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P2X7 receptor deletion attenuates oxidative stress and liver damage
in sepsis
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Abstract
Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in
response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-
inflammatory cytokines (i.e., IL-1β) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue
damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis
was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7−/−) mice. The oxidative stress in
the liver of septic mice was assessed by 2′,7′-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive sub-
stances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT)
and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of
inflammatory cytokines and chemokines by RT-qPCR.We observed an increase in the reactive species and lipid peroxidation in
the liver of septic WT mice, but not in the liver from P2X7−/− animals. We found an imbalance SOD/CAT ratio, also only WT
septic animals. The number of inflammatory cells and the gene expression of IL-1 β, IL-6, TNF-α, IL-10, CXCL1, and CXCL2
were higher in the liver of WT septic mice in comparison to P2X7−/− septic animals. In summary, our results suggest that the
P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.
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Introduction

Sepsis is a life-threatening organ dysfunction characterized by
an uncontrolled and excessive inflammatory response to an

infection [1, 2]. Although considerable progress has been
made in medical assistance over the last decades, sepsis re-
mains a healthcare challenge worldwide [3, 4]. The inflamma-
tory response and organ injury in sepsis initiate when
pathogen-associated molecular patterns (PAMPs) bind to pat-
tern recognition receptors (PRR), such as toll-like receptors
(TLR), on the surface of immune cells [5, 6]. PRRs trigger
activation of inflammatory signaling pathways and the pro-
duction of inflammatory mediators, including cytokines,
chemokines, and oxygen and nitrogen reactive species [7–9].
When the inflammation becomes systemic and excessive, the
overproduction of inflammatory mediators affects the func-
tionality of several vital organs, including the liver [10–12].

The liver is the largest gland in the human body. This organ
mediates several essential metabolic processes and modulates
immunological responses [12–14]. The strategic position of
the liver in the bloodstream permanently exposes the organ
to several antigens and microbial products with a potential
immunostimulatory capacity [14, 15]. Therefore, the liver
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plays a central role in the development of systemic inflamma-
tion in the initial course of sepsis by sensing danger signals;
recognizing pathogens; producing cytokines, chemokines,
and acute-phase proteins; and regulating metabolism.
Therefore, liver protection is critical for host survival in sepsis
[12, 16–18].

Extracellular adenosine triphosphate (eATP) plasma levels
increase during sepsis [19]. This nucleotide is an important
danger signal that regulates the recruitment and function of
inflammatory cells via purinergic receptors [20, 21]. The P2
purinergic family is composed of G protein-coupled P2Y and
ionotropic P2X receptors [22]. Among the P2 receptor, the
P2X7 receptor has been the most associated with the activation
of oxidative and inflammatory mechanisms in several inflam-
matory and infectious diseases [23–28]. The P2X7 receptor is a
critical player in the activation of the NLRP3 inflammasome,
acting as a second signal for caspase-1 activation and subse-
quent release of IL1-β [29, 30]. Besides, this receptor mediates
the production of ROS and NO in inflammatory cells [31, 32].
In sepsis, P2X7 genetic deletion improves survival and reduces
circulating inflammatory cytokines and systemic inflammation
[23, 33]. Moreover, P2X7 receptor pharmacological inhibition
reduces sepsis-induced intestinal barrier disruption [27] and
brain inflammation and oxidative damage [24, 34]. P2X7 re-
ceptor induces inflammation and oxidative damage in a model
of carbon tetrachloride-induced steatohepatitis in obese mice
by NADPH oxidase-dependent mechanisms [35]. Therefore,
here we sought to investigate the role of ATP-gated P2X7
receptor in sepsis-induced inflammation, oxidative damage,
and liver injury in sepsis.

Materials and methods

Animals

We used adult male (8–10 weeks old; 25–30 g weight) wild-
type (WT) and P2X7 receptor-deficient (P2X7−/−) C57BL/6
mice originally obtained from Jackson Laboratories (Bar
Harbor, ME, USA). The animals had free access to food and
water and were maintained on a 12:12-h light-dark cycle at a
temperature of 22 ± 1 °C. Experiments were performed with
age- and weight-matched animals, according to the guidelines
of the Brazilian College of Animal Experimentation
(COBEA). The Commission for the Ethical Use of Research
Animals (CEUA) from the Federal University of Rio de
Janeiro (UFRJ) approved all experiments (protocol number:
IBCCF138).

Sepsis induction by cecal ligation and puncture

Sepsis was induced by cecal ligation and puncture (CLP), a
procedure that generates acute polymicrobial peritonitis and,

subsequently, a systemic inflammation, as previously de-
scribed [36, 37]. Mice were anesthetized by the injection of
ketamine (80mg/kg) and xylazine (5mg/kg) intraperitoneally,
and a 1-cm incision was made on the abdomen. The cecum
was exposed and ligated below the ileocecal junction. A dou-
ble puncture was made using a 21-gauge needle, a small
amount of stool was gently squeezed out to induce peritonitis,
and the peritoneal cavity and abdominal wall were closed by
suture. Sham-operated animals (controls) underwent an iden-
tical laparotomy but without ligation and perforation. Animals
received 1 mL of 0.9% isotonic NaCl sterile solution subcu-
taneously to compensate for the third spacing that occurred
during the surgery. The liver samples were collected 24 h after
the procedure.

Alanine aminotransferase and aspartate
aminotransferase dosage

For the determination of ALT and AST, kinetic kits commer-
cially available (Bioclin®, Belo Horizonte, MG, Brazil;
cat#K049-6 and K048-6, respectively) were used, and the
experiments were carried out according to the manufacturer’s
instructions. Briefly, 24 h after sepsis induction, the animals
were euthanized in a chamber with an atmosphere rich in CO2,
and the blood was collected through cardiac puncture using a
1-mL syringe/27-G needle with sodium citrate (5%). Plasma
was obtained through centrifugation (2000×g for 10 min) and
used for enzymatic analysis. The enzyme reaction was ana-
lyzed on a SpectraMax2 spectrophotometer (Thermo Fisher
Scientific, Waltham, Massachusetts). The results are
expressed in units per liter (U/L).

Oxidative profile

Tissue preparation for oxidative analysis

The liver tissue was homogenized in 10 volumes (1:10 w/v) of
20mM sodium phosphate buffer (pH 7.4) containing 140 mM
KCl and centrifuged at 800×g for 10 min at 4 °C. The super-
natant was used immediately for the determination of oxida-
tive parameters.

2′,7′-Dichlorofluorescein (H2DCF) oxidation assay

The production of reactive species was measured according to
the methodology based on the oxidation of the 2′,7′-
dichlorofluorescein (H2DCF) proposed by LeBel et al. [38].
The samples were incubated in the dark in a 2′,7′-
dichlorofluorescein diacetate solution (H2DCF-DA) for
30 min at 37 °C. H2DCF-DA is cleaved by cellular esterases,
and the resulting H2DCF is eventually oxidized by the reactive
species present in the samples. This last reaction produces a
fluorescent product: dichlorofluorescein (DCF), which was
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measured at 488-nm excitation and 525-nm emission. Results
are presented in nmol DCF per milligram protein [38].

Dosage of thiobarbituric acid-reactive substances

As previously as described by Ohkawa et al. [39], tissue su-
pernatant (200 μL) was mixed with 50 μL 8.1% SDS; 375 μL
of 20% acetic acid in aqueous solution (v/v) pH 3.5; and
375 μL of 0.8% thiobarbituric acid and mixed in the vortex.
The reaction is produced in a boiling water bath for 1 h. The
mixture was cooled in water for 5 min and centrifuged 750×g
for 10 min. TBARS levels were determined by spectropho-
tometry at 535 nm. A calibration curve with the standard
1,1,3,3-tetrametoxypropane was used. TBARS levels are
expressed as TBARS nanomole per milligram protein.

Determination of total sulfhydryl content

The oxidation of thiols in samples leads to the formation of
disulfide bonds. Sulfhydryl content is inversely proportional
to the oxidative damage in proteins. In this method, 5,5′-
dithiobis (2-nitrobenzoic) acid (DTNB) undergoes a chemical
modification in the presence of sulfhydryl groups, generating
5-thio-2-nitrobenzoate (TNB). We mixed 50 μL of homoge-
nate with 980 μL of PBS buffer pH 7.4 containing 1 mM
EDTA. The reaction was started by the addition of 30 μL of
10 mM DTNB and incubated for 30 min at room temperature
in a dark room. The absorbance of this yellow product (TNB)
was measured spectrophotometrically at 412 nm. The results
were presented as TNB per milligram protein [40].

Nitric oxide production

Nitrite, which is a metabolite of nitric oxide (NO), was
evaluated using Griess reagent (1:1 mixture of 1% sul-
fanilamide in 5% phosphoric acid and 0.1% N-(1-
Naphthyl)ethylenediamine dihydrochloride in water.
The samples were incubated 10 min at room tempera-
ture in a Griess reagent. Nitrite was used as the stan-
dard, and absorbance was measured at 543 nm. The
results were expressed as micromole of nitrite per mil-
ligram of protein [41].

Catalase assay

CAT assay is based on the consumption of H2O2, which is
measured by a spectrophotometer at 240 nm in a reaction
medium containing 20 mM H2O2, 0.1% Triton X-100,
10 mM phosphate buffer solution pH 7.0, and an amount of
protein from 0.1 to 0.3 mg per mL of reaction medium [42]. A
unit of CAT is defined as 1 mmol of H2O2 consumed per min,
and the specific activity was represented as units of CAT/mg
of protein.

Superoxide dismutase assay

SOD activity is based on the ability of the pyrogallol com-
pound to self-oxidize in the presence of superoxide, which is
also a substrate for the SOD enzyme. The inhibition of the
auto-oxidation of this compound occurs in the presence of
SOD, whose activity was measured indirectly by spectropho-
tometry at 420 nm [43]. A calibration curve was made with
purified SOD as a standard to calculate SOD activity in the
samples. The results were presented as units of SOD per mil-
ligram of protein.

Protein quantification

The determination of the total amount of proteins was made
using a spectrophotometric method using the Pierce BCA Kit
(Thermo Fisher Scientific) and the SpectraMax2 plate reader
(Thermo Fisher Scientific) under the manufacturer’s instruc-
tions. This method combines the reduction of copper (II) to
copper (I) cations by proteins in an alkaline medium (the
biuret method) with the selective and sensitive colorimetric
detection of copper (I) cations. The purple reaction product
exhibits an absorbance at 562 nm, whose increase is practical-
ly linear with the increase in protein concentration. Protein
concentrations were reported on a calibration curve using bo-
vine serum albumin (BSA) absorbance values as standard.
The expression of the total protein concentration in the sam-
ples is shown in microgram per milliliter.

RNA isolation and real-time quantitative PCR

For the extraction of total RNA from the liver tissue, the
TRIzol® reagent (Thermo Fisher Scientific, Somerset, NJ,
USA) was used according to the manufacturer’s instructions.
RNA samples were quantified, and the purity was assessed in
a NanoDrop BioChrom apparatus (Harvard Bioscience,
Holliston, Massachusetts, USA). The synthesis of cDNA
was performed with 1 μg of total RNA using the High
Capacity Reverse Transcription Kit with RNase Inhibitor
(Thermo Fisher Scientific, Somerset, NJ, USA) according to
the manufacturer’s instructions in a Master Cycler Gradient
thermocycler (Eppendorf, Hamburg, Germany).

The real-time quantitative PCR reactions (RT-qPCR) were
performed using the Master Mix SYBR Green PCR (Applied
Biosystems, Foster City, California, USA) in a StepOnePlus
real-time PCR system (Applied Biosystems, Foster City,
California, USA). The reactions were performed in a final
volume of 10 μL, using 2 μL of diluted cDNA (1:10) and
300 nM of each of the primer forward and reverse. The rela-
tive gene expression was calculated using the comparative
cycle threshold (Ct) method (ΔΔCt). The β-actin gene
(Actb) was used as the endogenous control. The sham WT
group was chosen as the control group. The primer sequences
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are provided in Table 1. The results are presented as relative
expression of the gene of interest/Actb.

Histological analysis

The liver was harvested 24 h after induced sepsis and fixed
with 4% paraformaldehyde, embedded in paraffin, and 5-μm-
thick slices were stained with hematoxylin-eosin. A patholo-
gist, who was blinded to the experimental groups, analyzed
the histopathology and performed the semiquantitative
analyses.

A histological scoring system was applied to evaluate the
degree of liver injury associated with sepsis after observation
of all liver sections of each animal. The histological parame-
ters steatosis, spotty (focal) necrosis, and ballooning degener-
ation were considered. The hepatic injury scoring measures
features of liver injury induced by sepsis and is represented as
the unweighted sum of scores of steatosis (0–3), hepatocellu-
lar ballooning or degeneration (0–2), and spotty (focal) necro-
sis (0–2) with the final score ranging between 0 and 7. This
analysis was adapted from the histological scoring system for
the nonalcoholic fatty liver disease [44].

The degree of steatosis (steatosis identified as homoge-
neous lipid droplet in the hepatocyte cytoplasm present as
microvesicular or macrovesicular) was graded and scored as

follows: 0, none; 1, ≤ 30% hepatocytes containing fat; 2,
30%–70% hepatocytes containing fat; 3, ≥ 70% hepatocytes
containing fat. Ballooning degeneration was graded and
scored as follows: 0, normal hepatocytes with cuboidal shape
and pink eosinophilic cytoplasm; 1, presence of clusters of
hepatocytes with a rounded shape and pale, reticulated cyto-
plasm and the same size of normal ones; 2, clusters of round-
ed, enlarged hepatocytes. The grade of spotty necrosis consid-
ered was as follows: 0, lack of focal necrosis; 1, one focus
viewed with a 10× objective lens; 2, more than two foci
viewed with a 10× objective lens.

Lobular inflammation was evaluated in histological sec-
tions of the liver stained with HE and represented the presence
of polynucleated cells (neutrophils) or mononucleate cells
(macrophages/monocytes or lymphocytes) in the sinusoidal
lumen. Fifteen photomicrographs were obtained from each
animal using a light microscope Eclipse E800 (Nikon,
Japan) assisted with a digital camera Evolution VR Cooled
Color 13 bits (Media Cybernetics, Bethesda, USA). The soft-
ware Q-Capture 2.95.0, version 2.0.5 (Silicon Graphics Inc.,
EUA), was utilized to obtain high-resolution images (2048
X1536 pixels buffer) using the 20× objective lens. Results
were expressed as the total number of inflammatory cells/
histological field.

Statistical analysis

The Kolmogorov-Smirnov statistical test was used to verify
whether the data obtained in this work has a normal distribu-
tion. The results were analyzed through a two-way analysis of
variance (two-way ANOVA) followed by Tukey’s multiple
tests, considering p < 0.05 as a statistical difference. The
GraphPad Prism Version 5 program (GraphPad Software
Incorporation) was used for data analysis.

Results

P2X7 receptor expression increases in the liver of
septic mice

ATP-P2X7 receptor signaling seems to be relevant for the
excessive inflammation in sepsis. Initially, we found that
P2X7 receptor expression significantly increases in the liver
of WT septic animals 24 h after sepsis induction (Fig. 1;
p < 0.05), suggesting the participation of this receptor in he-
patic dysfunction in sepsis.

P2X7 receptor genetic deletion attenuates liver injury
in septic mice

Hepatocyte lesions were determined by quantifying the activ-
ity of liver enzymes (ALT and AST) in the mice serum 24 h

Table 1 PCR primer sequences

Gene Sequence (5′–3′)

P2rX7 Sense AAT CGG TGT GTT TCC TTT GG

P2rX7 Antisense CCG GGT GAC TTT GTT TGT CT

Nox1 Sense TAA ATT GCC CCT CCA TTT CC

Nox1 Antisense CCC TGC TGC TCG AAT ATG AA

Nox2 Sense CCC TTT GGT ACA GCC AGT GAA GAT

Nox2 Antisense CAA TCC CGG CTC CCA CTA ACA TCA

Nos2 Sense ACA TCG ACC CGT CCA CAG TAT

Nos2 Antisense CAG AGG GGT AGG CTT GTC TC

Il1β Sense TTC AGG CAG GCA GTA TCA CTC

Il1β Antisense CCA CGG GAA AGA CAC AGG TAG

Il6 Sense CTG CAA GAG ACT TCC ATC CAG

Il6 Antisense AGT GGT ATA GAC AGG TCT GTT GG

Tnf Sense GGT CCC CAA AGG GAT GAG AAG TTC

Tnf Antisense CCA CTT GGT GGT TTG CTA CGA CG

Il10 Sense GCT GGA CAA CAT ACT GCT AAC C

Il10 Antisense ATT TCC GAT AAG GCT TGG CAA

Cxcl1 Sense ACT GCA CCC AAA CCG AAG TC

Cxcl1 Antisense TGG GGA CAC CTT TTA GCA TCT T

Cxcl2 Sense CCA ACC ACC AGG CTA CAG G

Cxcl2 Antisense GCG TCA CAC TCA AGC TCT G

Actb Sense TAT GCC AAC ACA GTG CTG TCT GG

Actb Antisense ACT CCT GCT TGC TGA TCC ACA T
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after sepsis induction. The presence of these enzymes in the
circulation provides evidence of the extent and magnitude of
the hepatic lesion. An increase in AST and ALTwas observed
in the serum from both WT and P2X7−/− septic animals when
compared to sham groups (p < 0.05) (Fig. 2 a and b, respec-
tively). However, this increase in both enzymes was signifi-
cantly lower in P2X7−/− septic animals in comparison to WT
septic mice (p < 0.05) (Fig. 2). Thus, the absence of the P2X7
receptor seems to be important to protect liver integrity during
the initial 24 h of sepsis.

P2X7 receptor genetic deletion reduces sepsis-
induced oxidative stress in mice liver

We observed a significant increase (p < 0.05) in the produc-
tion of reactive species in septic WT animals when compared
to theWT sham group, confirming the well-reported oxidative
stress-induced by sepsis (Fig. 3a, left). P2X7-deficient septic
mice did not show an increase in DCF oxidation when com-
pared to their respective sham group (p > 0.05). Therefore, the
genetic deletion of P2X7 blocked the increase in DCF oxida-
tion in the liver homogenates from septic animals compared to
the septic WT group (p < 0.05) (Fig. 3a, right). In addition to
the increase in free radical production, we observed an in-
crease (p < 0.05) in lipid peroxidation and nitrite content in
WT septic animals in comparison with the WT sham group
(Fig. 3 b and d, left). No increases (p > 0.05) were observed
in P2X7−/− septic mice when compared to the P2X7−/−

sham group (Fig. 3 b and d, right). No differences were
detected in the sulfhydryl content (Fig. 3c; p > 0.05). Our
results confirm the oxidative stress induced by sepsis in the
liver and show that P2X7-deficient animals were protected,
suggesting that the P2X7 receptor may be necessary for the
production of reactive species in the liver of septic animals
24 h after surgery.

P2X7 receptor contributes to an imbalance
in the activities of antioxidant enzymes
(SOD/CAT) in the liver septic animals

SOD and CAT activities were analyzed in the liver of septic
mice. A decrease in CAT activity was observed (Fig. 4b, left)
in septic WT animals (p < 0.05), but no statistical differences
were found in SOD activity in CLP WT animals when com-
pared with their respective sham group (Fig. 4a; p > 0.05).
When we evaluated the P2X7−/− animals, we did not verify

Fig. 2 AST and ALT in the serum ofWT and P2X7−/− animals 24 h after
sepsis induction. Serum AST in WT (left (a)) and P2X7−/− (right (a))
mice. Serum ALT in WT (left (b)) P2X7−/− (right (b)) mice. The
asterisk represents statistical difference (*p < 0.05) when compared to
sham groups with their respective CLP group, while the number sign
represents statistical difference (#p < 0.05) when compared to CLP
groups (WT CLP vs. P2X7−/− CLP). Data were analyzed by two-way
ANOVA and they are expressed as mean + S.E.M. (n ≥ 10 animals per
group)

Fig. 1 P2X7 receptor gene expression in the liver of septic mice. P2X7
gene expression was analyzed by RT-qPCR in the liver from septic mice
24 h after surgery. Data are expressed as mean ± S.E.M. (n = 5 for both
sham and CLP groups). Data were analyzed by t test. Statistically signif-
icant differences between sham and CLP groups are represented by as-
terisks (*p < 0.05)
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significant differences in SOD or CAT activities when com-
pared with their sham group (Fig. 4 a and b; p > 0.05). These
data show an imbalance in SOD/CAT activity in the liver of
septic WT animals (p < 0.05), which can result in an accumu-
lation of H2O2 (Fig. 4c, left). This imbalance between the ratio
of SOD/CAT activities was not observed in the liver P2X7−/−

septic animals (Fig. 4c, right).

Gene expression of iNOS and NADPH oxidases
increase in the liver of septic animals

Biomarkers of redox status were assessed in the liver of septic
animals 24 h after sepsis. Besides, we investigated the role of
the P2X7 receptor in modulating the expression of enzymes
involved in oxidative metabolism, such as NADPH oxidases
and iNOS in liver tissue. Our results show an increase
(p < 0.05) in the relative expression of Nox1, Nox2, and
Nos2 in WT septic animals (Fig. 5a–c, left). The P2X7 recep-
tor deletion prevented these increases since no differences in

Nox1, Nox2 (p > 0.05), and a partial increase in Nos2 expres-
sion was observed in P2X7−/− septic mice in comparison to
the P2X7−/− sham group (Fig. 5a–c right). Taken together,
these results indicate that the P2X7 receptor contributes to
the activation of NADPH oxidases and iNOS in liver tissue
during sepsis.

P2X7 receptor functionality is crucial to upregulate
cytokine and chemokine expression in the liver of
septic animals

The liver is one of the foremost vital organs severely affected
during sepsis, and the macrophages Kupffer cells (KC) resid-
ing in the liver produce pro-inflammatory cytokines that con-
tribute to the liver damage in sepsis. Thus, we investigated the
contribution of the P2X7 receptor to IL-1β, IL-6, TNF-α, and
IL-10 expression in the liver of septic animals. As depicted in
Fig. 6, both IL-1β, IL-6, TNF-α, and IL-10 increase in the
liver of WT septic animals when compared to the sham group

Fig. 3 The genetic deletion of the P2X7 receptor blocks the production of
free radicals in the liver of septic mice. a The production of reactive
species as measured by the oxidation of 2′,7′-dichlorofluorescein
(DCF), b lipid peroxidation measured by substances reactive to
thiobarbituric acid (TBARS), c total sulfhydryl content, and d nitrite
levels in the liver of WT and P2X7−/− mice 24 after sepsis induction.

The asterisk represents statistical difference (*p < 0.05) when compared
to sham groups with their respective CLP group, while the number sign
represents statistical difference (#p < 0.05) when compared to CLP
groups (WT CLP vs. P2X7 CLP−/−). Data were analyzed by two-way
ANOVA and they are expressed as mean ± S.E.M. (n ≥ 4 animals per
group)
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(p < 0.05) (Fig. 6 a, b, c, and d respectively, left). In the ab-
sence of the P2X7 receptor, no significant increases in the
expression of these cytokines were observed in the organ
24 h after CLP induction compared to the sham group
(Fig. 6 a, b, c, and d, right) (p > 0.05).

Chemokines, such as CXCL1 and CXCL2, are small mo-
lecular weight proteins that are important for acute liver

damage, and hepatocytes, KC, HCS, and LSEC produce them
in response to injury. The expression of CXCL1 and CXCL2
by these cells generates a chemoattractive gradient that pro-
motes the infiltration of monocytes, macrophages, NK cells,
and neutrophils from the circulation to the inflammation site.
To determine whether the P2X7 receptor is involved in mech-
anisms that upregulate the expression of these pro-
inflammatory chemokines, we also evaluated the relative gene

Fig. 4 P2X7 receptor induces an imbalance in SOD/CAT activities in the
liver from septic animals. a SOD activity wasmeasured by auto-oxidation
of the pyrogallol compound and b CAT activity was assessed by the
disappearance of H2O2 liver homogenates from WT and P2X7−/− septic
mice. c The ratio between SOD/CAT activities. The asterisk represents
statistical difference (*p < 0.05) when compared to sham groups with
their respective CLP group, while the number sign represents statistical
difference (#p < 0.05) when compared to CLP groups (WTCLP vs. P2X7
CLP −/−). Data were analyzed by two-way ANOVA and they are
expressed as mean + S.E.M. (n ≥ 4 animals per group)

Fig. 5 Gene expression of iNOS and NADPH oxidases increases in the
liver ofWT but not in P2X7-deficient septic mice. The relative expression
of the a Nox1, b Nox2, and c Nos2 genes was analyzed by RT-qPCR in
the liver of septic mice 24 h after surgery. The asterisk represents statis-
tical difference (*p < 0.05) when compared to sham groups with their
respective CLP group, while the number sign represents statistical differ-
ence (#p < 0.05) when compared to CLP groups (WT CLP vs. P2X7
CLP−/−). Data were analyzed by two-way ANOVA and they are
expressed as mean ± S.E.M. (n ≥ 7 animals per group)
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expression of the Cxcl1 and Cxcl2 genes in the liver of
septic mice 24 h after surgery. We observed an increase
(p < 0.05) in the relative expression of Cxcl1 in both
septic WT and P2X7−/− animals (Fig. 6e), while Cxcl2
increases (p < 0.05) only in WT septic mice (Fig. 6f,
left). However, Cxcl1 expression was higher (p < 0.05)
in WT than P2X7−/− septic animals (Fig. 6e). These
results suggest that the P2X7 receptor is important to

the production of cytokines and chemokines in the liver
during the acute phase of sepsis.

P2X7 receptor deletion reduces the number of
inflammatory cells in liver tissue from septic mice

Liver histology demonstrated significant liver injury 24 h after
sepsis induction in both WT and P2X7−/− mice when

Fig. 6 Gene expression of inflammatory cytokines and chemokines in the
liver of septic mice. The relative gene expression of the genes of a Il1β, b
Il6, c Tnf, d Il10, e Cxcl1, and f CxCl2 was analyzed by RT-qPCR in the
liver of septic mice 24 h after surgery. The asterisk represents statistical
difference (*p < 0.05) when comparing the sham WT groups with their

respective CLP group, while the number sign represents statistical differ-
ence (#p < 0.05) when comparing the CLP P2X7−/− groups with CLP
WT. Data were analyzed by two-way ANOVA and they are expressed
as mean ± S.E.M. of 3 independent experiments (n ≥ 6 animals per group)
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compared to their respective sham groups (Fig. 7a–g). Our
histological analysis also shows an increased number of in-
flammatory cells in the liver parenchyma 24 h after sepsis
induction in both septic WT and P2X7−/− animals (p < 0.05)
(Fig. 7a–d). The number of inflammatory cells was higher in
WT septic mice in comparison to P2X7−/− septic animals
(p < 0.05) (Fig. 7e). Therefore, the P2X7 receptor seems to
be involved in the recruitment of cells to liver parenchyma,
promoting inflammation and tissue damage.

Steatosis, ballooning degeneration, focal necrosis, and in-
flammation constituted the morphological patterns of liver
injury in sepsis. Therefore, an index of liver injury (Fig. 7h)
and a histological score of liver inflammation (Fig. 7e).
Histological analysis of septic animals demonstrated that he-
patic steatosis—characterized by the presence of cytoplasm
vacuolization—was observed in both WT and P2X7−/− CLP
mice, albeit slightly pronounced in WT animals (Fig. 7f–h).
Indeed, P2X7−/− mice have an abnormal liver structure in
which steatosis and cytoplasm vacuolization is already present
independent of sepsis induction (Fig. 7 b and h), as reported
by Arguin et al. [45].

Discussion

Sepsis is initiated by an infection that generates a systemic
inflammatory response disrupting the immune system and
triggering a cascade of events that can progress to multiple
organ failure and host death [1]. Sepsis is the leading cause of
death in non-cardiac intensive care units worldwide and rep-
resents a significant public health concern [4, 46]. P2X7 re-
ceptor deletion attenuates the systemic inflammatory re-
sponses and improves outcomes in a murine model of sepsis
[33]. This receptor aggravates inflammation and tissue dam-
age in different organs during sepsis, including the lungs,
intestine, and brain [24, 27, 33, 34]. Here, we show that the
P2X7 receptor deletion attenuates inflammation and oxidative
damage in the liver from septic mice.

The P2X7 receptor mediates liver oxidative stress, inflam-
matory mechanisms [23, 47], and fibrogenesis [48]. This re-
ceptor triggers Kupffer cell inflammatory cellular responses
and hepatocyte damage in liver diseases [20, 23, 49]. Indeed,
we found that P2X7 receptor expression increases in the liver
of septic mice. Moreover, AST and ALT enzymes released by

Fig. 7 P2X7 genetic deletion reduces the number of inflammatory cells in
the liver from septic mice. Representative photomicrographs of hepatic
parenchyma of WT and P2X7−/− mice before (a and b, respectively) and
24 after surgery (c and fWT; and d and g P2X7−/−). c Liver parenchyma
from CLP WT mice showing numerous inflammatory cells inside the
sinusoids (arrows). d Less number of inflammatory cells in liver
parenchyma of CLP P2X7−/− mice. e Quantitative analysis of the
number of inflammatory cells per field in the liver parenchyma.
Representative images of hepatocyte alterations in WT (f) and P2X7−/−

(g) septic mice. Blue arrows indicate steatosis in hepatocytes, and blue
stars indicate swelling/ballooning. h Liver injury score. The asterisk
represents statistical difference (*p < 0.05) when compared to sham
groups with their respective CLP group, while the number sign
represents statistical difference (#p < 0.05) when compared to CLP
groups (WT CLP vs. P2X7−/− CLP). Data were analyzed by two-way
ANOVA and they are expressed as mean ± S.E.M. (n ≥ 5 animals per
group). Twenty fields were analyzed by histological section for WT and
P2X7−/− animals. Scale bar = 100 μm
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hepatic cell disruption are reduced in the serum of septic
P2X7-deficient mice, providing evidence for the relevance
of this receptor in sepsis-associated liver injury.
Accordingly, P2X7-deficient mice showed a significant re-
duction in serum ALT in experimental models of
acetaminophen-induced acute liver injury [49] and nonalco-
holic steatohepatitis [47]. Nevertheless, our histological anal-
ysis showed that P2X7-deficient mice have basal hepatic
steatosis, and because of that, no differences were observed
between WT and P2X7−/− in the hepatic liver score. These
results are in accordance with a previous study that showed
a disturbed glucose metabolism with consequent higher gly-
cemia, dyslipidemia, increased susceptibility to glucose intol-
erance, and insulin resistance, with consequent hepatic
steatosis in P2X7-deficient mice [45]. Therefore, the reduction
in serum hepatic enzymes and oxidative stress in P2X7−/−

septic mice suggest that these alterations are secondary to
sepsis, while hepatocyte injury score in these animals depends
on the altered glucose metabolism with basal hepatic steatosis,
as detected in sham mice.

Oxidative damage contributes to metabolic and inflamma-
tory liver diseases [50]. Oxidative stress represents an imbal-
ance between oxidizing and antioxidant agents. Cellular pro-
teins, membrane lipids, and DNA are cellular structures that
are primarily affected by ROS and RNS [51]. The oxidative
imbalance results in structural and functional abnormalities in
the liver. One of the main characteristics of sepsis pathophys-
iology is the activation of tissue-resident immune cells (i.e.,
Kupffer cells) and the infiltration of phagocytic cells in liver
parenchyma (i.e., PMN and monocytes). These cells respond
to an infection producing superoxide, hydrogen peroxide, and
nitric oxide inducing tissue damage [50, 52, 53]. Our results
show an increase in the production of reactive species in the
liver of septic WT animals, as already reported in sepsis [52,
54].

Interestingly, the P2X7 genetic deletion blocked this effect
24 h after surgery, indicating a lower production of reactive
species in these animals. In addition to the increase in free
radical production, we observed an increase in lipid peroxida-
tion and nitrite content in septicWT animals, but not in P2X7-
deficient septic animals. These results are in accordance with
previous reports showing P2X7-dependent mechanisms for
the generation of ROS and RNS by murine macrophages
[28, 31, 32, 55] and in the brain of septic mice [24].

In an experimental model of nonalcoholic steatohepatitis,
the P2X7 receptor triggers oxidative stress, inflammation, and
fibrosis [47, 56]. P2X7 receptor-selective antagonist Brilliant
Blue G also prevents acetaminophen hepatotoxicity by reduc-
ing tissue oxidative stress and inflammation [57]. Indeed,
Chatterjee et al. [35] showed that the P2X7 receptor induces
the production of reactive species through NADPH oxidase-
dependent mechanisms in a model of carbon tetrachloride-
induced steatohepatitis. In this study, the P2X7 receptor

increases the expression of the p47 phox subunit that binds
to membrane subunit gp91 phox producing reactive species.
We found an increased expression of Nox1 and Nox2 in the
liver of WT but not in the liver of P2X7−/− mice. Therefore,
the P2X7 receptor seems to be involved in the activation of
oxidative mechanisms in the liver, contributing to sepsis
pathogenesis.

The antioxidant enzymes SOD and CAT have a protective
role in several diseases [51, 58]. Our results evaluating the
activity of endogenous antioxidant enzymes in the hepatic
tissue showed a decrease in CAT activity in WT septic ani-
mals but not in SOD activity. The ratio between the enzymatic
activities of SOD/CAT in septic WT animals indicates an
accumulation of H2O2. This imbalance was not observed in
P2X7−/− septic animals, providing evidence that the function-
ality of this receptor also alters antioxidant mechanisms.
These data are relevant since the antioxidant capacity in pa-
tients with sepsis correlates with the severity of the disease and
outcomes [59].

Activated KCs have the ability to produce NO through the
induction of iNOS expression [60]. The NO produced reacts
with ROS to form a highly reactive and toxic compound, the
ONOO−. In our settings, nitrite levels and theNos2 expression
are significantly attenuated in P2X7−/− septic animals when
compared with WT septic mice. Several factors modulate the
iNOS gene expression pathway. The cytokines TNF-α and
IL-1β can induce the expression of NOS2 in the liver [60].
We also found a significantly diminished expression of IL-1β,
IL-6, TNF-α, IL-10, CXCL, and CXCL2 in the liver of
P2X7−/− septic mice. We and others have shown that genetic
deletion or pharmacological inhibition of the P2X7 receptor
decreases the production of inflammatory cytokines (IL-1β,
IL-6, and IL-10), NO production, and the recruitment of neu-
trophils into the peritoneal cavity after sepsis induction [23,
27, 33]. In this line of evidence, our histological analysis
showed a reduced number of inflammatory cells in the liver
P2X7−/− septic mice, suggesting that the activity of this recep-
tor is relevant for recruiting inflammatory cells to the liver
during sepsis progression. These results provide evidence for
a critical role of the P2X7 receptor in the development of liver
inflammation and tissue damage in sepsis. Such findings are
also in accordance with studies in humans that identified
P2X7 receptor single-nucleotide polymorphism of gain-of-
function related with an increased sepsis severity [61].

Conclusion

The present study shows that P2X7 receptor functionality
contributes to sepsis-associated liver oxidative damage and
inflammation favoring the progression of the disease.
Therefore, these findings suggest possible therapeutic ap-
proaches based on P2X7 genotyping and administration of
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P2X7 receptor blockers to limit oxidative damage, inflamma-
tion, and liver injury during the acute phase of sepsis.
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