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Acupuncture modulates extracellular ATP levels in peripheral sensory
nervous system during analgesia of ankle arthritis in rats
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Abstract
As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its
mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral
sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms trans-
duction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This
work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during
its analgesia process. Male Sprague–Dawley rats underwent acute inflammatory pain by injecting Complete Freund’s
Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli
acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic
effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by
luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-
time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal
hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-
sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-
nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and
restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were
inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory
nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acu-
puncture research.
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Dan Shen graduated with a Ph.D. in Medicine from Shanghai University of Traditional Chinese Medicine. She is
currently working at the School of Traditional Chinese Medicine, Naval Medical University. She is interested in
exploring and confirming the efficacy of alternative and complementary therapies in the treatment of acute and
chronic pain. She focuses on the role of purinergic signaling in the mechanisms of acupuncture analgesia. Her aim
is to continue research in this area and provide reliable evidence for the role of purine signaling in pain
neuromodulation.

Introduction

As an ancient approach for pain management, acupuncture
(AP) is nowadays practiced worldwide in clinics. During
AP, fine needles are inserted into some specific points
(acupoints) and are manipulated to trigger biological signals.
According to the WHO notes, AP has efficacy on pain supe-
rior to other diseases, including chronic and acute pain and
peripheral and visceral pain [1]. Although to date, the analge-
sic effect of AP has been well documented in clinic; its bio-
logical basis is still not fully understood. A good understand-
ing of its mechanisms will offer promise for its rational and
wider application. Nerve system is the main target to be acti-
vated by AP during the anti-nociceptive process, from afferent
nerve endings to cortex [2]. As the first station to receive
nociceptive inputs, neurons in the peripheral sensory ganglia
are the foremost target to be modulated by AP [3, 4].

The ATP neurotransmitter system is recognized as an im-
portant pathway in the periphery to the spinal cord.
Extracellular ATP (eATP) and its hydrolyzed products play
conflicting roles in pain transmission by binding to their cor-
responding purinoceptors. In general, solid evidence has
shown that eATP is the endogenous ligand to P2X3

(P2X2/3), P2X4, and P2X7 receptors, which contribute to pain
transmission [4, 5], and its hydrolyzed product ADP is the
agonist of P2Y1, P2Y12, and P2Y13 receptors, which boost
painful sensation as well [4, 5]. While its down-stream prod-
uct, adenosine (ADO), accounts for anti-nociception by bind-
ing to A1 or A3 receptors [6].

In peripheral sensory ganglia, all multiple P2X and P2Y
receptors are expressed in neurons or glial cells, especially the
P2X3 receptors that are concentrated in pain-related small-di-
ameter sensory neurons [7]. Besides, as the peripheral fibers of
lumbar ganglia neurons, sciatic nerves express P2Y1, 6,11 sub-
types [8]. Among them, expression of P2X3 (P2X2/3), P2X7,
and P2Y1, 2, 6 receptors in ganglia is increased during periph-
eral neuropathic pain, inflammatory pain, or visceral pain [3,
4], especially P2X3 receptors. Since Burnstock hypothesized
in 2009 that beneficial effects of AP involved triggering the
purinergic signaling cascade via ATP release in acupoints [9],
researches on purinergic signaling were intensified in the field
of AP analgesia. Tang et al. have reviewed that P2

purinoceptors, especially P2X3 in peripheral ganglia, are the
focus of these studies, and AP or EAP plays analgesic effect
by reversing the elevated P2X3 expression in different types of
pain [3, 4].

Besides P2 purinoceptors, their ligands are another vital
component of purinergic signaling. While the role of them
remains less studied. In order to address this issue, we used
the acute paw inflammatory model to investigate whether
eATP levels of DRGs or sciatic nerves were modulated in
the process of AP-induced analgesia. This study accelerates
our understanding of the role of purinergic signaling in AP
analgesia mechanism, which will open a new frontier for AP
research.

Methods

Animals

Adult male SD rats weighted 200 ± 20 g were used. All rats
were randomly grouped into control, model, and AP treated
groups. For the behavioral tests, each group comprised of 6
rats. For the other experiments, each group comprised 3–12
rats. The rats were housed in a temperature-controlled (22 °C–
24 °C) room with a 12/12 h light-dark cycle and ad libitum
access to food and water. Before the tests, rats were allowed to
acclimate to the housing facilities daily for 3 days. All exper-
imental protocols were approved by the Animal Care
Committee of Shanghai University of Traditional Chinese
Medicine (Shanghai, China) (No: SZY201807008).

Acute adjuvant arthritis model

Peripheral inflammation pain was established by injection of
50 μl Complete Freund’s Adjuvant (CFA) into the left ankle
joint cavity to induce acute adjuvant arthritis after rat was
anesthetized with 1.5% isoflurane. Inflammatory syndrome,
local swelling, and behave disability appeared within 24 h.
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Behavioral tests

Pain thresholds of the bilateral hind plantar were determined
to reflect the pain levels. Thermal hyperalgesia was assessed
using radiant heat (IITC336G, IITC Life Science, USA), and
the paw withdrawal latency (PWL) was defined as the time
taken by the rat to remove its hind paw from the heat source. A
cut off time of 20 s was applied to prevent potential tissue
damage. Mechanical allodynia was evaluated by an electronic
Von Frey anesthesiometer (IITC2450, IITC Life Science,
USA), and the paw withdrawal threshold (PWT) was defined
as the force to push the rat to withdraw its paw. Each heat or
force stimulus was applied 3 times at 10 min intervals at each
time point. Thermal hyperalgesia was measured 2 h after the
mechanical allodynia assessment. The timeline for pain
threshold measurement is illustrated in Fig. 1.

AP treatment

Unilateral AP treatment was performed on an affected side of
conscious and unrestrained rats as described in our previous
work [10]. The equivalent of the human acupoint Zusanli
(ST36) was used in this study. ST36 is located at the postero-
lateral of knee joint, about 5 mm below fibula capitulum.
Stainless steel needle (0.18 mm × 13 mm, Cloud Dragon
Medical Equipment Company, China) was gently inserted at
an approximate depth of 7 mm. To avoid variables as much as
possible, all AP treatments were exerted by one person.

The AP procedure consisted of 30 s lifting-thrusting and
30 s twisting and lasted for 20 min, which was initiated on the
2nd day after CFA injection and repeated on the 3rd day (Fig.
1).

Tissue preparation

After the behavioral tests for 2nd AP treatment, rats were
euthanasia executed with CO2, and tissues were immediately
isolated. In ganglia dissection, bilateral 4-5 lumbar (L4-5)
DRGs in each group were dissected from the vertebral column
according to the method discribed in Burkey et al. work [11].
In sciatic nerve dissection, in the middle part of the dorsal
thigh of the hind limb, the skin was incised with a scalpel

along the sciatic nerve. After blunt separation of muscle, bi-
lateral sciatic nerves were exposed and excised for 1 cm in
length.

For eATP measurement, isolated tissues were equilibrated
in artificial physiological solution (PS) for 2 h for RT-PCR;
tissues were incubated in Trizol solution (Thermo Fisher,
USA) and stored in liquid nitrogen.

Reagents and solutions

PS was used to bathe the excised tissues, which contained (in
mM) 137 NaCl, 2.7 KCl, 2 CaCl2, 5 MgCl2, 5.6 glucose, and
10 HEPES, pH 7.4 (adjusted with NaOH). 6-N,N-
Diethyl-β-γ-dibromomethylene-D-adenosine-5′-triphosphate
trisodium salt hydrate (ARL67156) and luciferin-luciferase
(L-L) assay mixture were procured from Sigma-Aldrich
(USA). ARL67156 was prepared in stock solution with dis-
tilled water and stored at − 20 °C and diluted into 100 μM
working solution when used.

External stimuli

Excised ganglia were irritated by mechanical or chemical
stimulus to determine their sensitivity to release ATP. Air
bubbles were introduced to DRGs bathed in 100 μl PS. The
bubbles were made by an electric pipette gun (Model: LH3 09
06, Thermo Fisher, USA), which blew 50 μl air per time at a
rate of 14.9 μl/s and repeated 20 cycles. One hundred
millimolar KCl in PS was used as chemical stimulus as de-
scribed in the literature [12]. After irritation, 50 μl superfusate
was aliquoted to assess ATP content.

ATP measurement

eATP levels were quantified by an L-L assay and expressed in
molar concentration. To assess DRGs eATP, equilibrated L4-
5 ganglia were transferred to 96 well-plate containing 100 μl
PS/well. L-L assay mixture was diluted with dilution buffer
and was adjusted to isotonicity with mannitol. One hundred
microliter L-L was added to each well. To study the break-
down of exogenous ATP (exo-ATP) by sciatic nerves, nerves
were transferred to 24 well-plate containing 2 μM exo-ATP in

Fig. 1 Schematic diagram outlining the experimental process behavioral
measurements and AP treatments in the acute inflammatory pain model.
CFA administration in the left ankle joint was applied to induced acute
inflammation on day 0. AP was given to the left ST36 2 days later and

repeated the next day. Pain thresholds were measured just before CFA
injection (baseline), before 1st treatment (modeling), and after each
treatment
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400 μl PS/well and incubated for 2 min. Subsequently, 50 μl
supernatant was aliquoted and mixed with 50 μl L-L assay
mix. The light emission was measured immediately by
luminometer (Synergy Mx, BioTek, Winooski, USA).

In each experiment, calibration of luminescence versus
ATP standards was performed with PS or PS containing cor-
responding compounds, which aimed to eliminate the inter-
ference of the reagents with L-L assay.

Quantitative real time-PCR

Quantitative real-time PCR (RT-PCR) was performed as de-
scribed in our previous work [13]. Total mRNA was isolated
from the L4-L5 DRGs or sciatic nerves. The primer for
NTPDase-2 is sense strand, 5′-GGCCAAAGGGCTAC
TCTACC-3′; antisense strand, 5′-GTTCCTGACAGGCT
GACGAT-3′. The primer for NTPDase-3 is sense strand, 5′-
ACGGTTACAGCACCACCTTC-3′; antisense strand, 5′-
ACAGCTGTGGGTCACCAGTT-3′. The relative abundance
of specific mRNA was determined by the 2 − ΔCt method,
using β-actin as the internal standard.

Statistical analysis

The data were analyzed and expressed as mean ± se. The
figures were prepared by the Graphpad Prism 8.0 software
(SanDiego, California, USA). Statistical significance was car-
ried out using SPSS 24.0 (Chicago, Illinois, USA).
Differences among multiple groups were tested with one-
way ANOVA, followed by Fisher’s least significant differ-
ence (LSD). Where only two groups were compared, two
sample t-test was used. P < 0.05 was considered statistically
significant.

Results

Unilateral AP treatment relieved CFA-induced pain
hypersensitivity of bilateral hind paws

Figure 2a, b showed the pain thresholds of ipsilateral hind
paws. The baseline PWL and PWT (day 0) were similar
among each group, 8.65 s–11.98 s for PWL and 40.47 g–
55.60 g for PWT. Unilateral CFA-treated rats exhibited ther-
mal hyperalgesia and tactile allodynia at least within 3 days (n
= 6, CFA vs. control P < 0.001 for PWL and P < 0.001 for
PWT). First AP treatment in ST36 significantly reversed PWL
and PWT (n = 6, AP vs. CFA P < 0.001 for PWL and P <
0.001 for PWT). Repeated treatment in next day led to no
further improvement.

To contralateral hind paws (Fig. 2c, d), thermal
hyperalgesia rather than tactile allodynia was induced by ip-
silateral injection of CFA (n = 6, CFA vs. control P < 0.001 for

PWL) and was also relived by 1st AP treatment (n = 6, AP vs.
CFA, P < 0.001 for PWL). Similarly, 2nd treatment had no
further improvement.

Figure 3 compared the changes in the bilateral pain thresh-
olds. Figure 3a2 revealed that CFA-induced thermal
hyperalgesia in ipsilateral was transiently more severe than
that in contralateral (n = 6, P < 0.01, on day 2 before 1st AP
treatment), which continued until after 1st AP (Fig. 3a3). As
described above, because of no tactile allodynia in contralat-
eral paws, left hind paws showed constantly lower pain
threshold than right paws (n = 6, P < 0.001, from day 2 to
day 3) (Fig. 3b2). Although there was a significant difference
in thermal hyperalgesia between bilateral hind paws after 1st
AP (Fig. 3a3), further analysis showed that the AP-induced
improvements in bilateral thermal hyperalgesia, together with
contralateral tactile allodynia, had no significant difference
(Fig. 3c), implying that AP had no preference on these
hypersensitivities.

Unilateral AP treatment modulated eATP levels of
bilateral inflammation-injured DRGs and sciatic
nerves

ATP can be released from soma and terminal endings of DRG
neurons [14, 15]. Hence, we wondered whether eATP of sen-
sory neurons changed with the status of pain. At the end of the
behavioral tests after 2nd AP, bilateral L4-5 DRGs and the
main trunk of sciatic nerves were excised from each group to
assess eATP levels.

For the ipsilateral DRGs, in a non-stimulated situation (Fig.
4a), eATP was 177.5 ± 6.3 pM in the control group, which
significantly increased to 380 ± 26.8 pM in the CFA group (n
= 5, P < 0.001 vs. control) and decreased to 266.7 ± 8.8 pM in
the AP-treated group (n = 3, P < 0.001 vs. CFA). In order to
identify whether injured DRGs become more sensitive to ex-
ternal stimuli, mechanical and chemical stimuli were delivered
to L4-5 DRGs in each group. The results showed that stimu-
lation by air bubbles led to excessive eATP in all groups (Fig.
4b), 685.6 ± 50.3 pM in control, 1814.0 ± 182.5 pM in the
CFA group, and 840.8 ± 62.2 pM in the AP-treated group
(Fig. 4d). As reported, 100 mM KCl could induce sciatic
nerve-ligation-injured DRGs to elevate eATP [12]. In this
work, the differences in eATP levels among each group
remained in the presence of 100 mM KCl (Fig. 4c).
However, further within-group comparisons demonstrated
that mechanical stimulus rather than KCl had significant en-
hancement effects (n = 6–12, P < 0.01 vs. non-stimulated
group, P < 0.01 vs. chemical stimulus) (Fig. 4d).

The responses of contralateral DRGs were similar. eATP
level in the CFA group was higher than that of the control and
AP group in the absence of any stimuli (Fig. 5a). Mechanical
stimulus rather than chemical one significantly elevated eATP
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levels in each group (n = 6–11, P < 0.001 vs. non-stimulated
group, P < 0.001 vs. chemical stimulus) (Fig. 5b–d).

Figure 6 showed the comparisons of eATP responses of
bilateral DRGs to external stimuli. Regardless if the stimulus
existed or not, the difference only occurred at CFA states.
eATP levels in ipsilateral DRGs were always higher than that
in contralateral ones (n = 3–12, P < 0.001). Hence, AP inter-
vention had more beneficial influence on ipsilateral DRGs to
reverse excessive eATP than contralateral ones and made cor-
responding adjustment according to the amplitude of ATP
rise.

Sciatic nerve is the peripheral fiber trunk of DRG neurons.
In the present work, one of its branches (tibial nerve) senses
the inflammatory ankle; another branch (peroneal nerve)
senses the ST36 acupoint. We found that bilateral sciatic
nerves had a strong ability to hydrolyze exogenous ATP
(exo-ATP) (Fig. 7). Sciatic nerves were bathed in 200 μl

and 2 μM exo-ATP for 2 min. Regarding ipsilateral sciatic
nerves, around half (51%) of the exo-ATP was hydrolyzed by
the control nerves. This ability was further strengthened in the
CFA group (74%) (n = 9–10, P < 0.001 vs. control) and
restored in the AP-treated group (57%) (n = 10, P < 0.001
vs. CFA group). The same phenomenon also was observed in
contralateral nerves.

Unilateral AP modulated NTPDases mRNA expression
in bilateral DRGs and sciatic nerves

Besides physiological release, hydrolysis is another vital way
to control eATP levels. Our previous work indicated that rat
DRGs expressed ecto-ATPase that hydrolyzed eATP released
fromDRGs themselves [16] or the co-cultured mast cells [13].
The present work corroborated such finding again. As we
described in Fig. 4b, mechanical stimulus induced higher
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Fig. 2 The effects of AP treatment on CFA-induced bilateral pain sensa-
tion. a, b The changes of thermal and tactile sensation of ipsilateral hind
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contralateral hind paws, respectively. Acute ankle arthritis was

established by injecting CFA in left hind ankle on day 0. AP treatment
started on day 2 and was repeated on day 3 (see Fig. 1). One-way
ANOVA followed by LSD was used. ###P<0.001 vs. control group.
***P<0.001 vs. CFA group
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eATP in DRGs, which was further heightened in control
DRGs by ARL67156 (100 μM), a nonspecific inhibitor of
ecto-ATPase (n = 4, P < 0.001) (Fig. 8a). Along with the
results that sciatic nerves dramatically hydrolyzed exo-ATP
(Fig. 7), we hypothesized that both DRGs and the nerves
expressed ecto-ATPase, which contributed the conversion
from ATP to ADO.

Various cell-attached or soluble ecto-nucleotidases precise-
ly control eATP levels. Among them, nucleoside triphosphate
diphosphohydrolases (NTPDases) family represents the major
nucleotide-hydrolyzing enzymes, which degrade ATP to
AMP with intermediate formation of ADP [17]. NTPDases
family includes NTPDase-1, -2, -3 and -8. We studied
NTPDase-2 and -3 in this work because they mainly express
in satellite cells and nociceptive-associated small and medium
neurons, respectively [18, 19]. Moreover, by directly reducing

eATP level and correspondingly indirectly raising ADO con-
centration, NTPDase-2 and -3 have been considered to have
the function of terminating and regulating pain transmission
[18, 20].

Our RT-PCR data revealed that mRNA of NTPDase-2
and NTPDase-3 was expressed in the control ganglia. In
injured ipsilateral DRGs, NTPDase-3 was downregulated
(n = 6–8, P < 0.05 vs. blank), on which AP had no effect
(Fig. 8b). In contralateral DRGs, NTPDase-2 was greatly
upregulated (n = 6–8, 2.3 times more than blank, P < 0.001
vs. bank), which was further potentiated by AP (n = 6–8,
8.9 times more than control, P < 0.001 vs. CFA) (Fig. 8c).
The expression of contralateral NTPDase-2 in the CFA (n
= 6, P < 0.001) and AP-treated groups (n = 6–8, P < 0.001)
was significantly higher in comparison with ipsilateral side
(Fig. 8d1, d2).
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Regarding sciatic nerve, NTPDase-2 and -3 were also equal-
ly expressed in the bilateral control group. The expression of
ipsilateral NTPDase-2 was upregulated in the CFA group (n =
6–8, P < 0.01 vs. blank) but was suppressed by AP treatment (n
= 6–8, P < 0.05 vs. CFA group) (Fig. 9a). Differently,
NTPDase-3 was not influenced in the CFA group but was
significantly increased in the AP-treated group (n = 6–8, P <
0.001 vs.CFA) (Fig. 9a). Contralateral side had same responses
(n = 6–8, P < 0.001 vs. CFA group) (Fig. 9b). Comparing the
bilateral NTPDases expressions in sciatic nerves (Fig. 9c1, c2),
ipsilateral NTPDases-2 in the CFA group was significantly
higher than contralateral (n = 6, P < 0.01). While, this phenom-
enon was opposite in the AP group (n = 8, P < 0.01).

Figure 10 demonstrated the comparisons of the NTPDase-2
and -3 expressions between DRGs and sciatic nerves. The
changes of NTPDase-2 expression were inconsistent. On the
ipsilateral side, sciatic nerves had more NTPDase-2 mRNA
than ganglia in the CFA group (n = 6–8, P < 0.001) (Fig.
10a1). On the contrary, contralateral DRGs expressed more
NTPDase-2 than nerves both in the CFA (n = 6–8, P < 0.001)
and in the AP-treated group (n = 6–8, P < 0.001) (Fig. 10b1).

The changes of NTPDase-3 expression were consistent be-
tween bilateral. NTPDase-3 mRNA was significantly higher
in treated nerves than that in treated ganglia (n = 6–8, P <
0.001) (Fig. 10a2, b2).

Discussion

AP relieved bilateral pain hypersensitivity induced by
unilateral inflammation

This work unveiled that unilateral ankle arthritis caused
the local pain hypersensi t ivi ty and the thermal
hyperalgesia in bilateral side (Fig. 2a–c). The contralateral
response is a dramatic phenomenon of central sensitiza-
tion [21], which is due to the sensitization of the spinal
and supraspinal nerve system [22]. Such dramatic second-
ary hyperalgesia phenomenon has been reported in
capsaicin-induced pain in animal [23] and human [24]
tests.
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Although thermal hyperalgesia and allodynia caused by
unilateral inflammation were more severe in the ipsilateral
paw than in the contralateral one (Fig. 3a2, b2), AP treatment
had a similar analgesic efficacy on them (Fig. 3c) indicating
AP analgesia has non-specific systemic mechanism.
Moreover, the consistent changes of exo-ATP hydrolysis of
bilateral sciatic nerves (Fig. 7) also confirm this point. In the
field of AP studies, it is common to exert AP in the

contralateral acupoints to treat a given disease, which is re-
ferred to as “Juci technique” and has been proven to have
equal or even higher anti-nociception effect than ipsilateral
AP [25, 26]. Differently, our current work found that ipsilat-
eral AP had an equal analgesia effect on the contralateral sec-
ondary hyperalgesia (Fig. 3c). But both events implied that
spinal or supraspinal levels are involved in the AP analgesia
mechanism. Such non-specific systemic effect might be
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attributed to the involvement of multiple brain areas and var-
ious neurochemical substrates in AP analgesia [2, 4].

Besides, AP also has specific anti-nociceptive effect,
mainly when acupoints and pain areas are innovated by
the same or adjacent spinal segments. According to the
principle of spinal segmental innervation, signals from
acupoints and pain sites interact in the spinal cord dorsal

horn [2]. This may explain why reversal effect of AP on
eATP in ipsilateral ganglia was greater than that in contra-
lateral ganglia (Fig. 6).

Inflammation modulated eATP levels of innervated
DRGs and sciatic nerves

ATP can release from neurons somata [14], nerves [27], and
nerve endings [15]. Excessive eATP has been found in lumbar
DRGs that are injured by neuropathic pain [12]. Our work for
the first time revealed that acute inflammatory-injured DRGs
also resulted in excessive eATP (Figs. 4a and 5a).

We found that mechanical stimulus dramatically increased
eATP level of DRGs of each group, especially the CFA group
(Figs. 4d and 5d). Ganglia contain primary somatosensory
neurons that have similar physiological properties with nerve
endings, including ATP release [14, 15], purinoceptors ex-
pression [28], and nucleotidases expression [20]. Thus, the
changes in DRG mechanosensitivity may partially reflect the
mechanosensitivity of their peripheral nerve endings that in-
nervate the hind paw and ST36 acupoint. But the excessive
mechanosensitive of contralateral DRGs cannot explain the
normal touch sensation of contralateral hind paw in the CFA
group. An alternative explanation may be the tenderness of
ST36 acupoint. According to acupoint sensitized theory, the
acupoints become activated and sensitized when the body is
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suffering from some corresponding diseases [29]. The sensi-
tized acupoints manifest in different forms, for example, ex-
pansion of the receptive field and heat sensitization.
Tenderness is also included [30, 31]. These sensitized
acupoints distribute not only in local areas but also in distal
areas along the corresponding meridians or bilateral sides of
the spine [29]. This hypothesis still needs to be evidenced by
determining the touch sensations of bilateral acupoints in
future.

The expression of purinoceptors is upregulated in DRGs
injured by peripheral neuropathic or inflammatory pain or
visceral pain, including P2X3 (P2X2/3), P2X7, and P2Y1, 2, 6

receptors [3, 4]. Our findings about excessive eATP of
inflammatory-injured DRGs were an important complemen-
tation for enhancing purinergic signaling during pain process.
Similar study had unveiled that in the neck incision pain mod-
el, eATP level together with the expression of P2X7 receptors
was upregulated in the spinal cord [32].

Regarding sciatic nerves, we unexpectedly uncovered that
normal nerves had strong power to hydrolyze exo-ATP (Fig.
7). It has been reported that non-myelinating Schwann cells of
rat sciatic nerves express nucleotidases [33]. Electric field

stimulation ( 8 Hz, 60 s) can induce sympathetic nerves to
release soluble nucleotidases [27]. We observed that such hy-
drolysis capacity was further heightened when injured (Fig.
7). More exo-ATP hydrolysis will result in less activation of
pain-related P2XRs and accumulation of anti-nociception-
related ADO.We wonder whether it is a self-protective action
exerted by nerve system during pain process, similarly to the
study that opioid receptors cluster in the CFA-injured sciatic
nerves [34]

AP modulated eATP levels of innervated DRGs and
sciatic nerves

Compared with purinoceptors, their ligands are less studied in
AP analgesic mechanism. To date, EAP has been reported to
further upregulate the increased eATP content in the dorsal
part of the cervical-spinal cord caused by neck incision in rats
[32]. AP markedly increases extracellular ADO in acupoint of
human [35] and rodents [36, 37]. We suppose that this ADO
accumulation may attribute to eATP hydrolysis. The present
work uncovered that AP treatment restored CFA-induced ex-
cessive eATP levels (Figs. 4d and 5d). Reducing eATP might
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be another important potential mechanism of AP analgesia,
supplemented with downregulation of purinoceptors.

Compared with DRGs, AP-regulated sciatic nerves are less
studied. As reported, in CFA-induced ankle arthritis model of
rats, AP in ST36 markedly increases the discharges of the
sciatic nerves [38]. In injured sciatic-nerve model of rats,
EAP in ST36 and GB30 (Huantiao acupoint) change the elec-
trical physiological properties of sciatic nerves, upregulate the
expression of some factors, including brain-derived nerve
growth factor, nerve growth factor, and growth associated
protein-43, and increase the proliferation of the Schwann cells
[39]. In the current work, AP retreatment restored the capacity
of exo-ATP hydrolysis in sciatic nerves, whichwas previously
potentiated by injured (Fig. 7). As we discussed above, higher
exo-ATP hydrolysis in the CFA group may hint at a self-
protective effect. Then, reversing exo-eATP hydrolysis
through APmay relieve this defense to facilitate body homeo-
stasis. AP, to some degree, enhances the ability of human
body to self-medicate by facilitating physiological homeosta-
sis, as a regulator of robustness, to treat model rats.

As most other studies, we examined eATP level after bulk
equilibration in extracellular samples with the L-L reagent,
which greatly underestimate the true ATP concentration in

the pericellular environment because of the dilution by exter-
nal buffer and its rapid degradation by ecto-nucleotidases.
Recent studies have suggested that true levels of eATP at the
plasma membrane are underestimated by >20-fold with bulk
phase measurements [40]. Thus, in situ, the changed eATP in
our work was enough to activate more P2X receptors.
Moreover, due to the presence of nucleotidase in DRGs and
sciatic nerves [18, 19], more ADP-sensitive P2YR and P1
receptors were involved.

AP modulated NTPDases mRNA expression in DRGs
and sciatic nerves

Besides physiological release, hydrolysis is another main
pathway to control eATP. When ATP is released from nerves
as a transmitter, there is a concomitant release of nucleotidases
that rapidly degrade ATP sequentially to ADP, AMP, and
ADO, thereby terminating the action of ATP [27]. In rat cor-
tical astrocytes, the presentence of exo-ATP (1 mM) can fas-
ten the hydrolysis of ATP and ADP via increasing the expres-
sion of NTPDase-2 and Nt5e [41]. As the major ecto-ATPase,
NTPDases hydrolyze ATP into AMP with intermediate for-
mation of ADP [17]. Thus, they can directly downregulate the
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activity of P2X receptors, and meanwhile, indirectly upregu-
late the functions of certain P2Y or P1 receptors by collabo-
rating with some ecto-AMPase, for example, ecto-5′-nucleo-
tidase (Nt5e) [18]. So far, behavior evidence in animal tests
has corroborated that prostatic acid phosphatase (PAP) [42]
and Nt5e [43, 44], hydrolyzing ATP and AMP into ADO,
respectively, have anti-nociceptive effects at spinal cord level
via activation of A1 receptors. Despite the lack of behavioral
evidence, histomorphometric and histochemical studies have
observed that NTPDase-3 is mainly expressed on nociceptive-
associated small and medium neurons in sensory ganglia [18,
19] and co-localized with markers of nociceptors [18]. These
findings suggest that NTPDase-3 could be a potential target
for modulating pain sensation. Differently, NTPDase-2 was
mainly expressed in satellite cells in DRG [18] and Schwann
cells around sciatic nerves [33]. In sensory ganglia, except for
P2X7, all P2X and P2Y1, 2, 4, 11 subtypes are found in sensory
neurons [7, 8, 45]. In sciatic nerves, P2X7, P2Y1, P2Y6, and
P2Y11 receptors are expressed [8, 46]. Hence, the existence of
NTPDases will change the activation of these subtypes.

In the current work and our previous studies [13, 16], the
effects of ARL67156 indicated the existence of ecto-ATPase
in rats’ DRGs, which was confirmed by the RT-PCR. But
there were great inconsistent changes of NTPDases between
ipsi- and contra-lateral peripheral nervous system, especially
NTPDase-2 in DRGs (Fig. 8b, c). The asymmetric changes of
NTPDases between ipsi- and contra-lateral (Figs. 8 and 9)
might be another underlying distinct mechanism in peripheral
nervous system between the conventional and contralateral
AP, which is complementary to their different central mecha-
nism [26, 47]. The inconsistent responses between bilateral
DRGs and bilateral sciatic nerves can only partly but not fully
explain eATP changes of ganglia (Figs. 4a and 5a) and nerves
(Fig. 7). But, in general, AP had potentiating effects on
NTPDase-2 expression in contralateral DRGs (Fig. 8d1) and
NTPDase-3 expression in bilateral sciatic nerves (Fig. 9c2),
which are expected to reduce the amplitude and duration of
ATP-related pain signal transmission. Of course, these ideas
still need further exploration to confirm.

To date, there is no clear evidence of AP regulatory role in
ecto-nucelotidase. The only clue is that in mouse models of
acute and chronic pain, injection of PAP into Weizhong
acupoint (BL40) has anti-nociceptive effects similar to AP
treatment, which lasts up to 6 days following a single injection
[48].

Conclusions

Unilateral AP could play anti-nociceptive effects on bilateral
hypersensitivity, which is accompanied by reversing the in-
creased eATP levels of bilateral injured lumbar DRGs and
restoring the heightened exo-ATP hydrolysis of bilateral

injured sciatic nerves. Additionally, the nucleotidases
NTPDase-2 and -3 mRNA were modulated in the process of
AP analgesia.
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