korea, Indonesia, Malay-
sia, Philippines, Thailand, Vietnam, Cambodia and China 
[92]. The contributing factors to the success of diquafosol 
can be attributed to its localized direct delivery in the form 
of an ‘eye-drop’ and ease of assessment of the target tissue.

P2Y12 receptor antagonist: thienopyridines 
prasugrel and cangrelor

The discovery of  P2Y12 as the drug target for coronary 
diseases dates back to 1961, when ADP was found to play 
a functional role in platelet activation and aggregation [93]. 
The breakthrough came in 2001 when the  P2Y12 receptor 
was cloned and recognized as the molecular identity of the 
receptor responsible for triggering the potent ADP-induced 
antithrombotic activity [94]. Strikingly, the expression of 
 P2Y12 was found to be very specific to platelets and showed 
negligible expression in most other tissues [94]. The strong 
link between the  P2Y12 and ADP-induced platelet aggre-
gation has set a rapid rise in investigations of  P2Y12 as a 
potential therapeutic target for blood clotting conditions 
and led to the development of thienopyridine prodrugs [95, 
96]. Thienopyridines are a family of closely related prod-
rugs. As prodrugs, thienopyridines need to be metabolized 
by a hepatic enzyme, Cytochrome P-450 (CYP), into the 
active metabolite to bind to the P2Y12 receptor irrevers-
ibly [97]. This blocks ADP binding, subsequently inhibit-
ing platelet activation and aggregation [97]. The actions of 
thienopyridines are specific to  P2Y12 receptor and selec-
tively interfere with platelet activation and aggregation 
induced by ADP [98, 99].

Subsequent research has led to the development of at 
least three thienopyridine compounds in the market; first-
generation ticlopidine (Ticlid ®), second-generation clopi-
dogrel bisulfate (Plavix®) and third-generation prasugrel 
(Effient®) [100, 101].

Thienopyridine antiplatelet drugs are indicated for man-
aging and preventing complications after ACS and PCI, 
including ischemic complications, myocardial infarction 
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(MI), and stent thrombosis [102], albeit with slightly dif-
ferent properties. The first generation ticlopidine was 
replaced by the second generation clopidogrel due to a bet-
ter tolerability profile but with similar efficacy. Soon dual 
antiplatelet therapy with aspirin and clopidogrel became 
the ‘gold standard’ for patients undergoing stenting and 
acute coronary syndromes [100, 103]. However, reports 
of inter-individual variability in responsiveness to clopi-
dogrel from in vitro studies sparked concerns, potentially 
explained by genetic polymorphisms and cytochrome P-450 
polymorphisms, which can manifest as differential pharma-
codynamic and therapeutic responses [104]. A heightened 
platelet reactivity (thienopyridine hypersensitivity reaction) 
or clopidogrel non-responsiveness (also referred to as clopi-
dogrel resistance) was associated with a high risk of adverse 
ischemic events such as stent thrombosis [100, 105]. This 
supported the development of the third-generation thieno-
pyridine prasugrel, which exhibited a superior pharmacody-
namic profile to clopidogrel with less interpatient variability 
and a more potent platelet aggregation response [100, 103, 
105]. Pharmacological and functional evidence of prasugrel 
(CS-747, LY640315, Effient®), 5-[2-cyclopropyl-1-pyridin-
2yl acetate] and  P2Y12 receptors have been attributed to 
preclinical research across a number of animal models 
including rats, beagle dogs, and cynomolgus monkeys [95, 
106, 107]. One of the first studies to evaluate the therapeutic 
effect of prasugrel (CS-747) used a rat model, where single 
oral administration of prasugrel (0.3–3 mg/kg) produced a 
dose-related inhibition of ex vivo ADP-induced aggregation 
in washed platelets [95]. The same dose-dependent inhibi-
tion of platelet aggregation following oral administration 
of prasugrel was observed in a rat model where maximum 
inhibition was achieved 2–4 h after dosing [106]. A simi-
lar potent, dose-related inhibition of ADP-induced platelet 
aggregation was observed in beagle dogs (0.03–3 mg/kg/
day), cynomolgus monkeys (0.1–0.3 mg/kg/day), and rats 
(3 mg/kg/day) across a 14-day treatment period. Inhibition 
reached a plateau on days 3 and 5, suggesting a cumulative 
effect [107]. The order of potency (from high to low) in dif-
ferent animal models was: dogs, humans, monkeys, and rats 
[107]. When comparing the antiplatelet and antithrombotic 
potency of prasugrel with its predecessors, the potency of 
prasugrel exceeded that of clopidogrel and ticlopidine in 
a rat arterio-venous shunt model [95]. In an ex vivo rat 
model, clopidogrel exhibited a slower onset of action and 
antiplatelet potency 13 times lower than prasugrel [106]. 
A dose-dependency study of prasugrel (0.1–1 mg/kg/day, 
p.o.) in a rat carotid arterial thrombosis model demonstrated 
dose-related prolongation of the time to arterial occlusion. 
CS-747 (prasugrel) had approximately tenfold and 100-fold 
higher potency when compared to clopidogrel (1–20 mg/kg/
day, p.o.) and ticlopidine (30–300 mg/kg/day, p.o.), respec-
tively [107].

The progress of prasugrel from the preclinical studies to 
clinical trials can be followed from the Phase II JUMBO-TIMI 
26 study [108], which served as a feasibility study for one of 
the pivotal Phase III studies, TRITON-TIMI 38 [109]. The 
JUMBO-TIMI 26 study involved 904 patients and was the 
first to report on the use of prasugrel in patients undergoing 
elective or urgent PCI [97]. Patients were randomized into 
1 of 3 prasugrel dosing regimens: low dose (40 mg loading 
dose (LD) and 7.5 mg maintenance dose (MD)), intermediate-
dose (60 mg LD and 10 mg MD), and a high-dose (60 mg 
LD and 10 mg MD). A control group treated with clopi-
dogrel (300 mg LD and 75 mg MD) was also included [108]. 
Although patients receiving prasugrel had a slightly lower 
incidence of major adverse cardiac events, including myocar-
dial infarction, stroke, recurrent myocardial ischemia requiring 
hospitalization, and thrombosis (7.2%) compared to patients 
receiving clopidogrel (9.4%), the difference was not statisti-
cally significant (P = 0.26) [108]. Patients receiving prasugrel 
had slightly lower rates (0.5%) of major bleeding, significant 
bleeding and transfusion events compared to the clopidogrel 
group (0.8%), although it also was not statistically significant 
(P = 0.590) [108]. TRITON-TIMI 38 (NCT00097591) was a 
double-blind, double-dummy, parallel-group, multi-centre, 
multinational Phase III clinical trial [109]. It involved 13,608 
subjects with moderate- to high-risk ACS with planned PCI 
who were randomized to receive either clopidogrel (300 mg 
LD and 75 mg MD) or prasugrel (60 mg LD and 10 mg MD) 
daily for 6–15 months [109]. The primary outcome measure 
was defined as a combination of cardiovascular death, non-
fatal MI, or urgent target vessel revascularization at 30 days 
[109]. Patients receiving prasugrel reported fewer cardiovascu-
lar events (primary outcome measure composite) of 9.9% com-
pared to 12.1% reported from patients receiving clopidogrel 
(Hazard Ratio (HR), 0.81; 95% Confidence Interval (CI), 
0.73–0.090; P < 0.001) [109]. This was driven by a significant 
reduction in ischemic events among patients receiving prasu-
grel including myocardial infarction (9.7% for clopidogrel vs. 
7.4% for prasugrel; P < 0.001), urgent target vessel revasculari-
zation (3.7% for clopidogrel vs. 7.4% for prasugrel; P < 0.001), 
and stent thrombosis (2.4% clopidogrel versus 1.1% prasugrel; 
P < 0.001), but there was no significant difference in the rate 
of stroke [109]. However, prasugrel treatment was associated 
with an increase in the rate of major bleeding (2.4% prasugrel 
vs. 1.8% clopidogrel; HR, 1.32; 95% CI, 1.03–1.68; P = 0.03) 
and life-threatening bleeding (1.4% vs. 0.9%; P = 0.01) 
events, inclusive of nonfatal bleeding (1.1% vs. 0.9%; HR, 
1.25; P = 0.23) and fatal bleeding (0.4% vs. 0.1%; P = 0.002) 
[109]. There was no significant difference in overall mortality 
between treatment groups [109]. Notably, in a different Phase 
III study, TRILOGY-ACS trial (NCT00699998), the more seri-
ous or life-threatening bleeding events observed with the pras-
ugrel group in the TRITON study were not observed [110]. 
This particular trial had a long follow-up of up to 2.5 years, 
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and the risk of the major bleeding event was observed to be 
similarly low in the two treatment groups, prasugrel (10 mg 
daily) and clopidogrel (75 mg daily) [110, 111]. As for the 
efficacy, at 30 months, no significant difference was observed 
in the rate of death from cardiovascular causes, MI or stroke 
among patients under the age of 75 (13.9% in the prasugrel 
group and 16% in the clopidogrel group; HR 0.91; 95% CI 
0.79–1.05; P = 0.21) [110]. However, a lower risk of multi-
ple recurrent ischemic events was observed among patients 
under the age of 75 receiving prasugrel (6%) compared to the 
clopidogrel group (13%) after 12 months of treatment (HR 
0.94; 95% CI 0.79–0.86; P = 0.018), consistent with findings 
from the TRITON study [109, 110]. In July 2009, prasugrel 
gained FDA approval as an intervention for reducing throm-
botic cardiovascular events in patients with ACS managed with 
PCI, with a warning indicating a higher risk of bleeding events 
[112]. Several years after prasugrel became available for clini-
cal use, some concerns were raised in subsequent analysis from 
the TRILOGY-ACS trial regarding the long-term effects of 
prasugrel and clopidogrel [113]. In 2020, the manufacturer, 
Eli Lilly and Co., discontinued production of prasugrel as a 
business decision; hence it is no longer available in Canada 
[114] and New Zealand [115]. After many years of success, the 
gap left by the withdrawal of prasugrel further prompted the 
use and investigation of reversible non-thienopyridine agents 
ticagrelor and, most recently, cangrelor.

Cangrelor (also known as AR-C69931MX) is a non-
thienopyridine ATP analogue that has different actions to 
thienopyridines, and is a class of selective antagonists of 
the  P2Y12 receptor [116]. Similar to thienopyridine, can-
grelor is a direct-acting antagonist of the  P2Y12 receptor; 
however, unlike thienopyridines, the inhibitory action of 
cangrelor is reversible [116]. It is delivered intravenously 
and is characterized by a rapid onset of action with a fast 
offset of effects due to its short plasma half-life of 3 to 
6 min [116]. Furthermore, due to the drug’s short half-life, 
the platelet function returns to normal within 30 to 60 min 
after intravenous infusion of Cangrelor [116]. This fast 
termination of action makes Cangrelor an attractive com-
pound by reducing the risk of potential ischemic or throm-
botic complications [116–118]. In a Phase II BRIDGE 
trial (Bridging Anti-Platelet Therapy With Intravenous 
Agent Cangrelor In Patients Undergoing Cardiac Surgery, 
NCT00767507), a greater proportion of patients with ACS 
treated with Cangrelor (0.75 μg/kg per minute) had low 
levels of platelet reactivity during the treatment period 
compared with placebo (P < 0.001), with a low risk of 
thrombotic events [117]. However, in a large-scale inter-
national Phase III trial, CHAMPION (Cangrelor Versus 
Standard Therapy to Achieve Optimal Management of 
Platelet Inhibition) PCI trial (NCT00305162) reported a 
contradictory outcome that cangrelor (bolus of 30 μg/kg 
plus an infusion at 4 μg/kg per minute) was not superior to 

clopidogrel (loading dose of 600 mg) in reducing the pri-
mary composite death, myocardial infarction, or ischemia-
driven revascularization at 48 h (P = 0.59) in patients with 
ACS before PCI [118]. This study was terminated due 
to insufficient evidence of the clinical effectiveness of 
cangrelor [6]. Another separate Phase III trial, CHAM-
PION PHOENIX (NCT01156571) reported that cangre-
lor significantly reduced the rate of myocardial infarction, 
ischemia-driven revascularization, or stent thrombosis 
at 48 h (adjusted odds ratio [OR] with Cangrelor, 0.78; 
95% CI, 0.66 to 0.93; P = 0.005) with a lower rate of stent 
thrombosis compared to clopidogrel (OR, 0.62; 95% CI, 
0.43 to 0.90; P = 0.01) [119]. Although several ongoing 
studies will likely provide additional insight into the clini-
cal use of cangrelor (Table 2), further evaluations on the 
safety and efficacy of cangrelor are needed.

Conclusion

The development of therapies targeting purine receptors 
has been a long journey that began with basic research 
characterising P1 and P2 receptors in health and disease, 
and this led to the identification of potential therapeu-
tic targets for different conditions. Through the insights 
gained from preclinical studies and with the increasing 
interest from clinical researchers, the development of 
therapies targeting purine receptors became a reality. 
With 38 therapeutic compounds currently in clinical tri-
als, we should expect more to emerge over the next few 
decades. Furthermore, building on our knowledge of 
purinergic signalling in various tissues and the existence 
of many drug candidates in the pipeline, repurposing the 
existing drugs as alternative pathways for drug devel-
opment should also be considered. Substantial progress 
made in the last two decades is a true reflection of Pro-
fessor Geoffrey Burnstock’s legacy that has established 
the field of purinergic signalling and paved the way for 
the development of purine receptor targeting therapies 
for several diseases and clinical conditions.
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