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Abstract Human saphenous vein (HSV) is harvested and
prepared prior to implantation as an arterial bypass graft.
Injury and the response to injury from surgical harvest and
preparation trigger cascades of molecular events and contrib-
ute to graft remodeling and intimal hyperplasia. Apoptosis is
an early response after implantation that contributes the devel-
opment of neointimal lesions. Here, we showed that surgical
harvest and preparation of HSV leads to vasomotor dysfunc-
tion, increased apoptosis and downregulation of the phosphor-
ylation of the anti-apoptotic protein, Niban. A model of
subfailure overstretch injury in rat aorta (RA) was used to
demonstrate impaired vasomotor function, increased extracel-
lular ATP (eATP) release, and increased apoptosis following
pathological vascular injury. The subfailure overstretch injury
was associated with activation of p38 MAPK stress pathway
and decreases in the phosphorylation of the anti-apoptotic
protein Niban. Treatment of RA after overstretch injury with
antagonists to purinergic P2X7 receptor (P2X7R) antagonists
or P2X7R/pannexin (PanX1) complex, but not PanX1 alone,
restored vasomotor function. Inhibitors to P2X7R and PanX1
reduced stretch-induced eATP release. P2X7R/PanX1 antag-
onism led to decrease in p38 MAPK phosphorylation, resto-
ration of Niban phosphorylation and increases in the phos-
phorylation of the anti-apoptotic protein Akt in RA and re-
duced TNFα-stimulated caspase 3/7 activity in cultured rat
vascular smooth muscle cells. In conclusion, inhibition of
P2X7R after overstretch injury restored vasomotor function

and inhibited apoptosis. Treatment with P2X7R/PanX1 com-
plex inhibitors after harvest and preparation injury of blood
vessels used for bypass conduits may prevent the subsequent
response to injury that lead to apoptosis and represents a novel
therapeutic approach to prevent graft failure.
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Introduction

Autologous human saphenous vein grafts (HSV) are com-
monly used for infrainguinal and coronary revascularization
procedures. Injury during graft harvest and preparation con-
tribute to the development of intimal hyperplasia, the primary
cause of vein graft failure. The outcome from these procedures
remains limited by high rates of vein graft failure, 39% at 12–
18months after peripheral vascular bypass [1] and 45% at 12–
18 months after coronary artery bypass grafting (CABG) [2].
Various methods have been developed for the surgical harvest
of saphenous veins for CABG with endoscopic harvest re-
mains most commonly performed which leads to traction on
the vein and injury to the endothelium and media [3–5]. After
harvest, the veins are further Bprepared^ prior to implantation
by pressure distension [6], off-label marking with a surgical
skin marker [7], and storing in a non-buffered solution [8],
resulting in physiologic dysfunction, increased oxidative
stress [9] and increased expression of genes that involved in
inflammation and apoptosis [10–12]. Thus, minimizing oper-
ative injury to the conduit at the time of harvest and prepara-
tion improves conduit function [13] and may prevent vein
graft failure.
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Our previous studies have shown that brilliant blue FCF
(BB FCF), a P2X7R antagonists, ameliorated injury in HSV
and porcine saphenous veins (PSV), suggesting an involve-
ment of P2X7R in vascular injury [7, 14]. We have recently
developed a rat aorta (RA) model of subfailure overstretch
injury [15]. This stretch injury recapitulates the haptic end-
point of traction during endoscopic harvest of HSV.
Subfailure overstretch injury to RA leads to impaired physio-
logic function that can be partially restored with A438079 and
oxidized ATP, inhibitors to the purinergic P2X7 receptor
(P2X7R), further implicating a role of P2X7R signaling in
iatrogenic stretch injury to the conduits [15].

Pathophysiologic ATP release by damaged cells has been
demonstrated during astrocytes swelling and stretching [16],
urinary bladder distention [17], alveolar cell stretching [18],
and Tcells hypertonic challenge [19]. This release is mediated
by the P2X7R and, depending on cell types, the pannexin
channel [20, 21]. Once released, high extracellular ATP
(eATP) further amplifies P2X7R activation and ATP release
in neighboring cells. In addition, elevation of P2X7R expres-
sion has been linked to injury [22, 23]. The functional sequel-
ae of P2X7R activation includes formation of large membrane
pores, influx of calcium and activation of caspases, and ulti-
mately apoptosis [24]. Antagonists to the P2X7R have been
shown to ameliorates stretch injury of the spinal cord [25] and
modulate responses in murine models of various inflammato-
ry and neurological disorders [26].

In this study, we hypothesized that overstretch injury dur-
ing harvest and preparation of HSV leads to release of ATP
and activation of P2X7R, which potentiates the injury re-
sponse. We first determined the impact of surgical harvest
and preparation on vasomotor function and apoptosis in
HSV, and then confirmed the role of ATP release, P2X7R
activation in stretch-induced apoptosis in the RA model of
subfailure overstretch injury. Our data provide new mechanis-
tic insights into the purinergic signaling that regulates apopto-
tic responses to vascular overstretch injury.

Materials and methods

All chemicals were purchased from Sigma Chemical Co. (St.
Louis, MO) unless otherwise specified.

Procurement of human saphenous vein

HSV was obtained after approval from the Institutional
Review Boards of Vanderbilt University Medical Center from
patients undergoing coronary artery bypass grafting proce-
dures. Method of vein harvest and graft preparation [including
hydrostatic distention, marking with a surgical skin marker,
and placement in storage solution (normal saline or
PlasmaLyte)] was at the discretion of the surgical team. For

each HSV (n = 18), paired segments were collected (1) imme-
diately following surgical harvest (Bunprepared^ vein sam-
ples, UP) and (2) after graft preparation (Bafter preparation^
vein samples, AP) from the same patient. Each vein segment
was transported immediately to laboratory in heparinized
PlasmaLyte (HP; 10 unit heparin/mL PlasmaLyte) for experi-
mentation, formalin fixation, or frozen within 30 min of col-
lection. Areas showing visible signs of injury were not used in
experimentation.

Procurement of rat aortae

Aorta (RA) was collected from female, 250-300 g, Sprague
Dawley rats. Animal procedures followed study protocols ap-
proved by the Vanderbilt Institutional Animal Care and Use
Committee and adhered to National Institute of Health guide-
lines for care and use of laboratory animals. Immediately after
euthanasia, the abdominal RA was isolated via an incision
along the mid-abdomen, placed in HP and transported to the
laboratory for immediate testing.

Mechanical stretch injury and treatment of RA

RAwas dissected free of fat and connective tissue. A segment
was reserved as non-stretched control. The remaining RAwas
stretched to 200% the resting length for 10 s and repeated
twice [15]. Stretched RAwas then cut in segments and incu-
bated for 1 h at room temperature in heparinized PlasmaLyte
(HP) with or without inhibitors to P2XR or pannexin 1
(PanX1) [BB FCF (50 and 100 μM), A740003 (100 μM),
the pannexin inhibitory peptide 10PanX1 peptide (200 μM;
EZBiolab, IN), or carbenoxolone (100 μM)].

Measurement of physiologic responses

HSVor RA rings (1–2 mm) were suspended in a muscle bath
containing a bicarbonate buffer (120 mM sodium chloride,
4.7 mM potassium chloride, 1.0 mM magnesium sulfate,
1.0 mM monosodium phosphate, 10 mM glucose, 1.5 mM
calcium chloride, and 25 mM sodium bicarbonate, pH 7.4)
equilibrated with 95% O2/5% CO2 at 37 °C for 1 h at a resting
tension of 1 g, manually stretched to three times the resting
tension, and maintained at resting tension for an additional
1 h. This produced the maximal force tension relationship as
previously described [9]. Force measurements were obtained
using the Radnoti force transducer (model 159901A)
interfaced with a PowerLab data acquisition system and
Chart software (AD Instruments). After equilibration, the
rings were primed with 110 mM potassium chloride (with
equimolar replacement of sodium chloride in bicarbonate
buffer) to determine functional viability. Viable rings were
then tested for contractile response to a dose of phenylephrine
(PE) to yield submaximal contraction (approximately 60–70%
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of maximum KCl; 5 × 10−6 M for HSVand 1-5 × 10−7 M for
RA). Contractile responses were defined by stress, calculated
using force generated by tissues as follows: stress (×105

N/m2) = force (g) × 0.0987/area, where area = wet weight
(mg)/ at maximal length (mm)]/1.055. Each data point was
averaged from at least two rings from the same specimen.

Measurement of apoptosis by terminal deoxynucleotidyl
transferase dUTP nick-end labeling

Immediately after collection, HSV (n = 11) were formalin-fixed,
dehydrated with ethanol, embedded in paraffin. For RA (n = 5),
after stretch injury and BB FCF treatment for 1 h, segments were
cultured in RPMI 1640 media with 30% FBS at 37 °C in humid-
ified incubator with 5% CO2 for 24 h prior to formalin fixation.
Apoptosis were detected using DeadEndTM Flourometric
TUNEL system (Promega, CA) per manufacturer’s instructions.
Sections were then stained with anti-Von Willebrand Factor
(Dako, CA) followed by Alex Fluor® 568-labeled secondary
antibody (Invitrogen, CA) and mounted with SlowFade® Gold
antifade reagent with DAPI (Life Technologies, CA). Images
were acquired on Zeiss Axiovert 200 Fluorescence microscope
at ×40 magnification. Terminal deoxynucleotidyl transferase
dUTP nick-end labeling (TUNEL) signals were quantified by
Image J with the plugin Bcolor_pixel_counter.class^ with mini-
mum intensity value set at 100. Extent of apoptosis (apoptosis
index) was represented as percent green color pixels (TUNEL-
positive cells) of the blue color pixels (DAPI-stainednuclei) of the
entire vein section. In addition, serial sections of HSV were
stainedwith Verhoeff VanGieson stain to visualize elastic lamina.

Immunohistochemistry of P2X7R in RA

Freshly isolated, non-stretchedRA (n= 4)was formalin-fixed and
paraffin-embedded. Antigen retrieval of sections was performed
with citrate buffer (pH 6) at 95°C for 5 min. After preincubation
with 5% goat serum to block nonspecific sites, sections were
incubated with primary antibodies against P2X7R (Alomone
Labs, Jerusalem, Israel) overnight at 4°C. The sections were then
incubated with Alexa 568-tagged anti-rabbit antibodies
(Invitrogen) for 1 h. Controls were performed by preabsorbing
the primary antibody with the immunogen peptide. Whole slide
imaging was performed in the Digital Histology Shared Resource
at Vanderbilt University Medical Center (www.mc.vanderbilt.
edu/dhsr) on an Aperio Versa 200 automated slide scanner
(Leica Biosystems). Tissue sections were imaged at ×40
magnification to a resolution of 0.162 μm/pixel.

Measurement of ATP released from RA

After stretch injury, RA (n = 23) were immediately cut into seg-
ments and placed in 60 μl of HP supplemented with the
ectonuclease inhibitor ARL67156 (50 μM) and EDTA (2 mM)

in the presence of P2X7Ror PanX1 antagonists [oATP (100μM),
BB FCF (50 μM), or A740003 (100uM), 10PanX1 peptide
(200 μM), or carbenoxolone (100 μM)]. ATP released was col-
lected for 10 min, boiled for 5 min and stored at −80°C. ATP
concentration in the perfusates was determined using the ATP
Bioluminescent Assay Kit (FL-AAM; Sigma) and normalized
to tissue weight.

Measurement of caspase activity in vascular smooth
muscle cells

Rat aortic smooth muscle cells (A7r5; American Type Culture
Collection, VA) were maintained in growth medium per sup-
pliers’ recommendation and cultured at 37 °C in humidified in-
cubator with 5% CO2. Cells were seeded in 96-well plates and
pretreated with either BB FCF (100 μM) or medium for 1 h prior
to stimulation with tumor necrosis factor (TNFα; 10 ng/ml; Life
Technologies, CA) for 24 h. Caspase activity was determined
using the Caspase-Glo 3/7 Assay Systems. Each data point was
averaged from eight technical replicates from each independent
experiments (n = 5).

Immunoblotting

Tissues were snap-frozen in liquid nitrogen immediately after
collection, stretch injury or BB FCF treatment. Frozen vein seg-
ments were pulverized, and proteins were extracted in modified
RIPA buffer (50 mM Tris-Cl, 150 mM NaCl, 1% NP40, 0.5%
deoxycholic acid, 1 mM EDTA, 1 mM EDTA) supplement with
protease inhibitor cocktail and phosphatase inhibitor cocktail 2.
Total protein (30 μg) were subjected to SDS-PAGE and trans-
ferred to nitrocellulose membrane followed by immunoblotting
with the following primary antibodies against phospho-p38
MAPK-Thr180/Tyr182, p38 MAPK, phospho-Akt-Ser473, Akt
(Cell Signaling Technology, CA), phospho-Niban-Ser602
(Signalway, TX), Niban (Santa Cruz, CA), and GAPDH
(Millipore, MA). The blots were then incubated with IRDye-
labeled secondary antibodies (LI-COR Biosciences, NE). The
protein-antibodies complexes were visualized and quantified
using the on the Odyssey Infrared Imaging System.
Phosphorylation was calculated as a ratio of the phosphorylated
protein to total protein and was then normalized to the
unstimulated control with the control value set as 1.0.

Statistical analysis

Data were reported as mean responses ± standard error of the
mean and presented as scattered plots with mean and 95% confi-
dence interval. Outliers, normality, and statistical significance (p
value), and achieved power of each experiment was determined
using GraphPad Prizm version 5.0 and G*Power version 3.1.9.2
(www.gpower.hhu.de/en.html). Differences among groups were
determined by paired t test for experiments with dependent
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(matched) pairs. One-way ANOVAwith post hoc test were used
to determine differences among multiple, dependent samples
from the same animal or multiple treatments in cells. A p value
< 0.05 was considered statistically significant.

Results

Harvest and graft preparation impairs physiologic
function of HSV

Paired, freshly harvested, unprepared (UP) and after typical intra-
operative graft preparation (AP) HSV were collected at the time
of CABGprocedures. The average duration of intraoperative vein
storage was 2.8 ± 1.5 h (data not shown). Rings were suspended
in the muscle bath and contractile responses to depolarizing KCl
(Fig. 1a) and the contractile agonist PE (Fig. 1b) were determined
as previously described [9]. Vasomotor function was reduced in
AP-HSV when compare to the cognate UP-HSV (Fig. 1).

Harvest and graft preparation injury induces apoptosis
and Niban dephosphorylation prior to implantation
in HSV Verhoeff Van Gieson staining of UP-HSVand AP-
HSV preparations (Fig. 2a, d) revealed greater luminal dis-
tortion and disruption of lumen lining and medial layers in
AP-but not UP-HSV. Detection of accumulated DNA degra-
dation fragments using the TUNEL assay revealed consider-
ably varied levels of TUNEL-positive nuclei among the UP-
and AP-HSV segments examined (Fig. 2b, c, e, f); however,
pair-wise comparison showed significant increases in the
number of TUNEL signals in AP-HSV (Fig. 2g). There was a
negative correlation between KCl-induced contractility and apo-
ptotic index (Fig. 2h; r2 = 0.213, p = 0.031). Taken together, these
data suggest that surgical harvest and vein graft preparation lead
to early activation of cellular apoptosis.

In an untargeted, global phosphorylation profiling study
comparing paired UP- and AP-HSV, we observed a

modulation in Niban phosphorylation (Joyce Cheung-Flynn,
unpublished data). Niban is highly expressed in tumors [27]
and downregulation of phosphorylation is implicated in UV-
induced cell death [28]. Western blot analysis revealed re-
duced levels of Niban phosphorylation in AP- while pan-
Niban proteins shown no significant changes (Fig. 2d), indi-
cating that Niban may be involved in the early, acute response
to surgical harvest and preparation in HSV.

Subfailure overstretch injury impairs functional responses
and causes release of extracellular ATP in RA

To examine mechanical injury to vein graft under con-
trolled conditions, we previously developed a subfailure
overstretch (longitudinal) injury model using isolated rat
abdominal aorta (RA) [15]. Subfailure overstretch injury
impaired the contractile response of isolated RA to
depolarizing KCl (Fig. 3a, c) and PE (Fig. 3b, d) in
the muscle bath, similar to those observed with HSV
(Fig. 1).

Mechanical stretching leads to release of eATP [17, 29, 30].
To determine whether subfailure overstretch of vascular tis-
sues triggers ATP release, RA were stretch-injured and ATP
released was measured in the tissue perfusates (Fig. 4). eATP
increased by 2.3 ± 0.4 μmole/mg acutely at 10 min following
stretch injury. This increase trended to sustain for up to 1 h
(data not shown).

P2X7R antagonism restores stretch-induced loss
of contractile functions and prevents eATP release in RA

We previously showed that P2X7R is activated by subfailure
overstretch in the RA model [15]. Immunohistochemical
staining of RA showed that P2X7R is expressed in the medial
and endothelial layers of RA (Fig. 3e). Treatment with phar-
macological inhibitors of P2X7R, A740003 (A74; n = 13)
[31], after subfailure overstretch injury restored contractile
function impairment in RA (Fig. 3a, b). Treatment with BB
FCF, a non-toxic dye that restored function in HSV [14], also
restored functional impairment in stretched RA, in a dose-
dependent manner (Fig. 3a, b; n = 6–13). Treatment with
BB FCF (100 μM; n = 13) did not alter vasomotor function
in non-injured RA. eATP release after subfailure overstretch
was also blocked by A740003, oATP, and BB FCF (Fig. 4a).
The PanX1 channel is functionally associated with P2X7R
and is implicated in eATP release [32, 33]. Treatment with
the PanX1 inhibitory peptide 10PanX1 and carbenoxolone
(CBX) blocked eATP release in stretched RA (Fig. 4b;
n = 8–15). However, treatment with these PanX1 inhibitors
did not restore contractility in stretched RA (Fig. 3c, d;
n = 12).
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Fig. 1 Surgical harvest and graft preparation impairs physiologic
function of human saphenous veins. Paired HSV collected immediately
after harvest (unprepared, UP) and after typical graft preparation (AP)
from CABG patients (n = 7) were suspended in the muscle bath.
Contractile responses to (a) 110 mM KCl and (b) PE were measured.
*p < 0.05
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P2X7R/PanX1 antagonism reduces injury-induced
apoptosis by subfailure overstretch in RA

Apoptosis has been associated with neuronal injury-induced
P2X7R activation [34]. We next determined whether
subfailure overstretch injury induces apoptosis in RA.
TUNEL assay revealed an increase in number of TUNEL-
positive nuclei within stretched RA segments compared to
the non-stretched RA segment (Fig. 5a). Apoptosis was de-
tected in all three layers of the vessel: intima (opened arrows),
media (closed arrows), and adventitia (asterisks) (Fig. 5b).
Since BB FCF has been recently approved for vein graft

marking [35] and restored stretch-induced injury and ATP
release, we determined whether it attenuates stretch-induced
apoptosis in RA. BB FCF treatment after overstretch injury
reduced increase in TUNEL-positive cells, suggesting that
P2X7R/PanX1 complex activation is involved in stretch-
induced apoptosis (Fig. 5a, b).

Given that P2X7R is implicated in maturation of the
NLRP3 inflammasome multiprotein complex and that its ex-
pression and functional responses can be enhanced by proin-
flammatory cytokines [36, 37], interfering of P2X7R may
reduce cell death resulting from inflammatory signaling.
Therefore, we examined whether cytokine-induced apoptosis
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Fig. 2 Vein graft preparation leads to apoptosis and modulates Niban
phosphorylation in human saphenous veins. Paired HSV (UP and AP)
from CABG patients were formalin-fixed and paraffin-embedded (a–h;
n = 11) or snap-frozen for analysis (i; n = 14). a, d Representative images
of Verhoeff Van Gieson staining showing elastic laminar and collagen.
Note the lumen distortion and disruption of lumen lining and medial
layers in the AP segment (d; arrows). b, e Representative images of
TUNEL staining. Green, TUNEL-positive cells; Red, vWF-positive cells.
c, f Boxed regions of b and e, respectively, showing TUNEL-positive
cells in all three vessel layers. Scale bars = 200 μm. *p < 0.05. g

Quantitative analysis of apoptotic index of the whole ring. h A linear
regression of KCl-induced contractility as a function of apoptosis index
yielding a r2 = 0.213 and a negative correlation (p = 0.031). Black = UP;
Gray = AP. Note that some of the data points overlaid each other. i Tissue
protein lysates were immunoblotted for levels of phospho-Niban Ser602,
total Niban and GAPDH. Top, quantitative analysis of Niban Ser602
phosphorylation levels normalized to UP tissues. Bottom, representative
image of western blot analysis of paired HSVs from three different pa-
tients. *p < 0.05
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can be prevented by P2X7R/PanX1 complex blockade in cul-
tured rat aortic smooth muscle cells (A7r5; Fig. 5c).
Pretreatment with BB FCF reduced TNFα-induced caspase
activity after 24 h. BB FCF also reduced caspase activity in
cells that were not exposed to TNFα suggesting that protected

protective effects on cell death caused by serum deprivation
(data not shown).

Signaling networks of eATP-P2X7R modulated
by subfailure overstretch injury in RA

To define the molecular signaling downstream of eATP-
P2X7R/PanX1 complex in pathologic stretch injury, total pro-
tein extracts were prepared from RA after subfailure over-
stretch injury and analyzed using immunoblotting.

p38 MAPK activation plays a role in the P2X7R signal
transduction and has been implicated in to P2X7R-mediated
cell death [34, 38]. Subfailure overstretch injury increased the
p38 MAPK phosphorylation level in RA (Fig. 6a). BB FCF
treatment following stretch injury attenuated p38 MAPK
phosphorylation.

We showed in this study that phosphorylation level of the
anti-apoptotic protein Niban is reduced in surgically prepared
HSV (Fig. 2). Stretch injury of RA also led to decreases in
Niban phosphorylation that can be restored by BB FCF treat-
ment (Fig. 6b). These data suggest that Niban participates in
stretch-induced P2X7R-mediated apoptosis in vascular
tissues.

ATP cytotoxicity is mediated via P2X7R coupling to
the PI3K-Akt pathway in neuronal cells and many tu-
mor cell types [39] and is dependent on Akt activation
upon UV-induced stress [28]. To determine whether
eATP-induced cell death and P2X7R signaling is mod-
ulated via the Akt pathway in RA, Akt phosphorylation
was measured. Subfailure overstretch had no apparent
effect on Akt-Ser473 phosphorylation levels (Fig. 6c).
Interestingly, BB FCF treatment increased Akt-Ser473
phosphorylation levels in stretch-injured (Fig. 6c) and
non-stretched (data not shown) tissues suggesting that
anti-apoptotic effect of P2X7R antagonism may be me-
diated by promoting the pro-survival property of Akt.

Discussion

Injury to vein graft used for CABG occurs during surgical
harvest and intraoperative preparation and handling, and re-
sulted in decreased vasomotor function (Fig. 1). Decreased
vasomotor function is associated with decreased viability
[40]. Additionally, surgical harvest and preparation of HSV
leads to apoptosis (Fig. 2).

Traction or longitudinal stretching during endoscopic har-
vest inflicts mechanical trauma to saphenous vein and reduces
HSV graft patency (reviewed in [41]). To determine the mo-
lecular mechanisms by which injury leads to decreased func-
tion and viability of HSV, a model of traction injury using RA
was developed where the haptic endpoint of stretch during
vein harvest is simulated [15]. While studies using cultured
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Fig. 3 P2X7R antagonism after stretch injury restores contractility in a
subfailure overstretch model. Isolated rat abdominal aorta (RA) were
either left untreated (NS) or stretched to twice the resting length.
Stretched segments were then cut into 2 mm segments and incubated
for 60 min in heparinized PlasmaLyte in the absence of presence of
P2X7R or PanX1 inhibitors: BB FCF (50 and 100 μM), A740003
(A74; 100 μM), the pannexin inhibitory peptide 10PanX1 (200 μM), or
carbenoxolone (CBX; 100 μM). Contractile response to (a, c) 110 mM
KCl and (b, d) PE were measured in the muscle bath (n = 8–45).
*p < 0.05. e Representative images showing P2X7R expression in un-
treated (NS) RA by immunohistochemistry. Red, P2X7R; blue, nuclei.
Arrows indicate P2X7R expression in the endothelial (open arrow) and
medial layers (closed arrow). Bottom panels show enlarged images of the
boxed regions. Scale bar = 100 μm (top panels) and 10 μm (bottom
panels)
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vascular cells to modeled mechanical stretch offer insight into
molecular signaling that determine cell fate (reviewed in [42,
43]), very few studied the effects of pathologic stretch in intact
tissues [40, 44, 45]. The RA stretch injury model demonstrates
a causal relationship between subfailure overstretch injury and
loss of smooth muscle functional physiologic responses that
can be restored by the antagonism to the P2X7R-PanX1
crosstalk after injury (Fig. 3a).

There is increasing evidence for the role of extracellular
ATP in pathological conditions [46]. A steep ATP concentra-
tion gradient between the cytoplasm (1–10 mM) [47] and the
extracellular space (1–10 nM) [48] suggests that a rapid spike
in ATP levels in the local extracellular milieu due to tissue
stress or damage can readily elicit responses via P2X7R
(EC50 of 300–800 μM) [49]. Subfailure overstretch injury of
RA leads to release of ATP (Fig. 4), activation of P2X7R, and
apoptosis (Fig. 5). Notably, treatment with P2X7R inhibitors
after injury ameliorated the injurious responses and reduced
eATP release. These findings suggest the existence of a posi-
tive feedback loop that potentiates the effect of eATP, ampli-
fying the Bdeath^ signal (Fig. 7). It is widely accepted that
PanX1 activity is tightly coupled to P2X7R activation and
the two channel physically interact [21, 50]. Wang et al. pre-
viously reported that BB FCF inhibits PanX1 current but not
P2X7R current [51]. In the same study, oATP, a P2X7R
antagonist reported to have no significant inhibitory ef-
fect on PanX1 current [51], alleviated contractility loss
and blocked eATP release in stretch-injured RA.
Interestingly, inhibition of vascular PanX1with the
10PanX1 peptide and CBX blocked eATP release in RA
(Fig. 4) but did not restore functional impairment after
stretch (Fig. 3b, d). It is conceivable that while inhibition

of eATP release is inhibited by interfering with either
P2XR or PanX1 after stretch injury, P2X7R may be sat-
urated with the initial burst of ATP release from stretch-
injured cells. Additionally, activation of downstream sig-
naling cascade, such as p38 MAPK activation (Fig. 6a)
which inhibits vascular smooth muscle contraction
(Colleen Brophy, unpublished observation), may pre-
cedes the amplification of ATP release. Without
inhibiting P2X7R activation, blockade of further ATP re-
lease and its consequences may be too subtle to produce
notable changes in acute physiologic response in the RA
model. Nonetheless, amplification of ATP signal and
downstream signaling of the eATP-P2X7R/PanX1
signalome overtime may contribute to other pathological
manifestation of vascular injury. These data suggest that
eATP and functional relationship between P2X7R and
PanX1 contribute to subfailure overstretch injury and de-
crease vasomotor function in vascular tissues.

The use of BB FCF to reverse injury occur during endo-
scopic traction injury has clinically relevance as it is a non-
toxic vein marking dye [35]. Treatment with BB FCF after
subfailure overstretch injury reduced apoptosis in RA (Fig. 5),
suggesting that P2X7R/PanX1 complex mediates cell death
after stretch injury in vascular tissues. Apoptosis is one of the
early events of injury response and is proposed to mediate
subsequent proliferation of synthetic smooth muscle cells
(SMC) that populate the neointima of vein grafts [52].
Ahmed et al. showed that within 30 min of surgical prepara-
tion, features of SMC cell division and apoptosis were ob-
served histologically in conventionally prepared HSV com-
pared to the Bno touch^ harvest confirming that harvest tech-
nique influences apoptosis [6]. In animal models of vein
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Fig. 4 P2X7R and PanX1 antagonism after stretch injury reduces
stretch-mediated extracellular ATP release in a subfailure overstretch
model. Isolated rat abdominal aorta (RA) were either left untreated (NS)
or stretched to twice the resting length. Stretched segments were then cut
into 1–2 mm segments and incubated in heparinized PlasmaLyte for

10 min in the absence or presence of inhibitors to P2X7R/PanX1 com-
plex: a BB FCF (50 μM), oATP (100 μM), or A740003 (100 μM) and b
the pannexin inhibitory peptide 10PanX1 (200 μM), or carbenoxolone
(CBX; 100 μM). ATP released were collected and concentration in the
perfusates were measured (n = 6–25)
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grafting, nuclear condensation and membrane blebbing in me-
dial SMCs were evident as early as 1 h post-grafting [53], and
apoptosis peaked within 8 h of grafting [54]. Mechanical
stretch associated both physiological or pathologic conditions
is an inducer of cytokine production in difference tissues [55,

56]. In addition to alleviating functional impairment, BB FCF
also protects against cytokine-induced apoptosis of smooth
muscle cells (Fig. 5c). It is conceivable that blocking
P2X7R/PanX1 signaling during vein graft preparation may
protect vascular cells from stretch-induced cell death and the
secondary inflammatory response.

Activation of the p38 MAPK pathway is a downstream
effector of P2X7R [38, 57–59]. Mechanical stretch-induced
phosphorylation of p38MAPK and apoptosis were reported in
human saphenous vein under pressure distension [60] and in
cyclically stretched cultured smooth muscle cells [61].
Subfailure overstretch-induced activation of P2X7R increased
p38MAPK phosphorylation in intact vascular tissues that was
reversed by treatment with BB FCF after the injury (Fig. 6a).
Pathological stretch injury also led to decreases in Niban
phosphorylation in RA (Fig. 6b). Niban is overexpressed in
several cancers and modulate cell death through regulation of
its expression and phosphorylation [62–66]. The anti-
apoptotic activity of Niban is governed by Akt-dependent
phosphorylation as it disrupts p53-containing protein complex
under UV-stress [28] and experimental overexpression of the
protein alone failed to diminished apoptosis in tumor cells
[67]. Depending on the cell type and the nature of the stimuli,
cytotoxic concentration of ATP either inhibits [68, 69] or stim-
ulates Akt phosphorylation [39, 70]. Similarly, variable results
have been documented for stretch-induced Akt activation de-
pending on the experimental settings. In the subfailure over-
stretch injury model, stretch did not modulate Akt S473 phos-
phorylation while P2X7R antagonism enhances it in both nor-
mal (data not shown) and injured tissues (Fig. 6c).

Taken together, our data suggest that subfailure overstretch
injury during harvest leads to release of ATP and activation of
P2X7R, which in turn further amplifies the release of eATP
through the P2X7R/PanX1 complex (Fig. 7). This ATP-
induced activation of P2X7R contributes to functional impair-
ment, activates cellular signaling events, and leads to apoptosis.
Treatment with P2X7R antagonists after traction injury abro-
gates this response to injury suggesting that P2X7R inhibition
represents a viable therapeutic approach in that vein grafts could
be treated ex vivowith P2X7R antagonists prior to implantation.
In addition, PanX1 inhibitors can also be explored as additional
therapeutics that prevents further release of ATP. Since response
to injury initiates the processes that ultimately lead to intimal
hyperplasia, P2X7R and/or Panx1 antagonism may represent a
novel approach to preventing vein graft failure.

Conclusion

Vascular P2X7R plays a central role in the acute injury re-
sponse to traction stretch injury in vein grafts (Fig. 7). A novel
eATP-P2X7Rmodel may explain some of the early molecular
events that contribute to vein graft injury—mechanical stretch

Fig. 5 P2X7R/PanX1 antagonism reduces overstretch injury-induced
vascular apoptosis in rat aorta. a Quantitative analysis of TUNEL assay
(n = 5). NS, non-stretched; S, stretched. b Representative images of
TUNEL staining of rat aorta. Green, TUNEL-positive cells; red, vWF-
positive cells. Boxed region enlarged to show TUNEL-positive endothe-
lial (open arrows), medial cell (closed arrows), and adventitial (asterisk)
nuclei. Scale bar = 200 μm. c Caspase activity in TNFα–treated A7r5
cells with or without BB FCF pretreatment (n = 5). *p < 0.05
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leads to release of eATP, which diffuses and influences adja-
cent cells, propagating deleterious eATP-mediated P2X7R
positive feedback signaling that involves p38 MAPK, Akt
and Niban-mediated regulation of apoptosis. In this context,
eATP might serve as an important molecular mediator of vas-
cular stretch injury response. Blockade of the vascular P2X7R
after injury not only restored vasomotor function, it also in-
hibits detrimental functional sequelae of stretch injury by at-
tenuating signaling of pro-apoptotic proteins while enhancing
activity of pro-survival pathways. Moreover, the finding that
inhibition of the PanX1 reduced eATP release underscores the
potential role of the channel in P2X7R activation by vascular
stretch injury. By preventing acute apoptotic response to prep-
aration injury, it is plausible to alter the kinetics of graft

adaptation that contributes to the progression of remodeling
that leads to graft occlusion. P2X7R inhibition represents a
potential strategy to improve vein graft quality used in bypass
procedures.

Limitations

Human saphenous veins varied due to patient demographics,
but effect of graft preparation on physiologic responses and
apoptosis was adjusted for in pair-wise comparison of seg-
ments collected from the same patients. Isolated rat vessels
were used in this study, which may present species differences
in molecular response to injury. Compared to cultured cells,

Fig. 7 Putative molecular mechanism of P2X7R-induced apoptosis in
vascular tissues during subfailure overstretch injury. Traction and stretch
injury leads to release of extracellular ATP (1), activating P2X7R and the
associated PanX1 (2). Activation of p38MAPK and dephosphorylation of
Niban follows (3) and ultimately leads to caspase 3 cleavage and apopto-
sis ensues (4). P2X7R activation also results in the formation of large
membrane pores, intracellular calcium flux, and cytolysis (5). ATP

released from dying cells activates the P2X7R of neighboring cells, prop-
agating the response to injury (6). By antagonizing the P2X7R during
vein harvest and preparation (7), further release of ATP and prolonged
P2X7R activation is prevented, thus alleviates stretch-induced apoptosis
in part via the pro-survival activity of Akt and Niban and possibly
crosstalk with other signaling mechanisms have yet to be determined
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Fig. 6 P2X7R/PanX1 antagonism attenuates stress pathway activation
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phosphorylation. c Akt Ser473 phosphorylation in RA. Top, quantitative

analyses; Bottom, representative images of western blot analyses. Data
shown were relative phosphorylation to total protein level normalized to
non-stretched tissues. NS, non-stretched; S, stretched; S + BB FCF,
stretched and treated with BB FCF (100 μM). n = 5, * p < 0.05
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the use of intact tissue takes into account the natural tissue
environment of the vessel which is three dimensional with
interaction among multiple cell types; however, the cell
type-specific responses were not delineated. Apoptosis of
RA were detected after a 1-day organ culture which lacks
the blood component and hemodynamics forces that influence
early vein graft remodeling in vivo.
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