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Abstract
Adenosine signaling plays a complex role in multiple physiological processes in the brain, and its dysfunction has been
implicated in pathophysiology of neuropsychiatric diseases such as schizophrenia and affective disorders. In the present study,
the coupling between adenosine A1 receptor and G-protein was assessed by means of two [35S]GTPγS binding assays, i.e.,
conventional filtration method and [35S]GTPγS binding/immunoprecipitation in rat and human brain membranes. The latter
method provides information about adenosine A1 receptor-mediated Gαi-3 activation in rat as well as human brain membranes.
On the other hand, adenosine-stimulated [35S]GTPγS binding determined with conventional assay derives from functional
activation of Gαi/o proteins (not restricted only to Gαi-3) coupled to adenosine A1 receptors. The determination of adenosine
concentrations in the samples used in the present study indicates the possibility that the assay mixture under our experimental
conditions contains residual endogenous adenosine at nanomolar concentrations, which was also suggested by the results on the
effects of adenosine receptor antagonists on basal [35S]GTPγS binding level. The effects of adenosine deaminase (ADA) on basal
binding also support the presence of adenosine. Nevertheless, the varied patterns of ADA discouraged us from adding ADA into
assay medium routinely. The concentration-dependent increases elicited by adenosine were determined in 40 subjects without
any neuropsychiatric disorders. The increases in %Emax values determined by conventional assay according to aging and
postmortem delay should be taken into account in future studies focusing on the effects of psychiatric disorders on adenosine
A1 receptor/G-protein interaction in postmortem human brain tissue.
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Abbreviations
GPCR G-protein-coupled receptor
[35S]GTPγS Guanosine-5′-O-(3-[35S]thio)

triphosphate
PSB36 1-Butyl-3-(3-hydroxypropyl)-

8-(3-noradamantyl)xanthine
VUF5574 1,3-Dimethyl-8-phenylxanthine,

N-(2-Methoxyphenyl)-N′-[2-
(3-pyridinyl)-
4-quinazolinyl]-urea

CPA N6-Cyclopentyladenosine
CCPA 2-Chloro-N6-cyclopentyladenosine
2′-MeCCPA 2-Chloro-N-cyclopentyl-2′-

methyladenosine
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CGS21680 4-[2-[[6-Amino-9-(N-ethyl-β-
D-ribofuranuronamidosyl)-9H-
purin-2-yl] amino]ethyl]benzenepropanoic
acid hydrochloride

DPCPX 8-Cyclopentyl-1,3-dipropylxanthine
ADA Adenosine deaminase
TED 5 mM Tris–HCl, 1 mM EDTA, 1 mM

dithiothreitol; pH 7.4
EGTA Ethylene glycolbis(2-aminoethylether)-

N,N,N,N-tetraacetic acid
EC50 The concentration eliciting the

half-maximal effect
%Emax The maximal percent increase
ANOVA Analysis of variance
PET Positron emission tomography

Introduction

Adenosine signaling plays a complex role in multiple physio-
logical and pathophysiological processes in the brain. Among
the four known adenosine receptors, referred to as adenosine
A1, A2A, A2B, and A3 receptor [1], the A1 and A2A receptors
are abundantly and widely distributed in the human central
nervous system [2]. All adenosine receptors belong to class
A family of G-protein-coupled receptor (GPCR) superfamily,
and it has been generally accepted that adenosine A1 receptor
is primarily coupled to Gi/o to inhibit adenylyl cyclase where-
as adenosine A2A receptor is mainly coupled to Gs to activate
the enzyme activity.

Agonist-stimulated guanosine-5′-O-(3-[35S]thio) triphos-
phate ([35S]GTPγS) binding assay has been widely used to
assess functional activation of G-proteins, especially Gi/o pro-
teins, coupled to multiple receptors [3, 4]. Adenosine A1 re-
ceptor is one of these receptors, and functional activation of G-
proteins coupled to adenosine A1 receptor has been reported
by [35S]GTPγS binding in native bovine or rat brain mem-
branes [5–7] and by [35S]GTPγS autoradiography [7–9].
Although these methods have been widely utilized in neuro-
science research to investigate receptor/G-protein interaction
between inhibitory receptors and Gi/o proteins, it is not pos-
sible to differentiate each G-protein subtype functionally
coupled to the receptor by using conventional [35S]GTPγS
binding assay.

Recently, we have developed a novel technique, named
[35S]GTPγS binding/immunoprecipitation assay, which is an
extended [35S]GTPγS binding assay combined with immuno-
precipitation using an anti-Gα subtype antibody [10]. By
using this method, we have revealed that adenosine A1 recep-
tor is coupled preferentially to Gαi-3 in postmortem human
prefrontal cortical membranes. Adenosine signaling dysfunc-
tion in the brain has been implicated in pathophysiology of
neuropsychiatric diseases such as schizophrenia and affective

disorders [11–14]. However, direct studies on the
adenosinergic system in mental disorders are strikingly scare,
especially for adenosine A1 receptor-mediated signaling.
Based on these considerations, we have a plan to assess pos-
sible alterations in adenosine A1 receptor-mediated G-protein
activation in psychiatric disorder patients in comparison with
control subjects. Ahead of this, the present study aimed at
elucidating functional coupling between adenosine A1 recep-
tors and G-proteins in postmortem human brain membranes in
a control cohort. In addition, several issues related to the
methods of adenosine A1 receptor-mediated G-protein activa-
tion have been addressed both in rat and postmortem human
brain membranes. Since adenosine deaminase (ADA) is
sometimes included routinely in the assay buffer to diminish
the possible effects of residual endogenous adenosine in
[35S]GTPγS binding assay, especially in autoradiography
studies [7, 8], we have tried to elucidate to which extent the
residual endogenous adenosine affects the basal and stimulat-
ed [35S]GTPγS binding in these measurements.

Materials and methods

Chemicals and reagents

[35S]GTPγS (NEG030H, 1250 Ci/mmol) was purchased from
PerkinElmer (Waltham, MA, USA). Adenosine, 1-butyl-3-(3-
hydroxypropyl)-8-(3-noradamantyl)xanthine (PSB36), 1,3-
dimethyl-8-phenylxanthine, N-(2-methoxyphenyl)-N′-[2-(3-
pyridinyl)-4-quinazolinyl]-urea (VUF5574), caffeine, GDP,
GTPγS, and Tween 20 were obtained from Sigma-Aldrich
(St. Louis, MO, USA). 2-Chloro-N6-cyclopentyladenosine
(CCPA), N6-cyclopentyladenosine (CPA), 2-chloro-N-
cyclopentyl-2′-methyladenosine (2′-MeCCPA), 4-[2-[[6-ami-
no-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-
yl]amino]ethyl]benzenepropanoic acid hydrochloride
(CGS21680), and 8-cyclopentyl-1,3-dipropylxanthine
(DPCPX) were from Tocris Cookson (Bristol, UK).
Dynabeads Protein A was purchased from ThermoFisher
Scientific (Waltham, MA, USA). The rabbit polyclonal anti-
bodies to Gα subtypes (sc-391 for Gαi-1, sc-7276 for Gαi-2,
sc-262 for Gαi-3, and sc-387 for Gαo) were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Adenosine deaminase (ADA) from calf intestine and
Nonidet P40 substitute were obtained from Roche
Diagnostics GmbH (Mannheim, Germany). Other chemicals
used in this study were of analytical grade.

Animals

Male Sprague-Dawley rats weighing 200–250 g were pur-
chased from Kiwa Laboratory Animals Co. (Wakayama,
Japan) and housed in groups under controlled light and
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humidity conditions with free access to food and water for
several days until sacrifice. The experimental protocols were
reviewed and approved by the Animal Committee of Saitama
Medical University, and the animal care and use procedures
conformed to the European Community Guidelines for the use
of Experimental Animals (86/609/EEC).

Postmortem human brains

Postmortem human brain samples were obtained at autopsy in
the Basque Institute of Legal Medicine (Bilbao, Spain), in
accordance with protocols approved by the Human Studies
Ethical Committee of each of the institutions involved.
Dorsolateral prefrontal cortices (Brodmann’s area 9) dissected
from 40 subjects (24 males and 16 females, aged from 16 to
80 years old) without known history of neurological or psy-
chiatric disorders were used. The detailed information on
these samples have been described elsewhere [15].

Membrane preparation

Rats were sacrificed, and the cerebral cortex, hippocampus,
and striatumwere dissected quickly. Rat or human brain tissue
was homogenized in 5 mL of ice-cold TED buffer (5 mM
Tris–HCl, 1 mM EDTA, 1 mM dithiothreitol; pH 7.4) con-
taining 10% (w/v) sucrose by 20 strokes with a motor-driven
Teflon/glass tissue grinder. All of the following centrifuge
procedures were performed at 4 °C. Subsequent to centrifuga-
tion of the homogenate at 1000 g for 10 min, the supernatant
was decanted to another centrifuge tube. The pellet was
vortexed in 5 mL of TED/sucrose buffer and centrifuged again
at 1000g for 10 min. The combined supernatant (10 mL) was
centrifuged at 9000g for 20 min and resuspended in 10 mL of
TED buffer. After the same procedure was repeated, the ho-
mogenate was kept on ice for 30 min, followed by a final
centrifugation at 35,000g for 10 min. The resulting pellet
was resuspended in 50 mM Tris–HCl buffer (pH 7.4) to pro-
duce the homogenate with a protein concentration of 1.0–2.0
and 2.0–3.0 mg/mL for rat and human brain, respectively. The
homogenate was frozen quickly on fine-grained dry ice and
stored at − 80 °C until the day of experiment.

Conventional [35S]GTPγS binding assay

The [35S]GTPγS binding assay using filtration techniques
were performed according to the methods described previous-
ly [16]. In brief, brain membranes equivalent to 10–20 μg
protein (rat) or 60 μg protein (human) were incubated in du-
plicate at 30 °C for 60 min in 500 μL of 50 mM Tris–HCl
buffer (pH 7.4) containing 0.2 nM [35S]GTPγS, 5 mM
MgCl2, 0.1 mM ethylenediaminetetraacetic acid, 0.2 mM eth-
ylene glycolbis(2-aminoethylether)-N,N,N,N-tetraacetic acid
(EGTA), 0.2 mM dithiothreitol, 100 mM NaCl, 20 μM (rat)

or 50 μM (human) GDP, and the compound of interest at the
indicated concentration. After the incubation, the homogenate
was filtered under vacuum through glass fiber filters (GF/B;
Whatman International, Maidstone, UK) using a Brandel cell
harvester with 2 × 5 mL washing with ice-cold 50 mM Tris–
HCl buffer (pH 7.4). The nonspecific binding was measured
in the presence of 100 μM unlabeled GTPγS.

[35S]GTPγS binding/immunoprecipitation assay

The [35S]GTPγS binding/immunoprecipitation assay was per-
formed according to the methods described previously [10,
16]. The brain membranes were diluted with 50 mM Tris–
HCl buffer (pH 7.4) to contain 20 μg protein (rat) or 80 μg
protein (human) in 100 μL and were incubated with the com-
pound of interest diluted in 50 μL distilled water at room
temperature for 30 min in 1.5 mL polypropylene microtube.
Subsequent to the addition of 50 μL assay mixture, the incu-
bation was performed for 60 min in 200 μL of 50 mM Tris–
HCl buffer (pH 7.4) containing 2 nM [35S]GTPγS, 20 mM
MgCl2, 0.2 mM EGTA, 0.5 mM dithiothreitol, and 300 μM
GDP. The membrane homogenate was solubilized with 0.3%
Nonidet P40 substitute for 30 min, followed by a 60-min
incubation with Dynabeads Protein A, which had been coated
with anti-Gα antibody beforehand. The magnetic beads were
washed thoroughly with 100 mM phosphate buffer (pH 7.4)
containing 0.05% Tween 20 and transferred into a scintillation
vial, and the radioactivity of [35S]GTPγS bound to Gα pro-
teins captured by the magnetic beads was counted by a liquid
scintillation spectrometer. Nonspecific binding was defined in
the presence of 1 mM GTPγS.

Determination of adenosine content

Adenosine content in membrane preparation was examined
after acid extraction and converting to fluorescent derivative
1,N6-etheno adenosine. Washed membrane preparation was
adjusted to 1 mg protein/mL, and aliquots (100 μL) were
mixed with 100 μL of 5% HClO4 for measuring total adeno-
sine content in membrane preparation. To determine whether
adenosine release from membrane vesicle to incubation medi-
um during biding experiments, aliquots (150 μL) of mem-
brane fraction were incubated for 30 min at 30 °C, followed
by centrifuging at 21,500g for 10 min at 4 °C. The supernatant
was mixed with equal volume of 5% HClO4. Acid extracts of
membrane and incubated medium were mixed with 1/10 vol.
of 4.2 M KOH to neutralize and deposit potassium perchlo-
rate. Adenosine in the acid extracts were converted to 1,N6-
etheno derivatives by treating with 1% chloroacetaldehyde at
80 °C for 30 min [17]. The 1,N6-etheno adenine nucleotides
were separated using a JASCO HPLC system equipped with
an analytical YMC-Pack ODS-A column (S-5, 4.6 × 100 mm,
YMC Inc., Kyoto, Japan) [18] and monitored by a
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fluorescence detection following excitation at 270 nm at the
emission wavelength of 410 nm.

Data analysis

The concentration-dependent increase in the specific
[35S]GTPγS binding by adenosine was expressed as % over
the basal unstimulated binding and analyzed by means of a
non-linear regression method using GraphPad Prism
(GraphPad Software; La Jolla, CA, USA), to produce the con-
centration eliciting the half-maximal effect (EC50) and the
maximal of percent increase (%Emax). The concentration-
response curves for the compounds depicted in Fig. 1 were
analyzed, with the stimulatory effect elicited by 100 μMaden-
osine determined in the same experiment assumed as 100%.
The inhibitory effects of adenosine antagonists on the basal
bindingwere also analyzed by a non-linear regressionmethod,
with the basal binding regarded as 100%. Results were pre-
sented as the mean ± S.E.M. of the values obtained from the
indicated number of experiments. The effect of PSB36 on
adenosine-stimulated increase in [35S]GTPγS binding to
Gαi/o in human prefrontal cortical membranes was analyzed
by Schild plot. The stimulatory effects of adenosine on each
Gα subtype determined by [35S]GTPγS binding/
immunoprecipitation assay in rat brain membranes were ana-
lyzed by one-way analysis of variance (ANOVA), and the

significant difference between the basal and adenosine-
induced binding was determined by Tukey’s post hoc test.
Linear regressions were calculated by the method of least
squares and Pearson’s coefficient for simple correlation was
calculated to test for possible associations between pharmaco-
logical parameters (pEC50, %Emax, and slope factor) deter-
mined by the two methods in human brain samples.

Results

Pharmacological characterization
of adenosine-induced [35S]GTPγS binding to Gαi/o
in rat and postmortem human brain membranes

In rat cerebral cortical membranes, specific [35S]GTPγS bind-
ing to Gαi/o determined by the conventional filtration assay
was augmented by adenosine in a concentration-dependent
manner with a mean EC50 of 200 nM (pEC50 = 6.70 ± 0.02)
to %Emax of 54.3 ± 2.3%. This stimulatory effects of adeno-
sine were mimicked by the selective adenosine A1 receptor
agonists, CCPA, CPA, and 2′-MeCCPA [19], with a mean
EC50 of 8.8 nM (pEC50 = 8.06 ± 0.09), 10 nM (pEC50 =
7.99 ± 0.10), and 180 nM (pEC50 = 6.73 ± 0.23), respectively
(Fig. 1). The maximal increases by these three compounds
were 90–100% of the value determined in the presence of
100 μMadenosine. On the other hand, the selective adenosine
A2A receptor agonist CGS21680 had a stimulatory effects
only at the concentrations of micromolar range, resulting in
a mean EC50 value of 15μM (pEC50 = 4.82 ± 0.12). The max-
imal increase was 83.2 ± 8.7% (N = 3) of the value determined
in the presence of 100 μM adenosine.

In postmortem human prefrontal cortical membranes, the ef-
fects of PSB36, a selective adenosineA1 receptor antagonist [20],
on adenosine-induced [35S]GTPγS binding to Gαi/o were inves-
tigated. As exemplified in Fig. 2, the concentration-response
curve for adenosine-stimulated [35S]GTPγS binding to Gαi/o

was shifted rightward in parallel by the addition of 1, 10, and
100 nM PSB36. Schild regression analysis on three independent
experiments resulted in the pA2 value of 8.00 ± 0.22.

Identification of Gα subtype coupled to adenosine A1
receptor determined by [35S]GTPγS
binding/immunoprecipitation assay in rat brain
membranes

In our previous study on the [35S]GTPγS binding/
immunoprecipitation assay, it was shown that adenosine A1

receptor was selectively coupled to Gαi-3 in postmortem hu-
man brain membranes [10]. However, species differences in
the G-protein selectivity for adenosine A1 receptor have been
demonstrated [21]. With possible species differences in mind,
adenosine-induced G-protein activation was investigated

Fig. 1 Effects of adenosine receptor agonists on specific [35S]GTPγS
binding to Gαi/o in rat cerebral cortical membranes. Conventional
[35S]GTPγS binding assay by means of filtration techniques was
performed in the presence of increasing concentrations of CCPA (○),
CPA (●), 2′-Me-CCPA (△), adenosine (▲), and CGS21680 (▽). The
values represent the mean ± S.E.M. of the percent increase of the
maximal stimulation obtained from three independent experiments,
each performed in duplicate. In the experiments for the agonists except
for adenosine, the binding in the presence of 100 μM adenosine was also
determined, which was regarded as a maximal stimulation
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using several specific anti-Gα subtype antibodies in rat brain
membranes. Since the preliminary experiments (N = 3) dem-
onstrated that the increase in specific [35S]GTPγS binding to
Gαi-3 elicited by 1 mM adenosine was highest in the cerebral
cortex (226 ± 18% basal) and then in the striatum (197 ± 24%
basal), but only slight in the hippocampus (118 ± 18% basal),
the former two brain regions were further investigated. One-
way ANOVA indicated statistically significant effects in rat
cerebral cortex [F(4,20) = 14.65, P < 0.0001] as well as in
striatum F(4,10) = 49.99, P < 0.0001]. Among Gα subtypes,
a significant increase elicited by 1 mM adenosine was obtain-
ed only for Gαi-3 (P < 0.001, Tukey’s post hoc test) but not for
other Gαi/o subtypes, in both brain regions (Fig. 3).

Effects of adenosine receptor antagonists on basal
[35S]GTPγS binding to Gαi/o

In rat cerebral cortical membranes, the basal specific
[35S]GTPγS binding to Gαi/o was inhibited by several
adenosine A1 selective or nonselective antagonists partially
by approximately 20–30%, with a rank order of potency
of DPCPX >> 1,3-dimethyl-8-phenylxanthine > VU5574 >
theophylline > caffeine (Fig. 4a). The inhibition by PSB36
reached to the same extent (approximately 20%), and its
maximal inhibitory effects were obtained at extraordinarily
low concentrations, even at 10−28 M (Fig. 4b). In a rep-
resentative experiment, specific basal [35S]GTPγS binding

was 23,226 ± 171 dpm (mean ± S.E.M. of quadruplicate
determinations), whereas the specific binding in the pres-
ence of PSB36 at 10−28 M was 18,903 dpm (mean of
duplicate determinations).

In human prefrontal cortical membranes, the effects
of the two adenosine A1 receptor selective antagonists,
DPCPX and 1,3-dimethyl-8-phenylxanthine, were inves-
tigated. As shown in Fig. 4c, both compounds inhibited
the basal specific [35S]GTPγS binding to Gαi/o to the
same extent (approximately 30%). The inhibitory effects
of DPCPX were clearly more potent than 1,3-dimethyl-
8-phenylxanthine.

Effects of adenosine receptor antagonists on basal
[35S]GTPγS binding to Gαi-3

The inhibitory effects of several adenosine receptor antago-
nists on the basal specific [35S]GTPγS binding to Gαi-3 were
determined by [35S]GTPγS binding/immunoprecipitation as-
say only in rat cerebral cortical membranes. As illustrated in
Fig. 5, all the compounds investigated inhibited the basal
binding to Gαi-3 by around 20–30%, with a rank order of
potency of PSB36 > DPCPX ≈ 1,3-d imethyl -8-
phenylxanthine > VUF5574 > theophylline > caffeine.

Fig. 3 Effects of adenosine on specific [35S]GTPγS binding to each
Gαi/o subtype in rat cerebral cortical and striatal membranes.
[35S]GTPγS binding/immunoprecipitation assay was performed for
Gαi-1, Gαi-2, Gαi-3, and Gαo, in the absence and presence of 1 mM
adenosine in rat cerebral cortical (open bars) and striatal (left hatched
bars) membranes. The values represent the mean ± S.E.M. of
adenosine-stimulated bindings, expressed as the percent of the
unstimulated basal binding, obtained from five (cerebral cortex) and
three (striatum) independent experiments, each performed in triplicate.
***p < 0.001, one-way ANOVA followed by Tukey’s post hoc test

Fig. 2 Effects of PSB36 on adenosine-induced [35S]GTPγS binding to
Gαi/o in postmortem human prefrontal cortical membranes. Conventional
[35S]GTPγS binding assay by means of filtration techniques was
performed in the presence of increasing concentrations of adenosine, in
the absence (○) and presence of PSB36 at 1 nM (●), 10 nM (▲), and
100 nM (▼). The values represent the mean of duplicate determinations
expressed as percent increase over the unstimulated basal binding in a
representative experiment
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Concentrations of adenosine in membrane
preparation and supernatant

Concentrations of adenosine, determined after extraction from
the brainmembrane preparations adjusted to 1mg protein/mL,
were within a range of 1–2 μM, for all three rat brain regions
as well as for postmortem human prefrontal cortex (Table 1).

The adenosine concentrations were also determined in super-
natant fractions after incubation of the brain membrane prep-
arations at 30 °C for 30 min. In the case of rat brain mem-
branes, the concentrations of adenosine in supernatant were
350 ± 70, 191 ± 15, and 233 ± 40 nM, in the cerebral cortex,
hippocampus, and striatum, respectively. Conversely, the su-
pernatant fraction of postmortem human prefrontal cortical
membranes contained only one-tenth of the levels found in
rat brain membranes (28 ± 6 nM).

Effects of ADA on [35S]GTPγS binding to Gαi/o

The effects of ADA on the basal specific [35S]GTPγS binding to
Gαi/o were investigated by conventional [35S]GTPγS binding
assay. In rat cerebral cortical membranes, the addition of ADA
in incubation buffer resulted in concentration-dependent inhibi-
tory effects (Fig. 6a). In the presence of ADA at 20 U/tube, the
basal bindingwas inhibited to 55.3 ± 2.4% (N = 4) of the binding
determined in the absence of ADA. The similar inhibitory effects
were also observed in hippocampal and striatal membranes,
though to a somewhat smaller extent [72.9 ± 3.9% (N = 3) and
67.2 ± 3.6% (N = 3) in the presence of 20 U/tube ADA in the
hippocampus and striatum, respectively] (not shown). In order to
ascertain that the influence of ADA derived from its enzymatic
activity, we tried to verify whether pretreatment of ADA by
heating abolished its inhibitory effects. The enzymatic inactiva-
tion of ADA by heating did not reverse the inhibitory effects of
ADA, contrary to expectation (Fig. 6a, inset).

In postmortem human prefrontal cortical membranes, ADA
inhibited the basal specific [35S]GTPγS binding to Gαi/o

(Fig. 6b). The inhibitory effects of ADAwere observed at very
low concentrations as compared to those in rat brain membranes.

Fig. 4 Effects of adenosine receptor antagonists on basal specific
[35S]GTPγS binding to Gαi/o in rat cerebral cortical and postmortem
human prefrontal cortical membranes. Conventional [35S]GTPγS
binding assay by means of filtration techniques was performed in the
presence of increasing concentrations of a DPCPX (○), 1,3-dimethyl-8-
phenylxanthine (●), VU5574 (△), theophylline (▲), and caffeine (▽) in
rat cerebral cortex, b PSB36 (○) in rat cerebral cortex, and c DPCPX (○)

and 1,3-dimethyl-8-phenylxanthine (●) in human prefrontal cortex. The
values for all compounds (except for 1,3-dimethyl-8-phenylxanthine in
human prefrontal cortex) represent the mean ± S.E.M. of the percent of
the unstimulated basal binding obtained from three independent
experiments, each performed in duplicate. The values for 1,3-dimethyl-
8-phenylxanthine in human prefrontal cortex were the mean of the results
obtained from two independent experiments, each performed in duplicate

Fig. 5 Effects of adenosine receptor antagonists on basal specific
[35S]GTPγS binding to Gαi-3 in rat cerebral cortical membranes.
[35S]GTPγS binding/immunoprecipitation assay was performed in the
presence of increasing concentrations of PSB36 (○), DPCPX (●), 1,3-
dimethyl-8-phenylxanthine (△), VU5574 (▲), theophylline (▽), and
caffeine (▼). The values represent the mean ± S.E.M. of the percent of
the unstimulated basal binding obtained from 3 to 4 independent
experiments, each performed in duplicate
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Thus, in the presence of ADA at 1 mU/tube, the basal binding
was inhibited to 82.4 ± 2.4% (N = 4). This inhibitory effect of
ADA was canceled when ADA was inactivated by boiling
(95 °C for 5 min) beforehand (Fig. 6b, inset).

Effects of ADA on [35S]GTPγS binding to Gαi-3

The effects of ADA on the basal specific [35S]GTPγS binding
were also studied in [35S]GTPγS binding/immunoprecipitation
experiments. In rat cerebral cortical membranes, the effects of
ADA appeared inconsistent (Fig. 7a). The inhibitory effects of
ADAwere observed in some experiments, whereas ambiguous
or even stimulatory effects were detected in other experiments.
In the rat brain membranes in which the stimulatory effects of
ADAwere observed, these effects were not altered by the pre-
treatment of ADA by heating (not shown).

In postmortem prefrontal cortical membranes, the basal
specific [35S]GTPγS binding to Gαi-3 was inhibited by

ADA in a concentration-dependent manner (Fig. 7b). In the
presence of ADA at 5 U/tube, the basal binding was inhibited
to 66.0 ± 2.1% (N = 4).

Effects of adenosine on [35S]GTPγS binding to Gαi/o
in postmortem human brain membranes

As shown in Fig. 8, the %Emax values of adenosine-stimulated
[35S]GTPγS binding to Gαi/o determined by conventional
[35S]GTPγS binding assay ranged from 133 to 422%, with a
mean value of 272 ± 12%. Themean EC50 value, derived from
pEC50 values (6.34 ± 0.02, ranging from 5.98 to 6.52), was
454 nM. Hill coefficient ranged from 0.71 to 1.06, with a
mean value of 0.86 ± 0.01.

Effects of adenosine on [35S]GTPγS binding to Gαi-3-
in postmortem human brain membranes

The concentration-dependent increases in specific
[35S]GTPγS binding to Gαi-3-were also determined by means
of [35S]GTPγS binding/immunoprecipitation assay in the
same 40 subjects (Fig. 9). The specific [35S]GTPγS binding
to Gαi-3-was increased by the addition of adenosine in a
concentration-dependent manner, with the %Emax value of
160 ± 9% (ranging from 58 to 269%) and a slope value of
0.93 ± 0.04 (ranging from 0.49 to 1.72). The mean EC50 val-
ue, derived from pEC50 values (6.09 ± 0.06, ranging from 5.39
to 6.98), was 822 nM.

Fig. 6 Effects of ADA on basal specific [35S]GTPγS binding to Gαi/o in
rat cerebral cortical and postmortem human prefrontal cortical
membranes. Conventional [35S]GTPγS binding assay by means of
filtration techniques was performed in the presence of increasing
concentrations of ADA in rat cerebral cortex (a) and human prefrontal
cortex (b). The open symbols represent the mean ± S.E.M. of the percent
of the unstimulated basal binding obtained from four independent
experiments (depicted as thin lines), each performed in duplicate or
triplicate. (Insets) Effects of pretreatment of ADA by heating in rat

cerebral cortical (a) and postmortem human prefrontal cortical (b)
membranes. Conventional [35S]GTPγS binding assay by means of
filtration techniques was performed in the presence of 15 U/tube or
1 mU/tube ADA in rat cerebral cortex and human prefrontal cortex,
respectively, either non-treated (open bar) or pretreated by boiling at
95 °C for 15 min (rat) or for 5 min (human) (left hatched bar). The
values represent the mean ± S.E.M. of the percent of the unstimulated
basal binding determined in the absence of ADA, obtained from 3 to 4
independent experiments, each performed in duplicate

Table 1 Adenosine concentrations in membrane preparations and
supernatant

Whole membrane
(μM in mg protein/mL)

Supernatant
(nM)

Rat brain

Cerebral cortex (N = 4) 1.41 ± 0.09 350 ± 70

Hippocampus (N = 4) 1.84 ± 0.17 191 ± 15

Striatum (N = 4) 1.64 ± 0.16 233 ± 40

Human prefrontal cortex (N = 4) 1.07 ± 0.07 28 ± 6
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Effects of sex, drug(s) detected in toxicological
screening, age, postmortem delay, storage period,
and tissue pH on adenosine-stimulated [35S]GTPγS
binding in postmortem human brain membranes

When 40 subjects were divided into two groups based on sex (26
males/14 females) and presence or absence of any drug(s) in their
blood (12 presence/28 absence), there were no statistically

significant differences between the two groups in any of the
tested parameters, in either [35S]GTPγS binding experiment. In
addition, no statistically significant correlation was obtained be-
tween each pharmacological parameter (%Emax, pEC50, and
slope) and age (range 16–80 years), postmortem delay (range
3–64 h), freezing storage period (range 30–257 and 35–
244 months for conventional [35S]GTPγS binding and
[35S]GTPγS binding/immunoprecipitation, respectively), or

Fig. 7 Effects of ADA on basal specific [35S]GTPγS binding to Gαi-3 in
rat cerebral cortical and postmortem human prefrontal cortical
membranes. [35S]GTPγS binding/immunoprecipitation assay was
performed in the presence of increasing concentrations of ADA in rat
cerebral cortex (a) and human prefrontal cortex (b). a The open

symbols represent the mean of duplicate determinations of each
experiment, expressed as the percent of the respective unstimulated
basal binding. b The open symbols represent the mean ± S.E.M. of the
percent of the unstimulated basal binding obtained from four independent
experiments (depicted as thin lines), each performed in duplicate

Fig. 9 Stimulatory effect of adenosine on the specific [35S]GTPγS
binding to Gαι-3 in postmortem human prefrontal cortical membranes.
[35S]GTPγS binding/immunoprecipitation assay was performed in the
presence of increasing concentrations of adenosine in human prefrontal
cortex. The open symbols represent the mean ± S.E.M. of the percent of
the unstimulated basal binding obtained from independent experiments
determined in 40 subjects (depicted as thin lines), each performed in
duplicate

Fig. 8 Stimulatory effect of adenosine on the specific [35S]GTPγS
binding to Gαι/ο in postmortem human prefrontal cortical membranes.
Conventional [35S]GTPγS binding assay by means of filtration
techniques was performed in the presence of increasing concentrations
of adenosine in human prefrontal cortex. The open symbols represent the
mean ± S.E.M. of the percent of the unstimulated basal binding obtained
from independent experiments determined in 40 subjects (depicted as thin
lines), each performed in duplicate
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tissue pH (range 5.8–6.8, available in 22 subjects), except for the
following two correlations. One significant correlation was ob-
tained between age and %Emax values determined in adenosine-
induced [35S]GTPγS binding to Gαi/o determined by conven-
tional [35S]GTPγS binding assay (r= 0.38, p< 0.05) (Fig. 10a).
The significant positive correlationwas kept inmale subjects (r=
0.54, p< 0.05), but not in females. Another one was a significant
correlation between postmortem delay and %Emax values in
adenosine-induced [35S]GTPγS binding to Gαi/o (r = 0.31,
p< 0.05) (Fig. 10b). The correlation was still significant in the
male subjects (r= 0.43, p< 0.05), but not in the female group.

Interrelation between adenosine-stimulated [35S]
GTPγS bindings to Gαi/o and adenosine-stimulated
[35S]GTPγS bindings to Gαi-3 in postmortem human
brain membranes

Interrelation of each pharmacological parameter (%Emax, pEC50,
and slope) between adenosine-stimulated [35S]GTPγS binding
to Gαi/o determined by conventional [

35S]GTPγS binding assay
and adenosine-stimulated [35S]GTPγS binding to Gαi-3 deter-
mined by [35S]GTPγS binding/immunoprecipitation assay was
investigated bymeans of linear regression analysis by themethod
of least squares. No significant correlation was obtained for any
parameter between both measures (r = −0.01, p > 0.05 for
%Emax; r =− 0.03, p > 0.05 for pEC50; and r =− 0.28, p > 0.05
for slop factor).

Discussion

In the present study, we utilized two [35S]GTPγS binding
methods, i.e., conventional [35S]GTPγS binding assay using

filtration techniques [16] and [35S]GTPγS binding/
immunoprecipitation assay [10, 16], in rat and postmortem
human brain membranes. In postmortem human prefrontal cor-
tical membranes, the receptor subtype involved in adenosine-
induced [35S]GTPγS binding to Gαi-3 was pharmacologically
characterized as adenosine A1 receptor [10]. The experiments
using conventional [35S]GTPγS binding assay performed in
the present study also indicated the involvement of adenosine
A1 receptor. Adenosine itself stimulated the specific
[35S]GTPγS binding to Gαi/o in rat cerebral cortical mem-
branes with a mean EC50 of 200 nM. These stimulatory effects
were mimicked by several selective adenosine A1 receptor ag-
onists, CCPA, CPA, and 2′-MeCCPA [19], at submicromolar
concentrations. The results depicted in Fig. 1 indicate that all of
these three compounds behave as almost full agonists, with
intrinsic activities of 90–100%. Although it is exceedingly dif-
ficult to determine the affinity of the endogenous ligand aden-
osine to adenosine receptors [19], one study using a functional
assay for inhibitory effects on adenylate cyclase in rat fat cell
membranes has indicated that its potency to adenosine A1 re-
ceptor is 73 nM [22]. Also, it was reported that adenosine
inhibited forskolin-stimulated cyclic AMP formation in
Chinese hamster ovary (CHO) cells stably transfected with
human adenosine A1 receptor with an EC50 of 310 and
54 nM in the absence and presence of nitrobenzylthioinosine
(adenosine transport inhibitor), respectively [23]. The stimula-
tory effects of CGS21680, a selective adenosine A2A receptor
agonist, at higher concentrations are likely attributable to its
property as a weak agonist at adenosine A1 receptor [24–26].
The intrinsic activity of CGS21680 (83.2 ± 8.7%) appeared
somewhat lower than other three compounds. However, the
exact intrinsic activity of this compound is difficult to deter-
mine due to a lack of enough saturability at the concentrations

Fig. 10 Effects of age and postmortem delay on adenosine-induced
[35S]GTPγS binding to Gαi/o in postmortem human prefrontal cortical
membranes. a The values represent individual %Emax of the adenosine-
stimulated [35S]GTPγS binding to Gαi/o in male (○) or female (●)
subjects, scattered as a function of age. The regression lines are

depicted for all (solid line) or male data (broken line). (b) The values
represent individual %Emax of the adenosine-stimulated [35S]GTPγS
binding to Gαi/o in male (○) or female (●) subjects, scattered as a
function of postmortem delay. The regression lines are depicted for all
(solid line) or male data (broken line)
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investigated in the present study. According to the previous
report [25], CGS21680 has been reported to act as a full agonist
at human adenosine A1 receptor expressed in CHO cells. In
postmortem human prefrontal cortical membranes, adenosine-
stimulated [35S]GTPγS binding to Gαi/o was inhibited by the
selective adenosine A1 receptor antagonist PSB36 in a compet-
itive manner, with a mean pA2 value of 8.00. The Ki value of
this compound for human adenosine A1 receptor is reported to
be 0.7 nM, based on the data obtained from [3H]CCPA binding
experiments [20].

Differences in G-protein coupling with adenosine A1 recep-
tors from rat, human, and bovine brain have been demonstrated
[21, 27]. In the present study, we verified whether selective
coupling between adenosine A1 receptor and Gαi-3 observed
in postmortem human brain membranes [10] was also detected
in rat brain membranes. As in human brain membranes,
adenosine-induced [35S]GTPγS binding through adenosine A1

receptors was detectable only for Gαi-3, but not for other Gαi/o

subtypes, in [35S]GTPγS binding/immunoprecipitation experi-
ments, at least in rat cerebral cortical and striatal membranes.
We performed this type of experiments in these two brain re-
gions, but not in hippocampus, since the preceding results indi-
cated the magnitudes of adenosine-stimulated [35S]GTPγS
binding to Gαi-3 were prominent in cortex and striatum, but
faint in hippocampus. The reason of scarce response in hippo-
campus in [35S]GTPγS binding/immunoprecipitation experi-
ments is unclear at the moment. The autoradiographic as well
as immunohistochemical studies have shown that adenosine A1

receptors are distributed widespread throughout the brain in-
cluding hippocampal formation [2, 28, 29]. Although an immu-
nohistochemical study indicates the existence of Gαi-3-peptide-
positive neurons in the hippocampus [30], the expression level
of Gαi-3 proteins may be lower in hippocampus than in other
brain regions such as the cerebral cortex and striatum.
Alternatively, coupling efficiency between adenosine A1 recep-
tor and Gαi-3 protein may be weak in the hippocampus com-
pared to the two other brain regions.

Several adenosine receptor antagonists inhibited the basal
[35S]GTPγS binding to Gαi/o in rat and human brain mem-
branes. Since it has been shown that some adenosinergic li-
gands including DPCPX act as an inverse agonist, but not as
a neutral antagonist [31], it is possible to regard the data ob-
tained in the present study as the effects of inverse agonists on
constitutive active adenosine A1 receptors in the brain mem-
branes. However, since the constitutive activity is mainly evi-
denced for recombinant receptors overexpressed and/or mutat-
ed [32, 33], an alternative explanation for the phenomena is
that the negative intrinsic activities of these compounds derive
from pseudo basal binding levels due to the presence of resid-
ual endogenous adenosine in the assay buffer [7, 34]. In either
way, the rank order of potencies of these antagonists in rat
cerebral cortical membranes, i.e., DPCPX >> 1,3-dimethyl-8-
phenylxanthine > VUF5574 > theophylline > caffeine,

indicates the involvement of adenosine A1 receptor subtype
[19, 35]. Similar inhibition of the basal [35S]GTPγS binding
to Gαi/o via adenosine A1 receptor subtype was also observed
in human prefrontal cortical membranes (DPCPX > 1,3-di-
methyl-8-phenylxanthine). To our surprise, the maximal inhib-
itory effects of PSB36 on the basal [35S]GTPγS binding to
Gαi/o in rat cerebral cortical membranes (approximately 20%)
were obtained even at 10−28 M. The inhibitory effects of this
compound were concentration-independent and constant at
wide range of concentrations from 10−28 to 10−4 M (data not
shown). The Ki value of this compound at rat and human aden-
osine A1 receptor is reported to be 0.12 and 0.7 nM, respec-
tively [20]. The inhibitory effects of PSB36 at unusually low
concentrations may be pharmacologically irrelevant artifact.

In contrast with the peculiar inhibitory effects of PSB36 in
[35S]GTPγS binding experiments in rat cerebral cortical
membranes, PSB36 inhibited the basal [35S]GTPγS binding
to Gαi-3 in rat cerebral cortical membranes determined by
[35S]GTPγS binding/immunoprecipitation assay in an ordi-
nary way, with an IC50 value of nanomolar order. This com-
pound is the most potent among the ligands investigated, and
the rank order of potencies as an antagonist (PSB36 > DPCPX
≈ 1,3-dimethyl-8-phenylxanthine > VUF5574 > theophylline
> caffeine) indicates the involvement of adenosine A1 receptor
subtype again in these inhibitory effects.

The question of whether residual endogenous adenosine ex-
ists in incubation buffer under the experimental conditions in the
present study was addressed by direct determination of adeno-
sine concentrations. The results indicate that the membrane
preparations used in the present study contain substantial con-
tents of adenosine. Moreover, endogenous adenosine is detect-
able in the supernatant fraction (350 and 28 nM in rat and human
cortex, respectively) subsequent to the incubation of the mem-
branes (1 mg protein/mL). If it is assumed that the rate of en-
dogenous adenosine production by membranes is proportional
to the concentration of membrane protein, it follows that the
assay buffer in the conventional [35S]GTPγS binding experi-
ments using rat (10–20 μg protein/500 μL) and human (60 μg
protein/500 μL) cortical membranes contains 7–14 and 3 nM
adenosine, respectively. In the [35S]GTPγS binding/
immunoprecipitation study, the assay was performed with the
membranes prepared from rat (20 μg protein/200 μL) and hu-
man (80 μg protein/200μL), and adenosine concentration in the
assay buffer was calculated to be 35 and 11 nM, respectively.
These concentrations of endogenous adenosine are very low as
compared with the EC50 values of adenosine, and thus, it is
unlikely that the basal [35S]GTPγS binding is elevated to a
considerable extent by the existence of residual adenosine in
the experimental conditions adopted in the present study.

Although ADA has been included in experimental systems
frequently in order to remove endogenous adenosine in
radioligand binding and functional assays for adenosine recep-
tors, little information is available as to how much ADA is
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necessary and enough [34]. In the present study, the results indi-
cate that ADA affects the basal [35S]GTPγS binding levels with
different sensitivity and varied pattern, depending on species (rat
vs. human) as well as experimental designs (conventional assay
vs. [35S]GTPγS binding/immunoprecipitation). In human pre-
frontal cortical membranes, the basal specific [35S]GTPγS bind-
ing determined by conventional filtration assay was inhibited by
the addition of ADA at very low concentrations (< 1 mU/tube),
compared to the higher concentrations (~ 20 U/tube) of ADA
needed in rat cerebral cortical membranes. The inhibitory effects
of ADA in human prefrontal cortical membranes were likely
originated from its enzymatic activity, since the effects of ADA
were canceled subsequent to its deactivation by heating. The
basal binding was also inhibited by ADA (~ 5 U/tube) in the
[35S]GTPγS binding/immunoprecipitation experiments using
human brain membranes. On the other hand, the results from
the same experiments using rat cerebral corticalmembraneswere
perplexing. The effects of ADA on the basal [35S]GTPγS bind-
ing to Gαi-3 were inhibitory as anticipated in some samples, but
even stimulatory in others. These stimulatory effects of ADA
appear to be irrelevant to its activity as an enzyme, because the
pretreatment of ADA by heating failed to counteract its effects
(not shown).

All of the abovementioned results, i.e., decrease in basal
[35S]GTPγS binding by adenosine receptor antagonists
through adenosine A1 receptor, detection of adenosine at
nanomolar concentrations in supernatant fraction subsequent
to incubation of the membranes, and inhibitory effects of
ADA on basal [35S]GTPγS binding, suggest the possibility
that residual endogenous adenosine is present in the assay
mixture in the present study. However, it is said that it is
difficult to remove endogenous adenosine completely with
ADA [34]. In fact, it has been reported that lipophilic aden-
osine receptor antagonists such as DPCPX and the neutral
antagonist N-0840 inhibited basal [35S]GTPγS binding even
in the presence of ADA in rat cerebellar membranes, indica-
tive of ADA-resistant adenosine pool [36]. The diverse influ-
ences of ADA on basal [35S]GTPγS binding assessed by
[35S]GTPγS binding/immunoprecipitation assay in rat brain
membranes prompted us to hesitate to include ADA routinely
in assay buffers. It has been reported that ADA is a moon-
lighting protein, with multifunctional properties (e.g., as an
allosteric modulator of adenosine receptors) in addition to its
enzymatic activity [37]. The perplexing results of ADA in the
present study may be ascribed to its functions other than
catalytic action. Moreover, the presumed concentrations of
adenosine in incubation mixture in the present study are only
nanomolar order, much lower in comparison with the report-
ed potencies of adenosine at adenosine A1 receptor [22, 23]
and with the EC50 values determined in the present study
(200 and 450 nM in rat and human brain membranes, respec-
tively, in conventional [35S]GTPγS binding assay; 820 nM in
h um a n memb r a n e s i n [ 3 5 S ]GTPγS b i n d i n g /

immunoprecipitation assay). Taking these results into ac-
count, it was ultimately decided that ADA was not routinely
added in the following experiments in the present study.

By utilizing conventional [35S]GTPγS binding and
[35S]GTPγS binding/immunoprecipitation assays in the ab-
sence of ADA [10], adenosine-stimulated G-protein activation
was determined in prefrontal cortical membranes prepared
from 40 subjects with no psychiatric and/or neurological dis-
orders (16~80 years old). There have been lots of reports deal-
ing with alterations in the number of adenosine A1 receptors
according to aging. Most of such studies using radioligand
binding assay or quantitative autoradiography in rodent brains
[38–42] as well as positron emission tomography (PET) in
living humans [43, 44] have indicated consistently age-
related decline of adenosine A1 receptors in the brain.
However, conflicting results as to the declining effects of ag-
ing on adenosine A1 receptor density have also been reported
by several studies [28, 45–50]. Ułas et al. [51] demonstrated
that coupling of adenosine A1 receptors to G-proteins
remained unaltered in spite of remarkable reduction of their
density in hippocampus of patients with Alzheimer’s disease.
Even if there may be a tendency of age-dependent reduction of
adenosine A1 receptors, the coupling efficiency between aden-
osine A1 receptors and G-proteins is enhanced, rather than
reduced, according to aging, likely by compensatory
mechanisms.

The %Emax values of adenosine-stimulated [35S]GTPγS
binding determined by conventional assay were also correlated
with postmortem delay in the present study. The effects of
postmortem delay on receptor-mediated [35S]GTPγS bindings
were reported in the previous study [52], which indicated that
postmortem delay with a range of 8–92 h had no effects on
basal levels of [35S]GTPγS binding or stimulation mediated
through α2-adrenergic, μ-opioid, 5-HT1A, GABAB, or musca-
rinic acetylcholine receptor. Although the decrease in receptor
binding associated with prolonged postmortem delay has been
reported for many receptors [53–58], this rule is not generalized
to all receptors. Indeed, the unaltered or even increased receptor
binding induced by postmortem delay has been reported for
some receptors [54–56]. Since the information on how post-
mortem delay affects adenosine A1 receptor binding is unavail-
able, it is unknown whether the results obtained in the present
study are attributable to increase in adenosine A1 receptors or to
strengthened coupling efficiency between adenosine A1 recep-
tor and G-protein by prolonged postmortem period.

A lack of correlation between parameters such as %Emax

values of adenosine-stimulated [35S]GTPγS binding deter-
mined by conventional assay and [35S]GTPγS binding/
immunoprecipitation assay was against our expectation.
These results may indicate that the two functional measures
reflect distinct biochemical consequences, although mediated
commonly through adenosine A1 receptor. Although adeno-
sine A1 receptor-mediated G-protein activation was detectable
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only for Gαi-3 in [35S]GTPγS binding/immunoprecipitation
experiments, adenosine A1 receptor-mediated [35S]GTPγS
binding determined by conventional filtration assay derives
not only from Gαi-3 but also from other Gαi/o proteins.

The coupling between adenosine A1 receptor and G-
proteins was assessed by means of both [35S]GTPγS bind-
ing assays, i.e., conventional filtration method and
[35S]GTPγS binding/immunoprecipitation in the present
study. In conclusion, the latter method provided information
about adenosine A1 receptor-mediated Gαi-3 activation in rat
as well as human brain membranes. On the other hand,
adenosine-stimulated [35S]GTPγS binding determined with
conventional assay derives from functional activation of
Gαi/o proteins (not restricted only to Gαi-3) coupled to aden-
osine A1 receptors. The determination of adenosine concen-
trations in the samples used in the present study indicates the
possibility that the assay mixture under our experimental
conditions contains residual endogenous adenosine at
nanomolar concentrations, which was also suggested by
the results on the effects of adenosine receptor antagonists
on basal [35S]GTPγS binding level. The effects of ADA on
basal binding also support the presence of adenosine.
Nevertheless, the varied patterns of ADA discouraged us
from adding ADA into assay medium routinely. The con-
centration-dependent increases elicited by adenosine were
determined in 40 subjects without any neuropsychiatric dis-
orders. The increases in %Emax values determined by con-
ventional assay according to aging and postmortem delay
should be taken into account in future studies focusing on
the effects of psychiatric disorders on adenosine A1 receptor/
G-protein interaction in postmortem human brain tissue.
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