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Abstract

Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an
immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar
collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is
involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When
studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research,
although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and
tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in
piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling
in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined
mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca®*])
measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y,, P2Y¢ and P2X, were
detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all
cell lines.
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Introduction

The alveolar epithelium (AE), consisting of type I and type II
AE cells (AECs), is faced with a vast number of challenges.
With every breath taken, the AE is exposed to inhaled patho-
gens and particles that escape the nasopharyngeal and
mucociliary clearance of the upper and lower respiratory tract
and thus constitutes an important immunological barrier
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function. The AE has to withstand cyclic stretching and per-
petual shear stress during respiration; it needs to protect itself
from desiccation and alveolar edema through sensitive main-
taining of alveolar surface fluid balance, upholds the surface
tension to prevent alveolar collapse; and it essentially ensures
gas exchange [1-3].

In the last years, growing evidence has shown that in addi-
tion to its function as the universal energy source, ATP is
involved in the pathogenesis of lung diseases, promoting in-
flammation as a damage-associated molecular pattern [4], in-
creasing the survival of tumor cells [5], and amplifying acute
lung injury [6]. In resting cells, the intracellular concentration
of ATP is within the millimolar range, whereas the extracellu-
lar concentration of this nucleotide is much lower, in the
nanomolar range [7]. In AECs, a rise in ATP secretion is
triggered, for example, by aggravated airflow, by cellular
stretching, by changes in mucus hydration, and during lung
disease and infection [8—13]. After secretion out of the cell,
ATP acts as a paracrine messenger and is involved in the
activation of purinergic receptors (P2Rs) [14-16]. P2Rs are
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divided into two major families of P2X and P2Y receptors
(P2XRs and P2YRs). P2XRs, consisting of seven subgroups,
form a cellular membrane-spanning pore and serve as an ionic
channel upon activation, increasing the cell’s permeability for
cations and small ions. In contrast, P2YRs are seven-
transmembrane-domain G protein-coupled receptors and con-
sist of eight subgroups [10-12, 17-19]. P2YRs can be further
divided into P2Y- and P2Y,-like families. The latter in-
cludes P2Y,, P2Y 5 and P2Y 4 receptors, which share con-
siderable sequence homology and couple to G;-proteins.
Activation of the remaining P2YRs of the P2Y-like family,
namely P2Y, P2Y,, P2Yy, P2Yy, and P2Y 4, results in inter-
action with Gy/1; or Gy, activating PKC and IP; pathways and
facilitating the release of calcium from the endoplasmic retic-
ulum (ER). An increase in cytosolic calcium concentration
([Ca2+]cyt) is the common final path of many purinergic sig-
naling cascades [17, 20, 21].

P2Rs are commonly found on virtually all AEC subtypes
and cell lines; however, their expression profiles and even
their functional activity are not yet completely characterized
[22-26]. Nevertheless, knowledge of purinergic receptor ex-
pression is crucial when downstream ATP-mediated effects or
purinergic signaling cascades are to be analyzed. Primarily
isolated AECs are still considered the gold standard when
performing in vitro research of pulmonary cellular signaling
pathways. It remains a controversial issue whether immortal-
ized cell lines can serve as an appropriate alternative in this
context. Here, we examined P2Rs expression and functional-
ity in AECs, comparing the commonly used human adenocar-
cinoma cell line A549 to primarily isolated rat type I AECs
(p1AECs) and to the immortalized rat alveolar cells lines L2,
R3/1, and RLE, with a specific focus on ATP-induced
[Ca**].y changes.

Materials and methods
Materials

Fluorophore Fura 2-AM (10 uM) was dissolved in 0.02%
pluronic (both from PromoKine, Heidelberg, Germany). The
agents ethylene glycol-bis (B-aminoehtylether)-N,N',N"
tetraacetic acid (EGTA 500 uM), ethylenediamintetraacetic
acid (EDTA; 500 uM), ATP, UDP, UTP, «, p-
methyleneATP («,p-meATP), 2-methylthioATP (2-
meSATP), and 2'(3')-O-(4-benzoylbenzoyl)ATP (Bz-ATP)
(all agonists, 100 uM) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). The antagonists A438079 hydrochlo-
ride (10 uM), 5-(3-Bromophenyl)-1,3-dihydro-2H-
benzofuro(3,2-¢]-1,4-diazepin-2-one (5-BDBD, 10 uM), and
AR-C 118925XX (10 uM) were bought from Tocris
Bioscience (Minneapolis, MN, USA). Solutions and agents
were dissolved in Hank’s balanced salt solution (HBSS) buffer
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(150 mM Na*, 5 mM K*, 1 mM Ca**, 1 mM Mg**, and
20 mM HEPES at pH 7.4). Antagonists were dissolved in
dimethyl sulfoxide. To establish Ca*-free conditions, we used
Ca’*-free HBSS buffer containing 500 uM EGTA.

Cell culture

AS549 cells (DSMZ, Braunschweig, Germany) were grown in
F-12K medium (ATCC, Manassas, VA, USA) supplemented
with 10% fetal bovine serum (FBS, Biochrom AG, Berlin,
Germany), 10,000 U/ml penicillin and 10,000 pg/ml strepto-
mycin (Biochrom) at 37 °C with 5% CO,.

L2 rat alveolar epithelial cells (L2) and R3/1 rat alveolar
epithelial cells were kindly provided by Thea Koch
(University of Dresden, Dresden, Germany). The cells were
grown in T75 flasks at 37 °C with 5% CO, in DMEM
(Biochrom) supplemented with 10% FBS, 10,000 U/ml pen-
icillin and 10,000 pg/ml streptomycin in an incubator.

Rat alveolar type II cells (RLE-6TN, LGC Standards
GmbH, Wesel, Germany) were grown in Ham’s F12 medium
supplemented with 0.01 mg/ml bovine pituitary extract,
0.005 mg/ml insulin, 0.00125 mg/ml transferrin (all from
Sigma-Aldrich), 2.5 ng/ml insulin-like growth factor I,
2.5 ng/ml epidermal growth factor (both from PeproTech
Inc., Rocky Hill, NJ, USA), 10% FBS, 10,000 U/ml penicillin
and 10,000 pg/ml streptomycin. All cells were cultured at
37 °C with 5% COs.

Primary type Il AEC isolation and culture

Male Sprague Dawley rats (300 g) were purchased from
Charles River (Sulzfeld, Germany). After review and approval
by the local committee and the government of Hamburg, rats
were treated humanely following the “principles of laboratory
animal care.” The isolation and culture of type IT AECs from
adult rats were performed according to procedures described
previously [27, 28]. Using this method, isolated type I AECs
can secret surfactant in vitro, which is one of the key pheno-
typic endpoints to characterize type I AECs [29, 30]. Briefly,
after injection of 100 mg/kg body weight (BW) Ketanest
(Pfizer, New York, USA) and 20 mg/kg BW Rompun
(Bayer, Leverkusen, Germany), the lungs were surgically ex-
posed under sterile conditions. The pulmonary artery was can-
nulated, and the lungs were then perfused with 10 ml F—12 K
medium supplemented with 25 mM HEPES three times to
remove the blood. After multiple lavages (5 x 10 ml) via the
cannulated trachea with 5 mM EDTA and 5 mM EGTA in
phosphate-buffered saline (PBS) solution (Sigma-Aldrich),
the lungs were explanted. Upon instillation of 20 ml warm
F-12K medium enriched with 50 mM HEPES and 4.5 units/
ml elastase Grade II (Worthington, Lakewood, New Jersey,
USA), the lungs were incubated at 37 °C for 30 min. After
dissection of the large airways, the lungs were added to
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20 ml F-12 K medium containing 25 mM HEPES, 20% FBS,
and 100 pg/ml DNase (Type 1V, Sigma-Aldrich), quickly
minced and incubated at room temperature for 10 min.
Then, the solution was mixed by end-over end-rotation for
4 min and filtered successively through cotton gauze (1, 2,
and 4 ply, Fuhrmann, Munich, Germany) following filtration
through a nylon mesh (100 and 40 pum, Corning, New York,
USA). Upon centrifugation of the cell suspension at 150xg for
10 min and resuspension in 20 ml warm DMEM, the cells
were applied to plates covered with rat IgG (Sigma-Aldrich)
for 1 h at 37 °C. The non-adherent cells were removed, col-
lected in sterile tubes, twice centrifuged at 150xg for 10 min
and resuspended in 3 ml of culture medium (DMEM with
10% FBS, penicillin 10,000 U/ml, streptomycin
10,000 pg/ml and keratinocyte growth factor 10 ng/ml
(Sigma-Aldrich)). After the determination of cell number
and viability, the cells were plated on collagen-treated cover-
slips and incubated at 37 °C and 5% CO,. To slow the dedif-
ferentiation of AEC II to AEC I in vitro, the keratinocyte
growth factor was added to the culture medium. This growth
factor leads to the maintenance of type II AECs such as the
expression of surfactant protein C and prevents the expression
of'aquaporin 5, an AEC type I specific marker, forup to 7 days
in vitro [31]. To distinguish between piAECs types I and II,
laminar bodies were labeled with the fluorophore
LysoTrackerGreen (LTG) (Molecular Probes, Thermo
Fischer Scientific, Waltham, MS, USA). As these organelles
only occur in type II cells, LTG-positive cells were defined
respectively. The type 11 purity of the isolated cell population
was approximately 75%.

Ca”*-imaging by fluorescence microscopy

The cells were placed on coverslips, loaded with Fura 2-
AM in HBSS buffer, pH 7.3, and incubated for 30 min at
37 °C in the dark. Using epifluorescence microscopy with
a dual excitation wavelength (Olympus, Hamburg,
Germany), Ca®* quantification was performed. The cells
that underwent appropriate intervention and changes in
fluorescence were measured using the mercury arc lamp
illumination directed through 340-nm and 380-nm interfer-
ence filters (Semrock, Rochester, NY, USA). The
fluorophore exposure was controlled by a filter wheel
(Sutter Lambda 10-C, Sutter Instrument Co., Novato, CA,
USA). The fluorescence emission was measured at 510 nm
using an objective lens (x 40, water immersion, numerical
aperture 0.8, Zeiss, Gottingen, Germany) and a charge-
coupled device camera (Coolsnap HQ2, Photometrics,
Tucson, AZ, USA). The Ca**-concentrations were calcu-
lated from computer-generated 340/380 nm ratios based on
a dissociation constant of 224 nmol/l and the appropriate
calibration parameters [32].

Real-time quantitative RT-PCR

Total RNA was isolated using the RNeasy Kit (Qiagen,
Hilden, Germany). For the cDNA synthesis, 2 pg of RNA
were used in the Omniscript Reverse Transcription Kit
(Qiagen) according to the manufacturer’s instructions. RT-
qPCR was performed with gene- and species-specific primers
for the purinergic receptors P2Y, P2Y,, P2Y,4 P2Y,, P2Y 4,
P2Y,,, P2Y 3, P2Y,4, P2X,, P2X,, P2Xs, P2X,, P2Xs, and
P2X (Tables 1 and 2). The primers were chosen to span exon-
exon junction to exclude contamination with genomic DNA.
The cDNA template was amplified on a LigthCycler® 96
(Roche) according to the manufacturer’s protocol. The nor-
malization of the amplification products was performed using
stable housekeeping genes of the respective cell line. We used
B-2-Microglobulin for L2, R3/1, and piAECs, beta-actin for
RLE, and the ATP synthase subunit beta for A549 cells. The
relative quantification of data was conducted using the
Relative Expression Software Tool (REST, version 9).

Western blotting

Cells were lysed in RIPA-buffer supplemented with the pro-
tease inhibitor cocktail complete Mini EDTA free (Roche,
Mannheim, Germany) for 30 min on ice. Cell lysates were
centrifuged at 12,000xg for 20 min at 4 °C. Whole cell lysates
(20 pg) were reduced in sample buffer (NuPage sample buff-
er, Life Technologies GmbH, Darmstadt, Germany) and re-
ducing agent (NuPage sample reducing agent, Life
Technologies GmbH) at 95 °C for 5 min. The samples were
separated by a 4-12% Bis-Tris polyacrylamide gel (NuPage,
Life Technologies GmbH) and transferred to nitrocellulose
filters (Life Technologies GmbH) by electroblotting. After
addition of blocking buffer (PBS plus 0.1% Tween containing
5% milk powder) followed by agitation for 1 h, specific P2R
antibodies were applied overnight at 4 °C (P2Y,, P2Y4 P2Ys,
P2Y,, P2Y,; P2X;, P2X,, P2Xs, and P2X; from Alomone
Labs, Jerusalem, Israel; P2Y; from Genway, San Diego, CA,
USA; and P2Y 4 from Abcam, Cambridge, UK). Bound pri-
mary antibodies were visualized using horseradish
peroxidase-conjugated secondary antibodies (1 h at room tem-
perature with agitation) and enhanced chemiluminescent sub-
strate (ECL) reagent (ECL Plus Western Blotting Detection
Reagents, GE Healthcare, Freiburg, Germany) according to
the manufacturer’s protocol. For molecular weight standards,
we used a MagicMark™ XP protein ladder (Life
Technologies). The specificity of the antibodies was evaluated
using specific antigens or positive controls.

Protein determination

Protein concentrations were determined by using a
bicinchoninic acid (BCA protein assay kit, Thermo
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Table 1 P2X-receptor oligo sequences used for RT-qPCR
P2X, Human Forward 5'-CTG GCT GAG AAG GGT GGA GTG GTT GG-3'
Reverse 5-TGG CCC CAT GTC CTC AGC GTATTT G-3'
Rat Forward 5'-GAA GTG TGATCT GGA CTG GCA CGT-3'
Reverse 5'-GCG TCA AGT CCG GAT CTC GAC TAA-3'
P2X, Human Forward 5'-GCT GCT CAT CCT GCT CTA CTT CGT GTG G-3'
Reverse 5-GGG GTA GTG GAT GCT GTT CTT GAT GAG G-3'
Rat Forward 5'-GTG GTA CGT CTT CAT CGT GC-3’
Reverse 5'-GAA CCC TCATGC TCT CTG GG-3'
P2X5 Human Forward 5'-ATC AAC CGA GTA GTT CAG C-3'
Reverse 5'-GAT GCA CTG GTC CCA GG-3'
Rat Forward 5'-TGG CGT TCT GGG TAT TAA GAT CGG-3'
Reverse 5'-CAG TGG CCT GGT CAC TGG CGA-3’
P2X, Human Forward 5'-GAG ATT CCA GAT GCG ACC-3'
Reverse 5'-GAC TTG AGG TAA GTA GTG G-3'
Rat Forward 5-GAG GCATCA TGG GTATCC AGA TCA AG-3'
Reverse 5-GAG CGG GGT GGA AAT GTA ACT TTA G-3'
P2X5 Human Forward 5'-AGC ACG TGA ATT GCC TCT GCT TAC-3'
Reverse 5'-ATC AGA CGT GGA GGT CAC TTT GCT C-3'
Rat Forward 5'-GCC GAA AGC TTC ACC ATT TCC ATA A-3'
Reverse 5'-CCT ACG GCATCC GCT TTG ATG TGA TAG-3’
P2X; Human Forward 5'-CCC CGG CCA CAA CTA CAC CAC GAG AAA C-3'
Reverse 5'-CCG AAG TAG GAG AGGGTTGAG CCG ATG-3’
Rat Forward 5'-GTG CCATTC TGA CCA GGG TTG TAT AAA-3'
Reverse 5'-GCC ACC TCT GTA AAG TTC TCT CCG ATT-3'
ATP5B Human Forward 5'-ACT ACG CCA TGT TGG GGT TT-3'
Reverse 5'-CGC ATA GTC CCT GAC AGG AT-3’
B2m-1 Rat Forward 5'-TGT CTC AGT TCC ACC CAC CT-3’
Reverse 5'-ATT ACA TGT CTC GGT CCC AGG-3'

Scientific, Rockford, IL, USA) according to the manufac-
turer’s instructions.

SiRNA knockdown of P2Rs

The cells were transfected with 10 nM siRNA for P2Y>,-,
P2Y¢-, P2Y4-, P2X4-, P2X5-R (Qiagen), or scrambled
siRNA (Qiagen), respectively, using the transfection reagent
Lipofectamine RNAIMAX (Life Technologies GmbH) ac-
cording to the manufacturer’s protocol. The siRNA (20 uM)
was diluted in serum-free 500 pl Opti-MEM (Life
Technologies) to obtain a 10 nM siRNA solution in the indi-
cated coverslips or center dishes. The transfection reagent
(1:10) was added to each coverslip/center dish. Upon 15 min
of incubation, 125,000 cells diluted in 2.0 ml complete growth
medium (without antibodies) were added to each coverslip/
center dish. Following 48 h of incubation, the transfected cells
underwent RT-qPCR analysis to confirm successful knock-
down or Ca®* imaging to evaluate the functional conse-
quences of receptor knockdown.
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Statistical analysis

The results of the mRNA expression analysis were presented
as the mean = SD of the values obtained from the indicated
number of experiments. The results for the calcium imaging
were presented as the median +75% and 25% quartile of the
values obtained from the indicated number of experiments.
The analysis was performed using paired or unpaired ¢ tests
with equal variances for dependent and independent variables,
respectively. The results were adjusted according to the meth-
od of Bonferroni. The statistical calculations were performed
using the software of the R project for statistical computing
(“R”). Statistical significance was accepted at p < 0.001.

Results
MRNA detection of purinergic receptors

First, the AECs were screened for the presence of P2R
mRNA. Concerning P2XR, a heterologous appearance
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Table 2 P2Y-receptor oligo

sequences used for RT-gPCR P2Y, Human Forward 5’-CCC TGG GCC GGC CTC AAA AAG AAG AAT G-3’
Reverse 5-CAA GCC GGG CCC TCA AGT TCATCG TTT TC-3’
Rat Forward 5-TCA GAA GGA GAC TGT CCC GA-3'
Reverse 5-CAG GGA CTT CTT GTG ACC ATG T-3'
P2Y, Human Forward 5'-GCA GTG GCG AGA GGA GC-3'
Reverse 5-GAA CTC TGC GGG AAA CAG GA-3'
Rat Forward 5-TAA AGA GGA ACG AAC ACC GGG-3'
Reverse 5'-CCA GCC TCC AGC ATT TTT CA-3'
P2Y, Human Forward 5'-CCA CCT GGC ATT GTC AGA CAC C-3'
Reverse 5'-GAG TGA CCA GGC AGG GCA CGC-3’
Rat Forward 5'-CTG GAC TAA GGA AGC TAG GGG G-3'
Reverse 5-GGC TGG GAC CTA GTG ATG TG-3'
P2Y, Human Forward 5'-GCT AAC TCT TGG CCT CCC TG-3'
Reverse 5'-GTA GAC ACA GGT GGT GGG TG-3’
Rat Forward 5-TCT TGC ATG AGA CAG ATT CTC CA-3’
Reverse 5-GCA GCA GTC GCT TGA AAT CC-3’
P2Y,, Human Forward 5-GGC ACA ATG AGG AAG GAA ACG-3'
Reverse 5-CAG GAC TTG GCA CCC GAG AC-3'
P2Y, Human Forward 5'-ATC TCT GAT TGT GAA GCC CTC T-3'
Reverse 5-TGG TGC ACA GAC TGG TGT TA-3'
Rat Forward 5'-TGC AAT GCC GAG AAC ACT CT-3'
Reverse 5'-CCC CAC CTT CCT GTC CTT TC-3'
P2Y 5 Human Forward 5'-CCT CCC AAA GGT GAC ACT GG-3'
Reverse 5-ACA AAC ACC CAC AGA GCC AA-3'
Rat Forward 5'-GTT CAT CCA CAT CCC CAG CA-3'
Reverse 5-CCC AGG GGA CTC TTT AGG GA-3'
P2Y 4 Human Forward 5-TCATTG CGG GAA TCC TAC TC-3'
Reverse 5-CCC AAA GAA CAC AAT GCT GAC-3’
Rat Forward 5-GTT GCC AGG ATC CCC TAC AC-3’
Reverse 5-ACT TTT CTG CGT GCT GTA GA-3'
ATP5B Human Forward 5-ACT ACG CCATGT TGG GGT T-3'
Reverse 5’-CGC ATA GTC CCT GAC AGG AT-3'
B2m-1 Rat Forward 5-TGT CTC AGT TCC ACC CAC CT-3’
Reverse 5-ATT ACA TGT CTC GGT CCC AGG-3’

between the different cell lines was observed. For each P2R
family member and cell type, the mRNA level of a particular
subtype that was detected in all AECs was arbitrarily set as 1,
and the expression of other P2Rs was displayed in relation to
this value to facilitate comparisons (Fig. 1). P2X4R was cho-
sen for the P2XRs family, and P2Y,R was chosen for the
P2YR family, as considerable numbers of transcripts of both
P2Rs were detected in all the AECs examined. Regarding
P2XRs, P2X R (in piAECs), P2X,R (in RLE), P2X;3R (in
L2, R3/1 and RLE), P2XsR mRNA (in L2 and A549), and
P2X5R (in L2, RLE, and piAECs) were observed. Regarding
P2YRs, P2Y,R and P2Y4R mRNA was detected in all AECs;
P2Y 4R mRNA was detected in the rat-derived cell lines L2,
R3/1, RLE, and in piAECs, while P2Y; mRNA was detected
in piAECs and A549 cells. In addition, P2Y,- P2Y3- and
P2Y ;4 mRNA was only found in piAECs.

Protein expression of purinergic receptors

Western blot analysis revealed that P2X4R and P2Y,R were
the only P2Rs expressed in the AECs (Table 3 and Fig. 1
supplement) examined in this study. All other P2Rs displayed
a heterologous distribution pattern. Concerning P2XRs, P2X
protein was found in L2 and A549, and P2X,R protein was
found in piAECs and RLE (Table 3A and Fig. 1 supplement).
Regarding the P2YR family, P2Y4R protein (in L2, R3/1,
RLE, and A549) and P2Y4R protein (in L2, R3/1, piAECs,
and A549) were detected (Table 3B and Fig. 1 supplement).
We tested P2Y 4R protein expression in A549 cells despite the
lack of a positive mRNA transcript for this receptor as we
were unable to distinguish between mRNA or genomic
DNA in our RT-qPCR due to the absence of introns in the
human P2Y4R gene [33].
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Fig. 1 mRNA expression of the P2 receptor genes using real-time quan-
titative RT-qPCR. The expression level of the receptors was normalized to
their respective housekeeping genes. a The expression level of P2X,R
was arbitrarily expressed as 1. The gene expression levels of the other

Examination of P2R functionality after ATP
stimulation

To examine P2R functionality in AECs, we focused on deter-
mining the cytosolic calcium levels. An increase in cytosolic
calcium concentration [Caz+]Cyt is one of the most immediate
consequences of purinergic activation. To distinguish between
type I and II piAECs, laminar bodies were labeled with the
fluorophore LTG (Fig. 2). Because these organelles only occur
in type II cells, LTG-positive cells were defined as type II
AECs. piAECs [C212+]Cyt determinations were performed only
in LTG-positive cells by merging LTG- and Fura-2-stained
cells (Fig. 2).

In Fig. 3, the characteristic traces of real-time [Ca2+]Cyt
courses under baseline condition and upon ATP stimulation
for each AEC are shown.

Table 3  Expression of P2Rs in the respective cell lines detected by
western blotting
A
P2X, P2X, P2X; P2X, P2Xs P2X,
L2 X X
R3/1 X
RLE X X
piAECs X X
A549 X X
B
P2Y, P2Y, P2Y, P2Y¢ P2Y, P2Y,, P2Y;3; P2Yy,
L2 X X X
R3/1 X X X
RLE X X
piAECs X X
A549 X X X
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The baseline [Ca2+]cyt ranged from 29 to 118 nM (L2:
46.4 nM, R3/1: 29.4 nM, RLE: 117.5 nM, piAEC: 91.9 nM,
and A549: 88.6 nM; median values of each AEC) (Fig. 4A)
and remained on this level if no further action was taken (the
observation period was 150 min, data not shown). The cells
were then stimulated with 100 uM ATP, an endogenous ago-
nist of almost all P2Rs except P2Y 14, which is stimulated by
nucleotide sugars and UDP [34, 35]. Exposure to ATP led to
an immediate increase in [Caz+]cyl followed by a slow de-
crease (Fig. 3) (L2: 107.7 nM, R3/1: 98.9 nM, RLE:
184.4 nM, piAECs: 191.44 nM, and A549: 182.5 nM; median
values of each AEC) (Fig. 4B).

To localize the source of the calcium increase, namely,
extracellular, intracellular and/or both, calcium imaging was
conducted in a calcium-depleted environment. The ionotropic
P2XRs form a membrane-spanning ion channel upon activa-
tion by ATP, allowing large extracellular cations to permeate
the cellular membrane [8]. Thus, applying a calcium-free en-
vironment prevents a P2XR-mediated Ca”*-response (Fig.
4C). Exclusively in L2 and piAECs calcium-free conditions
led to a significant decrease in the ATP-induced calcium re-
sponse compared to that seen in a calcium-containing envi-
ronment (L2: 9.8 nM, R3/1: 56.3 nM, RLE: 131.8 nM,
piAECs: 45.2 nM and A549: 242.6 nM; median values of
each AEC) (Fig. 4C and D). This result indicates a functional
role for P2XRs in contributing to the ATP-induced [Ca2+]cyt
increase in L2 and piAECs but not in R3/1, RLE or A549
cells.

To evaluate the functionality of distinct P2R, we exposed
piAEC and AEC lines to physiologically endogenous as well
as synthetic P2R agonists (Figs. 5 and 6). UTP is considered a
predominant agonist of P2Y,R and P2Y4R, while UDP
(100 uM) is a strong physiological agonist of P2Y¢ and
P2Y14 [9]. The UTP-induced response in the L2 cells was
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LTG

Fig. 2 Image of LTG-positive type Il piAECs by immunofluorescence microscopy. Left: LTG staining; middle: Fura 2-AM staining; right: merged
image of Fura 2-AM and LTG stained cells. White scale bar (right picture) is 10 pm

not as high as that upon ATP stimulation (16.45 nM), but in
the R3/1, RLE, and A549 cells, UTP administration even
exceeded stimulation with ATP (218.5 nM, 235.3 nM, and
1415.2 nM, respectively) (Fig. 5). As piAECs lacked P2Y,
expression (Table 3B), UTP stimulation was unnecessary in
these cells. The pyrimidine-based nucleotide UDP evokes an
increase in [C212+]Cyt in the L2, R3/1 and piAECs (79.1 nM,
195.4 nM, and 38.4 nM, respectively). We did not test the
endogenous agonist ADP because we could not detect P2Rs
(P2Y}, P2Y,, and P2Y}3), which are activated by this nucle-
otide, neither on piAECs nor on AECs. The synthetic P2R
agonist o, 3-meATP (100 uM) evoked only a slight calcium
response in all respective AECs (Fig. 6). An agonist of P2X,
and P2X5 2-meSATP (100 pM), led to a significant calcium
increase in the L2 (81.1 nM), R3/1 (83.8 nM), and A549
(16.9 nM) cells but not in the RLE or piAECs. Upon stimu-
lation with BzATP, a strong agonist of P2X, and P2X5, R3/1
(128.0 nM), RLE (871.1 nM), and piAECs (45.7 nM)
displayed a significant increase in [C212+]Cyt (Fig. 6).

SiRNA knockdown of P2Rs

Taken together, data obtained from mRNA and protein deter-
mination as well as from functional testing indicated that
P2Y,R (L2, R3/1, RLE, piAECs and A549), P2Y(R (L2,
R3/1, and piAECs), P2Y4R (R3/1 and A549), P2X,R (L2),
and P2XsR (L2) were the most likely candidates mediating the
increase in [C212+]cyt upon ATP stimulation in the AECs ex-
amined. To elucidate the proportion of a respective receptors’
effect on the ATP-induced increase in [Ca2+]cyt, the cells were
transfected with the respective siRNA. However, no P2R
knockdowns could be achieved in piAECs, as these cells were
unable to keep a type I state for the duration of the siRNA
transfection process and instead dedifferentiated back to the
type I phenotype. Therefore we performed pharmacological
inhibition of respective receptors in piAECs in an additional
set up. Figure 7A depicts the efficiency of the siRNA knock-
downs for the respective AECs. Compared with scrambled
siRNA, the functional active siRNA led to a distinct knock-
down of all respective receptors in the AECs investigated

(Fig. 7A). Functionally, P2Y,R knockdown inhibited the
ATP-induced calcium response by 84.2%, 80.7%, 69.7%,
and 100% in L2, R3/1, RLE, and A549 cells, respectively
(Fig. 7B). The P2Y4 R knockdown led to a 32.6% and 5.7%
reduction in the ATP-induced calcium response in L2 and R3/
1 cells, respectively. As our previous results indicate that
P2Y,4R is active in R3/1, we performed a knockdown of this
receptor in R3/1 cells. As shown in Fig. 7B the calcium re-
sponse was reduced by 93.4% upon stimulation with ATP. A
P2X,R knockdown was performed in L2 as the ATP-induced
calcium response in these cells depended partially on extra-
cellular calcium. In L2 cells the P2X, R siRNA knockdown
diminished the ATP-induced increase in [CaZJ']cyt by 85.8%.
Interestingly, knockdown of the functional active P2XsR in
L2 cells resulted in an increase in [C212+]Cyt upon ATP (Fig.
7B).

Pharmacological inhibition of P2Rs

Due to the above-mentioned reasons, P2Rs were inhibited
pharmacologically in piAECs. Three receptors, P2Y,R,
P2X4R, and P2X;R were tested as candidates inducing the
rise in [Ca2+]cyt upon ATP stimulation. The application of each
antagonist led to a significant decrease in ATP-triggered ele-
vation in [Ca®*].,.. P2Y,R-antagonist AR-C118925XX re-
duced the [Ca2+]Cyt increase by 83.2%, P2X,R-antagonist 5-
BDBD led to a reduction by 74.6%, and P2X-R-antagonist
A438079 by 81.0% compared with that of the ATP-induced
[Ca2+]cyt response in native piAECs (Fig. 8).

Discussion

In the lung, ATP acts as an important signaling molecule to
ensure functions such as mucociliary clearance, control of
local blood flow, and surfactant secretion in the alveolus
through type II AECs [36, 37]. The release of ATP in the
alveolus is triggered by multiple stimuli, such as mechanical
stress caused by stretch and surface tension forces [38], pro-
inflammatory thrombin stimulation [39], and hypotonic shock
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Fig. 3 Tracing of [Caz"]cyt under the baseline condition followed by ATP (100 uM) stimulation in L1, R3/1, RLE, piAECs, and A549 (as indicated).

Representative result for at least 10 experiments of each AECs

[40]. Secreted ATP acts in an auto- and/or paracrine manner
through the activation of P2Rs.

P2Rs mediate a wide range of cellular functions. They are
expressed ubiquitously in eukaryotes, and the effects mediated
through them are often specific to the respective tissue [11, 12,
19, 41]. Due to the diversity of P2R-mediated effects, these
receptors are promising targets for therapeutic approaches
against a diversity of diseases, e.g., P2Y,R antagonists have
been widely established as antiplatelet drugs [42, 43].

@ Springer

Antagonists of P2X; are under evaluation for rheumatoid ar-
thritis treatment [44]. P2R research is an evolving field of
growing interest and demand. Cell culture experiments remain
a favorable tool to examine purinergic signaling in vitro and to
further analyze the molecular mechanisms and downstream
cellular effects. Although primary isolated cells are still the
gold standard of in vitro studies, the isolation of primary rat
or mouse AECs is complex, time-consuming, and requires the
sacrifice of many animals. Hence, many cultivated AEC lines,
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tumor-derived or immortalized, have been established.
However, the characterization of P2R expression, as well as
their functional assessment in the available cell lines, often
remains incomplete. Here, we attempted a systematic charac-
terization of the functional P2R expression profile on primary
isolated type II AECs and selected AEC lines with particular
regard to ATP-induced elevations in [Ca2+]0yt. We chose an
escalating process by first analyzing the presence and amount
of P2R mRNA in the respective AECs followed by the deter-
mination of specific P2R protein expression. To reveal P2R
reliability, we stimulated primary isolated and immortalized
AECs with the physiologically endogenous P2R agonist ATP.
To evaluate the functionality of distinct P2Rs, UDP and UTP,
as well as specific synthetic agonists were tested. Finally, P2R
siRNA knockdown allowed the determination of the share of
each functional P2R in the respective AEC lines regarding the
ATP-induced calcium response. To the knowledge of the au-
thors, this is the first study investigating the expression and
functional P2R profile of rat piAECs in comparison with those
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containing or calcium-free medium. Differences between the maximum
and baseline [Ca2+]cyt_(A: delta) are displayed as box plots, with median
values +75% and 25% quatrtiles, n=6-31, * p<0.001 vs. baseline con-
ditions, § p<0.001 vs. calcium-containing conditions

of the human A549 adenocarcinoma cells and other immor-
talized AEC lines.

Our results show that concerning P2R mRNA, P2XRs
present much greater heterogeneity than P2YRs. However,
7 and PZYRL 2,4, 6,12, 13, and 14) except PZYR“ were distrib-
uted among the AECs examined in this work. As Kiigelgen
and Hoffmann [45] reported, P2Y ;R cannot be found in the
rat genome. However, we were unable to detect P2Y ;R in
human A549 cells, which stands in contrast to previously
published data [5, 46]. The reason for this discrepancies may
underlie the used primer sets for detection of the P2Y ;R
mRNA, since Dreisig and Kornum [47] reported that the
P2Y ;R gene and the PPAN gene are located on the same
chromosome in humans. These two genes have been found
to build a fusion transcript that shares much of its sequence
with the P2Y ;R mRNA, so primer sets intended to detect
P2Y ;R mRNA transcripts must be especially carefully de-
signed unless the fusion transcript might not be amplified.
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Commonly, the presence of mRNA does not necessarily
result in protein expression. P2X4R is implicated in the secre-
tion of surfactant from lamellar bodies upon ATP stimulation
[25, 48]. Lamellar bodies are organelles of type I AECs, and
secretion of surfactant is one of the main challenges of these
cells. Therefore, it is not surprising that all investigated AECs
expressed P2X,R protein. The other P2XRs were expressed in
different patterns among the cell lines investigated in this
study. In L2, RLE, piAECs, and A549 cells, but not R3/1
cells, P2XR protein were found, wherein L2 and A549 cells
expressed P2XsR and RLE cells and piAECs expressed
P2X,R. P2X,R is suggested to be involved in the

@ Springer

S RLE _ piAE
— 2000 - * B = *
(0] o = 600"‘ 9
£ : T
5 8
® 15004 ° : =
£ P g w0
; 3 ) 8 j
2 1000 - T : —- y
o s H o
by i § £ 2009 | KA
& 500 | E 3 | E
3 Il B e
S || & .. =
X L | 8 - s
3 = - = -
E ©
< UDP £ ATP UDP
>
=
‘E' * * *
o 4000 - :
.E o
Tu; g
& 3000
L0
@ 8
> 2000 2
= g
~ g
= 2
@ 10004
T .m T 4
g 0+ - —a —_—
>3 ATP UTP  UDP

inflammatory response mediated by the inflammasome path-
way through the release of TNF-« or IL-18 [49, 50]. The
strong expression of P2X-R in piAECs, in contrast to its weak
expression in RLE cells and the absence of P2X-R in the other
AEC lines investigated, may reflect adaption to the environ-
mental conditions of the rats, which were held under specific
pathogen-free conditions. However, it cannot be ruled out that
the expression of P2X-R on piAECs is caused by the remain-
ing type I piAECs or alveolar macrophages since the purity of
the isolated type II piAECs was approximately 75%.
However, BZATP triggered a calcium response only in the
LTG-stained cells, i.e., type II AECs and piAECs. Therefore,
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Fig. 6 [CazJ']Cyt in L2, R3/1, RLE, piAECs, and A549 upon stimulation
with 3-meATP, 2-meATP, and BzATP (100 uM). Displayed are
differences between the maximum and baseline [Ca2+]cytl (A: delta) as

it can be concluded that P2X-R is expressed on type II
piAECs. This is in contrast to the work by Chen et al. [51],
who stated that P2X;R was a potential marker for the identi-
fication of type I pilAECs. The expression of P2XsR in A549
cells can be explained by its involvement in tumor-associated

box plots, with median values +75% and 25% quartiles, n =3-20, *
»<0.001 vs. baseline conditions

processes. Consistent with this, it has been reported that other
cell lines derived from adenocarcinomas, such as PC-3 and
MDA-MB-468 cells, also express P2XsR [52, 53]. P2X5R
mRNA transcripts have been detected in cells of the immune
system [54]; however, the expression pattern and function of
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Fig. 7 siRNA knockdown experiments of selective P2 receptors in L2,
R3/1, RLE, and A549 cells. a Relative expression of the P2 receptor
genes after siRNA knockdown using real-time quantitative RT-PCR
(scr: scramble siRNA; KD: respective siRNA as indicated), n =3—4 for
each receptor and each AEC line investigated, mean + SD. b [Ca2+]cyt
following stimulation with ATP (100 pM) after siRNA knockdown as
indicated. Displayed are differences between maximum and baseline
[Ca2+]cyt, (A: delta) as box plots, with median values +75% and 25%
quartiles, n=10-31, * p<0.001 vs. baseline conditions, # p <0.001 vs
ctr

P2X5R in humans is still unclear. Among the eight subgroups
of P2YRs, only three different types were expressed in the
investigated AECs. P2Y,R protein was detected in all
AECs; however, P2Y4R protein was found on L2, R3/1,
RLE, and A549 cells, and P2Y4R protein was detected on
L2 cells, R3/1 cells, piAECs, and A549 cells. Since P2Y;R,
like P2X4R, plays a role in surfactant secretion, it is not sur-
prising that all AECs express this receptor [55].

Upon stimulation with ATP, all AECs displayed an increase
in [Ca2+]cyt, although in distinct quantities. In a calcium-
depleted environment, however, this increase was reduced in
L2 cells, R3/1 cells, and piAECs but remained almost unal-
tered in RLE and A549 cells. In these two AEC lines, a pre-
vailing functional role for P2YRs initiating calcium release
from the endoplasmic reticulum upon ATP activation seems
likely. The L2, R3/1 and piAECs results indicate a functional
coexistence of P2YRs with P2XRs. This has already been
described in other tissues, such as cerebellar granule cells,
smooth muscle, and sensory neurons [56—58].

Exposure of AECs to additional endogenous and syn-
thetic P2R agonists allowed us to further evaluate the
potentially functional P2 as well as to identify receptors
responsible for the ATP-induced [Caz+]Cyt changes. The
endogenous nucleotides comprise UTP and UDP, which
only activate P2YRs and not P2XRs. These cationic

channels are stimulated solely through the endogenous
agonist ATP [10, 16, 18]. Synthetic agonists were selected
based on the results of the P2R western blot analysis for
each respective AEC line. Taken together, the data on the
stimulation with specific agonists confirmed our findings
on P2R expression in AECs and prompted us to perform
siRNA knockdown experiments to further characterize the
role of the respective P2Rs responsible for the ATP-
induced [C212+]Cyt increase in AECs. Concerning L2 cells,
P2XRs seemed to play a predominant role, as the calcium
response to ATP was almost entirely dependent on extra-
cellular calcium. However, there seemed to be a different
population of cells solely expressing functional P2Y,R or
P2Y4R, explaining the reduction in, but not the extinction
of the ATP-induced calcium response after their specific
knockdown. As the response to ATP remained an all-or-
nothing reaction for every single cell, the coexistence of a
P2X4R-, a P2Y,R- and a small P2Y4R-expressing sub-
population was assumed, rather than a general L2 popu-
lation expressing all three P2 receptor types. Similar find-
ings have been described by Volonte et al., who consider
the possibility of cellular subpopulations expressing dif-
ferent P2Rs as well as having different P2R profiles on
the apical and basolateral membranes of the same cell
[59]. The P2Xs5R seems to play no role in the ATP-
triggered rise of [Ca2+]Cyt since the knockdown resulted
in no reduction but in a slight increase of [C212+]Cyt upon
ATP stimulation. In R3/1 cells the knockdown of P2Y,R,
and P2Y4R resulted in a strongly diminished [Caz+]cyt
increase whereas the downregulation of the P2Y(R ex-
pression developed only a little impact on the calcium
release upon ATP stimulation. In RLE-, as well as in
R3/1 cells P2XRs expression plays a minor role, consid-
ering the results obtained under calcium-free conditions
where the ATP induced increase was not significantly
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different as under calcium-containing conditions.
However, P2Y,R knockdown in RLE cells does not en-
tirely diminish the calcium response to ATP. This can be
explained by the coexpression of a second P2YR, presum-
ably P2Y4R, as we detected the mRNA and protein of this
receptor in these cells. In A549, the P2Y,R was the only
relevant active receptors responsible for the ATP-induced
calcium response as the respective knockdown resulted in
the complete extinction of the calcium rise upon nucleo-
tide stimulation. Interestingly, the knockdown of P2Y¢R
in A459 resulted, as the knockdown of P2XsR in L2 cells,
in an enhanced [C212+]cyt (data not shown). However,
P2Y(R mRNA knockdown was almost complete, and
the UDP-induced calcium response was nearly
extinguished (data not shown). We speculate that the
functional loss of a P2 subtype results in a compensation
mechanism that leads to increased activation of other P2
subtypes. In this regard, we found that after P2Y¢R
knockdown, P2X4R and/or P2XsR became increasingly
active, since we detected a diminished [C212+]Cyt response
in a calcium-free environment (data not shown), which
was not detected in native A549 cells. Suh et al. have
shown that intervention on a G protein-coupled receptor
activity can influence other receptors, presupposing a
close spatial colocalization of the involved receptors
[60]. Knockdown experiments in piAECs were not suc-
cessful because of the differentiation of type II AECs into
type I AECs in vitro, colliding with the time frame needed
for the siRNA knockdown procedure. However, besides
the P2YRs, P2XRs seemed to play a role in piAECs as
the application of calcium-free conditions attenuates the
calcium response to ATP significantly. The functional
stimulation and mRNA expression, as well as the protein
analysis of piAECs, revealed P2X4R and P2X,R to be the
most likely functionally active P2XR candidates on
piAECs. Therefore, we conducted pharmacological

P2XR

inhibition of P2Y,R, P2X,R, and P2X;R. The application
of the specific antagonists of the respective receptors led
to the assumption that the three mentioned receptors were
to be equally involved in the increase of ATP induced
[Ca2+]cyt. This result supports our assumption that sub-
populations expressing different P2Rs as well as having
different P2R profiles on the apical and basolateral mem-
branes might exist as discussed for L2 cells as well.

In summary, the findings for each cell line suggest that
predominant P2Rs on primarily isolated and immortalized
AECs are P2Y,R and P2Y4R regarding the P2YR family
and P2X4R as well as P2X;R concerning the P2XR fam-
ily (Fig. 9). In all investigated AEC lines and piAECs the
P2Y,R plays a dominant role in the ATP-induced rise in
[Ca2+]cyt. However, other distinct P2Rs are involved in
the ATP-triggered [Ca2+]cyt increase as well, like P2Y4R
(L2 and R3/1), P2X4R (L2 and piAECs), and P2X;R
(p1AECs).

The combination of mRNA detection, analysis of mem-
brane receptor expression, pharmacological testing by
live-cell calcium imaging and receptor siRNA knockdown
provided profound insight into P2R expression and func-
tionality in piAECs and multiple AEC lines. Although
much research has been conducted in this field, the liter-
ature is often inconsistent, and the methods of P2R iden-
tification differ (chemical analysis, pharmacological test-
ing, mRNA detection, immune staining). Often, only a
selection of P2R subtypes is focused on at one time
[61—64]. Because purinergic signaling is a potent but sen-
sitive regulator of a diversity of cellular processes, includ-
ing danger signals, inflammation, and the stress response,
it is likely that even minor changes in the extracellular
environment, such as cell culture conditions or the meth-
od of cell isolation, have an impact on P2 expression and
can account for inconsistent findings in the literature.
Knowledge of the respective P2 expression profile of a

P2YR

Fig. 9 Synopsis of the expression and functionality of P2XRs and P2YRs in the AEC lines investigated in comparison to primary isolated AECs
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cell line is crucial when performing research on purinergic
signaling pathways and in the future, even more of the
many common immortalized and tumor-derived AEC
lines have to be characterized concerning this matter.
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