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Abstract
Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora
of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as
survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components
of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim
was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential
dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were per-
formed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor
Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or
defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by
single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor
Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed
Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4,
P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very
weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine
nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors.
Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC
made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor
Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with
pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the
P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to
genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial
hypertension.
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Proliferation

Introduction

Endothelial cells (EC) form the contiguous, interconnected
luminal interface that completely lines the vasculature of the
mammalian circulatory system. The main purpose of the en-
dothelial monolayer in healthy blood vessels is to adaptively
maintain vessel integrity by promoting anti-inflammatory and
anti-thrombogenic propensities and regulating vascular tone,
permeability, structure, and function according to physiologi-
cal requirements (reviewed in: [1, 2]).

The endothelium of the pulmonary vasculature, a unique
high-flow, low-resistance, low-pressure system, is involved in
facilitating gas exchange but also maintaining vascular tone;
controlling barrier function; regulating inflammatory response
and anti-thrombogenic propensities; and preserving vascular-
tissue homeostasis [3].

Thus, dysfunction of the pulmonary endothelium is asso-
ciated with a broad variety of respiratory diseases, ranging
from acute (e.g., pulmonary edema or acute respiratory dis-
tress syndrome, ARDS) [4] to chronic conditions such as
chronic obstructive pulmonary disease (COPD) [5] and pul-
monary arterial (PA) hypertension (PAH, [6]).

Extracellular nucleotides such as purines adenosine-5′-tri-
phosphate (ATP), adenosine diphosphate (ADP), and adenosine
monophosphate (AMP) as well as pyrimidines uridine-5′-tri-
phosphate (UTP) and uridine-diphosphate (UDP) are released
within the pulmonary vascular bed upon stress such as hypoxia
or shear stress and mediate vasodilatatory, inflammatory, and
thrombotic responses and EC survival [7–11].These nucleotides
activate distinct subsets of P2 receptors on the plasmamembrane,
P2X, and P2Y receptors. P2X receptors (P2RX) are ion channels
that increase intracellular Ca2+ concentrations via direct inward
gating of extracellular Ca2+. P2Y receptors (P2RY) are G
protein-coupled receptors that activate a intracellular phospholi-
paseC (PLC)-IP3 cascade causingCa2+ release from intracellular
stores into the cytosol [12].

Although extracellular nucleotides and P2 receptor-
mediated Ca2+ signaling play such pivotal roles in the regula-
tion of the pulmonary ECs, no comprehensive analysis of the
underlying Ca2+ signalosome has been conducted in the hu-
man pulmonary endothelium.

We, therefore, aimed to identify the principal P2 receptor Ca2+

signalosome in the human pulmonary endothelium and investi-
gate potential dysregulation in pulmonary vascular disease.

In this regard, we performed comparative transcriptomics
and quantitative immunohistochemistry on publicly available
RNA-seq and protein datasets to identify the specific expres-
sion profile of the P2-receptor Ca2+ signalosome in the human

pulmonary endothelium. Functional expression of the Ca2+

signalosome components was confirmed using cytosolic
Ca2+ imaging upon purine and pyrimidine stimulation.

Recent data suggest that dysregulated nucleotide signaling has
been linked to pulmonary arterial (PA) hypertension (PAH) [13,
14], a life-threatening condition, characterized by endothelial
dysfunction of the pulmonary vasculature, occlusion of pulmo-
nary arteries, and consecutive right heart failure [15–17].

The most important underlying genetic causes for PAH are
mutations of the BMPR2 gene [18]. Dysregulated bone mor-
phogenetic receptor type 2 (BMPR2) signaling is associated
with PA EC and pulmonary microvascular (PMV) EC apopto-
sis and pathological PA remodeling [6] whereas selective ac-
tivation of BMPR2 reverses PAEC dysfunction and experi-
mental pulmonary hypertension [19].

To test a putative link between endothelial dysfunction and
to identify a putative novel therapeutic target structure, we
investigated BMPR2-dependency of the P2-receptor Ca2+

signalosome by using datasets of BMPR2-depleted PAEC
by siRNA or iPSC-EC from BMPR2-mutant PAH patients.

Material and methods

Comparative transcriptomics

An Encyclopedia of DNA Elements (ENCODE, http://www.
encodeproject.org) search was conducted for RNA-Sequencing
(RNA-Seq) data of primary human endothelial cells fromvarious
organs including pulmonary artery and pulmonary microvascu-
lature to identify P2 receptor Ca2+signalosome signatures in en-
dothelial cells.

Twenty human (H) RNA-Seq datasets performed on a HiSeq
2000were identified and downloaded using theGene Expression
Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/gds).
mRNA expression values of P2 receptors and Ca2+

signalosome genes (based on KEGG pathway 04020, http://
www.kegg.jp, see Suppl. Table 1 for details) were extracted as
Transcripts per Million RNA samples (TPM) and used for clus-
tering and correlation analysis. For correlation matrix analysis of
endothelial RNA expression signatures, hierarchical clustering
was applied after Pearson’s product-moment correlation using
Gplot and Corrplot libraries from the Bioconductor repository
(http://www.bioconductor.org) in R (version 3.3.3, http://www.
r-project.org) and R Studio Desktop. Using Graphpad Prism 7
(Graphpad Inc., San Diego, CA), linear regression was
performed for correlation analysis of pulmonary endothelial
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cells transcript expression. Transcripts with mean TPM> 0 were
considered as “expressed.” A detailed list of the RNA-Seq
datasets used and links to detailed protocol descriptions per
dataset can be found in Suppl. Table 2.

In order to identify BMPR2-dependent Ca2+ toolkit genes, an
additional GEO search was conducted for human gene array
datasets of HPAEC depleted from BMPR2 by siRNA and
RNA-Seq of ECs from PAH patients with BMPR2 mutations.

Datasets GSE70456 and GSE79613 were identified.
GSE70456 contains RNA expression data from 16 siRNA-
transfected HPAEC samples in quadruplicates hybridized to
the Affymetrix PrimeView Human Gene Expression Array
(GPL15207). PBS-treated replicates transfected with scram-
bled control siRNA (n = 4) and BMPR2 siRNA (n = 4) were
isolated. Normalized gene expression values and ranks were
extracted and pre-analyzed using the GEO Dataset Browser
data analysis online tools. Differentially expressed genes were
quantified locally using Biobase, GEOquery, and limma li-
braries in R. GSE79613 contains mRNA expression profiles
by RNA-Seq from ECs differentiated from induced
pluripotentent stem cells (iPSC-ECs) of healthy donors (n =
3) and PAH patients with BMPR2 mutation (n = 5). HTSeq-
derived expression values (counts) were extracted and differ-
entially expressed genes were analyzed using DESeq2 in R.

Immunohistochemical analysis

Lung tissue micro array microphotographs of the most abun-
dantly expressed Ca2+ signalosome genes and all known hu-
man P2 receptors were located in a publicly available database
and downloaded for expression analysis in the pulmonary
arterial endothelium in a blinded fashion.

Semi-quantitative immunohistochemistry (IHC) of two to
six different TMA cores was performed using a 4-step inten-
sity score (negative = 0, weak = 1+, intermediate = 2+,
strong = 3+) as previously described [20]. In order receive
reliable protein expression data, based on this 4-step scale,
genes with a mean IHC intensity score > = 1 were defined as
reliably expressed indicating an intensity score of at least > = 1
for every individual TMA spot. Data for P2RX1 immunohis-
tochemistry was derived from [13] as IHC data for P2RX1
was not available in the Human ProteinAtlas database.

Baseline demographics of donors included and detailed im-
munohistochemical information regarding antibodies used,
Human ProteinAtlas ID, and antigen retrieval method can be
found in Suppl. Table 3.

Single-cell Ca2+ imaging

Ca2+ imaging was performed as previously described [21–23].
In brief, 20,000–30,000 healthy donor HPAEC (passage < 10,
purchased from PromoCell, Heidelberg, Germany) were seed-
ed onto 0.1% Gelatin-coated glass coverslips and cultured in

full EC growth medium (ECGM with 5% FCS, ECGS,
PromoCell) for 36 h. Prior to imaging, cells were loaded with
5 μM of the FURA-2/AM Ca2+ dye (Molecular Probes,
Leiden, The Netherlands) in Ca2+ containing extracellular so-
lution (ECS). For intracellular Ca2+ depletion, HPAEC were
co-treated with thapsigargin, a non-competitive inhibitor of
the sarcoplasmatic/endoplasmatic reticulum Ca2+-ATPases
(SERCAs), and the phospholipase C inhibitor U73122 at final
concentrations of 1 μM and 2 μM, respectively.

For fluorescent Ca2+ imaging, the coverslips were mounted
in an imaging/perfusion chamber on a conventional
epifluorescence microscope (Olympus, Hamburg, Germany).
The imaging chamber was perfused continuously with warm
(37 °C) ECS buffer ± 1.8 mMCaCl2. Extracellular nucleotides
were added at 100 μM final concentration after 5–10 min of
steady baseline recordings. Fluorescence changes upon stim-
ulation were continuously recorded at 3 s intervals and ana-
lyzed using MetaFlour Software (Molecular Devices,
Downington, PA). Peak fluorescence of 45 to 119 responsive
cells from at least three independent experiments per condi-
tion was calculated and used for statistical analysis using
Prism 7 (GraphPad Inc., San Diego, CA).

Network analysis

Protein-protein interactome networks for siBMPR2-dependent
genes were constructed using the NetworkAnalyst software
package [24]. Protein-protein interaction network analysis was
performed using data from the STRING interactome database
[25] with a confidence score cutoff at 900 and experimental
evidence required. This approach identified three subnetworks
for downregulated genes (#1: 282 nodes and 447 edges, #2: 4
nodes and 3 edges, #3: 3 nodes and 4 edges) and two subnet-
works for upregulated genes (#1: 372 nodes and 487 edges, #2: 6
nodes and 5 edges) including a PLCD4 subnetwork.
Visualizations were performed using CytoScape 3.5.0 (http://
www.cytoscape.org).

Results

Comparative RNA-seq transcriptomics reveal
a distinct Ca2+ signalosome signature
for the pulmonary endothelium

As the pulmonary endothelium is functionally distinct from
endothelia of other organs [3], we aimed to identify P2 recep-
tor Ca2+ signalosome expression signatures specific for the
human pulmonary endothelium by comparative transcripto-
mics using publicly available ENCODE datasets.

Expression signatures of P2-receptor-mediated Ca2+

signalosome toolkit components (derived from KEGG, see
Suppl. Table 1) were derived from RNA-Seq data of 11
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different human (H) endothelial cell (EC) species. These in-
cluded pulmonary arterial EC (HPAEC) and pulmonary mi-
crovascular EC (HPMVEC) as well as saphenous vein EC
(HSaVEC), dermis microvascular EC (HMVEC), mammary
microvascular EC (HMMEC), endometrial microvascular EC
(HEMEC), dermis lymphatic EC (HDLEC), coronary artery
EC (HCAEC), bladder microvascular EC (HBdMEC), thorac-
ic aorta EC (HAoEC), and embryonic glomerular EC
(HEGEC) (Fig. 1a). Individual expression values for all inves-
tigated Ca2+ signalosome genes are given in Suppl. Table 4.

Correlation clustering of endothelial Ca2+ toolkit compo-
nent expression revealed a distinct signature for pulmonary
ECs (Fig. 1b). mRNA expression of Ca2+ toolkit components
was strongly correlated between HPAEC and HPMVEC in a
linear fashion (R2 = 0.92, Fig. 1c).

In fact, 15 out of the 20 most abundantly expressed genes
were identical between HPAEC and HPMVEC (Fig. 1d, for
full list see Suppl. Table 4).

A detailed view of immunohistochemical analysis of the top 4
expressed genes in the pulmonary endothelial showed medium to
strong positivity in the pulmonary endothelium, indicating robust
expression also on the protein level in tissuemicroarray samples of
healthy donors from publicly available datasets (Fig. 1e).

The well-established endothelial marker von-Willebrand-
Factor (vWF [6]) served as a positive control. vWF was ro-
bustly expressed in HPAEC and HPMVEC alike based on
RNA-Seq data. On the protein level, immunohistochemical
staining indicated strong positivity exclusively within the en-
dothelium of pulmonary blood vessels. Smooth muscle mark-
er gene ACTA2 (smooth muscle actin, a-SMA), used as a
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Fig. 1 Comparative transcriptomics reveal a distinct Ca2+ signalosome
signature for the human pulmonary endothelium. a Expression heatmap
of P2 receptor Ca2+ toolkit components in human endothelial cells of
various origins based on ENCODE RNA-seq data. b Correlation clusters
of endothelial P2 receptor Ca2+ signalosome signatures. Pulmonary en-
dothelial species are labeled in red. c Linear regression analysis of Ca2+

signalosome components comparing expression values (TPM, transcripts
per million) of human pulmonary artery endothelial cells (HPAEC) and
human pulmonary microvascular endothelial cells (HPMVEC). Dotted
area =magnification of lower expression values. d Comparison of most
frequently expressed genes in HPAEC and HPMVEC. Common genes

between both cell species are shown in blue, different genes in gray. e
Microphotographs and quantifications of immunohistochemical (IHC)
staining of the most abundantly expressed Ca2+ signalosome genes in
the pulmonary endothelium, CALM1 (calmodulin 1), CALM2 (calmod-
ulin 2), VDAC1 (voltage-dependent anion-selective channel 1), and the
stimulatory G protein alpha subunit (GNAS). f Endothelial staining (mi-
crophotograph + quantification) and RNA expression of von-Willebrand-
Factor (vWF) as a positive control. g Lack of endothelial IHC staining
and RNA expression for smooth muscle (yellow asterisk) marker gene
ACTA2 (smooth muscle actin, a-SMA), used as a negative control. Full
names for abbreviated EC species are given in Suppl. Table 1
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negative control, showed low mRNA abundance in HPAEC
and HPMVEC. On the protein level, a-SMA staining was
limited to the media of pulmonary arteries without staining
of the of endothelial cell layer (Fig. 1f).

P2 receptor protein expression in the pulmonary
endothelium

In order to comprehensively identify the subset of P2 recep-
tors expressed in the human pulmonary arterial and microvas-
cular endothelium, we utilized publicly available immunohis-
tochemistry datasets from The Human Protein Atlas. Using a
4-step intensity score (negative = 0, weak = 1+, intermediate =
2+, strong = 3+, [20]), protein expression was quantified
across all available TMA cores from healthy donors for all
previously described human ionotropic P2X andmetabotropic
P2Y receptors [8].

Only P2RX1, P2RX4, P2RY6, and P2RY11 were
expressed with a mean score > = 1.0 in the endothelium of
pulmonary arteries. P2RX5 and P2RY1 were found to a much
lesser extent (mean score > 0.5 and < 1.0). No or very weak
signals (mean score < 0.5) were detected for all other P2 re-
ceptors (Fig. 2a–c). For P2X2, no interpretable protein data
was available.

In general, protein expression of P2 receptors in the PA
endothelium was detectable where mRNA expression for the
same genes (based on ENCODE RNA-seq data) were found
(Fig. 2d). However, no linear correlation between IHC stain-
ing intensity and mRNA transcript abundance was noticed.

Functional expression of the P2 receptor Ca2+

signalosome in human PAEC

Next, we aimed to test the functional significance of the P2
receptor Ca2+ signalosome in the human pulmonary endothe-
lium. Therefore, single-cell fluorescence imaging of intracel-
lular Ca2+ currents was performed in HPAEC after stimulation
with agonistic extracellular purine and pyrimidine nucleo-
tides, which, based on previously published ligand affinity
data [26], bind to specific subsets of P2Y and P2X receptors
as native agonists to induce intracellular Ca2+ increases.

Application ofATP (100μM) induced a robust increase of the
cytosolic Ca2+ concentration [Ca2+] under physiological extracel-
lular ion concentrations (Fig. 3a). Depending on their phosphor-
ylation state purinergic adenosine nucleotides, AMP, ADP, and
ATP differentially stimulate P2 receptors at varying degrees [22].

In HPAEC, ATP induced a 190% increase in the cytosolic
[Ca2+], followed by ADP (110%) and AMP (12%, 100 μM
each, Fig. 3b, left). Purinergic Ca2+ signals were partially de-
pendent on the presence of extracellular Ca2+. Depletion of
extracellular Ca2+ from the assay buffer significantly reduced
the amplitudes of cytosolic Ca2+ increase for ATP (115.3 vs.
185.5%) and ADP (82.2 vs. 106.5%, Fig. 3b, right). For AMP,

a trend towards an attenuated Ca2+ response could be detected
which did not reach statistical significance (5.3% vs. 11.7%,
Fig. 3b, right). This indicates activation of metabotropic P2Y
receptor and ionotropic P2X receptors alike after stimulation
of HPAEC. This was further corroborated by the substantially
impaired cytosolic Ca2+ response to ATP after pharmacolog-
ical inhibition of PLC activation by U73122 in combination
with depletion of intracellular Ca2+ stores by thapsigargin
(TG, 20.3 vs. 185.5%, Fig. 3c) under physiological extracel-
lular [Ca2+].

To investigate differences between the purinergic and the
pyrimidinergic Ca2+ response in HPAEC, we performed cytosolic
Ca2+ imaging forHPAEC treatedwith pyrimidinesUTP andUDP.

Under physiological extracellular [Ca2+] stimulation, UTP
caused a solid yet less pronounced induction of the cytosolic
[Ca2+] compared to the purine ATP (Fig. 3d, e). Comparable
to the effect of purines on HPAEC, UDP induced a signifi-
cantly smaller cytosolic Ca2+ increase than UTP (64.6 vs.
105.6%, Fig. 3f, left).

Extracellular Ca2+ did not significantly affect pyrimidine-
induced cytosolic Ca2+ signals in HPAEC. Cytosolic Ca2+

amplitudes for UTP and UDP only marginally changed upon
withdrawal of extracellular Ca2+ (UTP 93.3 vs. 105.6%, UDP
64.9 vs. 40.0%, p > 0.05; Fig. 3f, left and right). This was in
line with a virtually abolished Ca2+ response to UTP after
combined U73122/TG pre-treatment (7.3 vs. 105.9%) under
physiological extracellular [Ca2+] indicating (almost) exclu-
sive activation of the metabotropic P2YR-phospholipase sig-
naling cascade upon pyrimidine-stimulation of HPAEC.

BMPR2-dependency of the P2-receptor Ca2+

signalosome in human PAEC and BMPR2-mutant
iPSC-EC

In order to elucidate a potential role of impaired P2-mediated
Ca2+signaling for pulmonary vascular disease, we investigated
BMPR2-dependency of the P2R-Ca2+ toolkit components in
HPAEC.

Therefore, we used targeted transcriptomics on HPAEC
depleted from BMPR2 by siRNA and iPSC-derived ECs from
PAH patients with BMPR2mutations using publicly available
RNA microarray and RNA-Seq datasets to identify endothe-
lial signalosome genes that are differentially expressed (DEG)
in a BMPR2-dependent manner.

In the first dataset, commercially available HPAEC from
healthy donors were successfully depleted from BMPR2 by
siRNA (Fig. 4a). Targeted analysis of the P2R-Ca2+

signalosome revealed a subset of DEG which were dependent
on BMPR2 (Fig. 4b). A total of 18 signalosome genes were
downregulated by loss of BMPR2 (CALM1, ITPKB, PLCB1,
ATP2B4, CACNA1A, MYLK, PLCG1, ADCY9, PHKB,
ITPR1, GNA14, STIM2, PLCG2, GNAQ, ENTPD4,
PLCB4, PRKX, and GNAS), and 19 genes were significantly
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upregulated by BMPR2 siRNA (ADORA2B, PRKCA,
EGFR, ENTPD7, NOS3, CAMK2D, BST1, P2RX4,
ENTPD6, ENTPD1, CAMK2G, SPHK1, PLCD4,
PRKACB, PLN, ADCY3, EDNRB, ERBB2, and VDAC3)
(Fig. 4c).

Next, we examined whether any P2R–Ca2+ signalosome
genes were dysregulated in BMPR2-mutant iPSC-EC from
PAHpatients vs. healthy, unaffected controls. Four genes were
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Fig. 3 Functional expression of the P2-receptor Ca2+ signalosome in
human pulmonary artery endothelial cells. Purine- (a–c) and
pyrimidine-induced (d–g) intracellular Ca2+ signals in HPAEC measured
by single cell FURA-2 fluorescence. a Representative fluorescence trac-
ings of ATP treated HPAEC are given (n = 9). b Quantification of peak
purine-induced cytosolic Ca2+ signals upon stimulation with 100 μM
ATP (black bar), ADP (dark gray bar), and AMP (light gray bar) under
physiological extracellular Ca2+ concentrations (left bars) or in a Ca2+ free
extracellular buffer (right bars). c Peak fluorescence of HPAEC upon
stimulation with 100 μM ATP without (black bar) or after depletion of
intracellular Ca2+ stores by combined use of thapsigargin (TG) and PLC
inhibitor U73122 (open bar). d Representative tracings of ATP treated
(n = 9) vs. UTP-treated HPAEC (n = 12) under physiological extracellular

Ca2+ conditions (p = 0.004, Welch’s t test). e Quantification of peak Ca2+

responses to ATP and UTP (100 μM each) under physiological extracel-
lular Ca2+ (ECS + Ca2+). f Quantification of peak pyrimidine-induced
cytosolic Ca2+ signals upon stimulation with 100 μM UTP (dark blue
bar) and UDP (light blue bar) under physiological extracellular Ca2+

concentrations (left bars) or in a Ca2+-free extracellular buffer (right bars).
g Peak fluorescence of HPAEC upon stimulation with 100 μM UTP
without (dark blue bar) or after depletion of intracellular Ca2+ stores by
combined use of thapsigargin (TG) and PLC inhibitor U73122 (light blue
bar). *** = p < 0.0001 vs. ATP; ###,# = p < 0.0001; p < 0.05 vs. corre-
sponding ECS + Ca2+; ††† = p < 0.0001 vs. corresponding UTP;
(b) + (f): ANOVAwith Bonferroni post-hoc test (c–e) + (g) Welch’s t test

�Fig. 2 P2 receptor protein expression in the pulmonary endothelium.
Immunohistochemistry microphotographs and quantifications of
metabotropic P2Y receptors (a) and ionotropic P2X receptors (b) in the
pulmonary endothelium. P2RX1 data was quantified based on data
extracted from [13] as IHC data was unavailable from the Human
Protein Atlas database (c). Mean RNA expression values HPAEC and
HPMVEC (in TPM) significantly correlate with lung endothelial P2
receptor staining (p < 0.05, chi-square, and Fisher’s exact tests) (d)
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significantly downregulated (SLC8A3, P2YR1, F2R, and
SLC25A6), and four more genes (PLCD4, RYR2, PHKG1,
and CD38) were upregulated in mutant iPSC-EC of PAH pa-
tients compared to healthy control iPSC-EC (Fig. 4d).

Only one BMPR2-dependent signalosome gene overlapped
between siBMPR2-depleted HPAEC and BMPR2-mutant iPSC-
EC, namely PLCD4 (Fig. 4e), pointing towards a potential role in
PAH pathogenesis.

Indeed, PLCD4 is expressed at medium levels in the
pulmonary-arterial endothelium (Fig. 4f). A network analysis
approach for protein-protein interactions confirmed a central role
for PLCD4 within a dedicated subnetwork with six nodes and
five edges indicating a pivotal function for PLCD4 in phospha-
tidic acid metabolism in the pulmonary endothelium (Fig. 4g).

Discussion

Extracellular nucleotides modulate a broad range of functions
of the pulmonary endothelium, but the exact molecular mech-
anisms are still not completely understood, and most of the
studies on nucleotide signaling have been undertaken on the

systemic vasculature. In addition, expression of P2 receptors
differs across cell species from different organs [27, 28].

Therefore, using a comprehensive approach via compara-
tive transcriptomics, quantitative immunohistochemistry, and
fluorescent Ca2+ imaging techniques, we have identified the
major components of the P2-receptor Ca2+ signalosome in the
human pulmonary endothelium.

We have established that pulmonary endothelial cells fea-
ture a distinct subset of genes from the P2 receptor Ca2+ sig-
naling pathway separating lung ECs from EC species of dif-
ferent human organ origin.

Even though expression of various P2X and P2Y receptors
in the pulmonary endothelium has been investigated in multi-
ple studies over the years (reviewed in [27]), our study, to our
knowledge, is the first to comprehensively investigate the
complete P2 receptor Ca2+ signaling toolkit and compare ex-
pression profiles of ECs from large pulmonary vessels
(HPAEC) and lung microvasculature (HPMVEC).

For HPAEC and HPMVEC, distinct expression patterns of
P2 receptors have been postulated and published (reviewed in
[27]). Based on RNA-seq data, we could establish that P2
receptor Ca2+ signalosome expression is highly conserved
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man PAEC and BMPR2-mutant iPSC-EC. a Effective knockdown of
BMPR2 by siRNA in HPAEC dataset GSE70456. b Heatmap of differ-
entially expressed P2 receptor Ca2+ signalosome genes in HPAEC
transfected with BMPR2 siRNA (siBMPR2) vs. scrambled control
siRNA (siControl). Arrows indicate differentially regulated genes. c
Log2 fold changes (Log2 FC) of P2 receptor Ca2+ signalosome genes
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signalosome genes in iPSC-EC derived from PAH patients harboring
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human pulmonary endothelium and quantification. g. PLCD4 subnet-
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between large and microvessel endothelial cells. P2RX1 was
the only receptor that showed weak expression in HPAEC
(TPM = 0.02) and no expression in HPMVEC. Expression
of all other P2 receptors followed the same pattern in
HPAEC and HPMVEC on the RNA level, albeit generally
lower expression values in HPMVEC (based on transcripts
per million).

In addition, RNA expression of P2 receptors measured by
RNA-seq was significantly associated with positive endothe-
lial staining in lung vessel IHC augmenting our RNA-seq-
based strategy to characterize the P2R Ca2+ signalosome.
However, we could not detect a linear correlation between
mRNA expression and protein abundance. This might not be
surprising, given the fact that protein and mRNA half-lives
(especially of surface receptors) often are significantly differ-
ent [29]. Additional factors explaining differences in mRNA
and protein abundance might include higher translation rates
compared to transcription rates in eukaryotic cells and also
surface receptor (re-)cycling (reviewed in [29]).

A prototypical disease with pulmonary endothelial dys-
function is pulmonary arterial hypertension (PAH) [3], a life-
threatening condition, characterized by occlusion of pulmo-
nary arteries [15]. In addition to a disturbed endothelial ho-
meostasis, PAH is characterized by initial microvessel loss
through aberrant HPAEC apoptosis and inflammation in con-
junction with neointima formation by uncontrolled prolifera-
tion of smooth muscle (− like) cells [30]. Consecutive struc-
tural changes of lung vessels lead to increased pulmonary
vascular resistance eventually causing right heart failure
[15]. Recent data suggest that dysregulated purinergic signal-
ing is linked to pulmonary hypertension [13, 14].

Based on previously published purine and pyrimidine nu-
cleotide affinity studies of native agonist for P2 receptors
(reviewed in [26]), our functional analysis by Ca2+ imaging
revealed that pyrimidinergic signaling in the pulmonary endo-
thelium almost exclusively activated G protein-coupled P2Y
receptors whereas purinergic signaling was mediated by both
ionotropic P2X receptors and metabotropic P2Y receptors (a
summarizing schema is given in Fig. 5a). Functionally, ATP
elicited the most prominent Ca2+ increase in HPAEC followed
by ADP. AMP triggered the smallest Ca2+ response.

In this light, it is particularly interesting that downregulation of
the enzyme that breaks down ATP to ADP and AMP,
ectonuleotidase CD39, has been reported in pulmonary ECs and
plexiform lesions from patients with PAH, and loss of CD39 has
been associated with pulmonary vascular remodeling [13].

These findings further suggest that increased extracellular
ATP levels might contribute to vascular remodeling in PAH.
Indeed, it has been shown that extracellular ATP induces apopto-
sis in PAEC ([9]) and can function as pro-proliferative factor, at
least in pulmonary artery vasa vasorum ECs [31, 32]. In PAH,
PAEC apoptosis precedes emergence of a hyperproliferative,
partiality apoptosis resistant phenotype [33, 34]. In addition,

ATP, released from lung endothelial cells, is a master regulator
of vascular inflammation upon oxidative stress [35] and in ad-
ventitial fibroblasts of the lung extracellular ATP, in part released
by endothelial cells, functions as an paracrine inducer of fibro-
blast proliferation and perivascular fibrosis [36].

On the other hand, beneficial effects of extracellular ATP
have been described for the pulmonary endothelium as well.
Besides enhancement of the endothelial barrier integrity by
extracellular ATP in a Rac-Cortactin-dependent manner [37],
pulmonary arterial vasodilation has been linked with paracrine
ATP release from the alveolar space into the microvasculature
[38]. In larger vessels, activation of endothelial P2X1 through
ATP promotes vasodilation [39], and pharmacological block-
age of P2X1 worsens hypoxia-induced PH and remodeling
[13]. Extracellular ATP signaling is also linked with reduced
DNA damage in the pulmonary endothelium [40].
Interestingly, this effect is alleviated by pharmacological inhi-
bition of CD39 [40], and CD39 expression is BMPR2-
dependent in HPAECs as shown by our study. However,
siRNA-mediated loss of BMPR2 induces CD39 expression
adding to an unsolved conundrum regarding the role of
CD39 in endothelial dysfunction in PAH.

In PAH, impaired endothelial BMPR2 signaling is associ-
ated with increased endothelial apoptosis causing pathological
remodeling of the pulmonary vasculature [6, 19]. In combina-
tion with loss of protective BMPR2 signaling modifiers [41],
loss-of-function mutations of BMPR2 have been found in a
majority of patients with familial PAH [18]. BMPR2 expres-
sion is also low in patients with IPAH and APAH [42], and
reduction of BMPR2 levels by RNA interference increased
susceptibility of HPAEC to apoptotic stimuli [43].

To identify a possible (epi-)genetic link of BMPR2 signal-
ing to purinergic dysfunction in PAH, we investigated
BMPR2-dependency of the P2-receptor Ca2+ signalosome
by using datasets of BMPR2-depleted PAEC by siRNA or
iPSC-EC from BMPR2-mutant PAH patients.

Our analysis of siBMPR2-treated HPAEC revealed 37 genes
(18 downregulated + 19 upregulated) differentially regulated
genes from the P2 receptor Ca2+ toolkit that were dependent on
BMPR2. Interestingly enough, out of these 37 DEGs total!
genes, 18 18/37 = 0.486 => 49% have been associated with
pulmonary hypertension before, namely ADORA2B [44],
CAMK2G [45], CD39/ENTPD1 [13], EDNRB [46], EGFR
[47], ERBB2 [48], GNA14 [49], GNAS [50], ITPR1 [51],
MYLK [52], NOS3 [53], PLCB4 [54], PLCG1 [55], PLN [56],
PRKACB [57], PRKCA [58], SPHK1 [59] and STIM2 [60].
This, for the first time, links the P2 receptor Ca2+ signaling path-
way directly to BMPR2 dysfunction in PAEC indicating a novel
non-canonical [61] BMPR2 signaling pathway. Given the high
frequency of BMPR2-dependent Ca2+ signalosome genes, our
findings also suggest a bigger role of disturbed P2 receptor-
mediated Ca2+ signaling in the pathogenesis of endothelial dys-
function in pulmonary hypertension.
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To further test a clinically relevant link to PAH and inves-
tigating a possibly underlying epigenetic mechanism, we test-
ed whether any of the newly identified BMPR2-dependent
genes are differentially expressed in iPSC-EC from PAH pa-
tients harboring a BMPR2 mutation.

Use of iPSC-EC has been shown to be a suitable surrogate
strategy for investigating primary HPAEC or HPMVEC in PAH
research [41, 62, 63]. Using this approach, we were able to es-
tablish PLCD4 as a novel candidate gene for endothelial dys-
function in PAH as it is robustly expressed in the pulmonary
endothelium as shown by IHC and upregulated by both condi-
tions, siBMPR2 in HPAEC and iPSC-EC of BMPR2 mutant
PAH patients.

Albeit in general, relatively little is known about the protein
the PLCD4 gene codes for, PLCδ4, it appears to be pivotal in the
regulation of phosphatidic acid [64] and inositol-phosphate lipid
signaling pathway (Fig. 4g). Interestingly enough, a large recent
study investigating plasma metabolomics of 365 PAH patients
and 121 symptomatic patients without PAH confirmed a link
between dysregulated purine/pyrimidine nucleoside and lipid

metabolism as independent risk factors for impaired survival
[65]. A possible mechanism how PLCD4 might affect the pul-
monary endothelium has been published in non-endothelial cells
[66]. Overexpression of PLCD4 constitutively activates pro-
proliferative extracellular signal-regulated kinase (ERK) signal-
ing. Hyperactivation of the ERK1/2 pathway has been shown to
upregulate expression of the epithelial growth factor (EGF) re-
ceptor (EGFR) 1 and 2 genes ERBB1 (EGFR) and ERBB2
(EGFR2, HER2/neu) in multiple cells lines and to promote a
hyperproliferative phenotype [66]. Such hyperproliferative phe-
notype is also a typical feature ofHPAECandHPMVEC isolated
from PAH patients [33, 34]. In this regard, it is particularly inter-
esting that HPMVEC proliferation upon oxidative stress is de-
pendent on activation of EGF receptor signaling [67] and down-
stream ERK activation [68] as well. In addition, in the present
study, we also found ERBB2 upregulated along with PLCD4 in
HPAEC depleted from BMPR2 by siRNA.

Therefore, PLCD4 could also promote the hyperproliferative
phenotype found in PAH thereby facilitating vascular remodeling
(Fig. 5b) providing a putative novel therapeutic target in PAH.
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In conclusion, we have characterized the functional signa-
ture of the P2 receptor Ca2+ signalosome of the human pul-
monary endothelium, which is distinct from other organs.
Composition of the P2 receptor Ca2+ toolkit in the pulmonary
endothelium is susceptible to genetic disturbances like
BMPR2 dysfunction thereby possibly contributing to the un-
favorable pulmonary disease phenotype found in pulmonary
arterial hypertension.
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