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Abstract Guanosine is a purine nucleoside thought to have
neuroprotective properties. It is released in the brain under
physiological conditions and even more during pathological
events, reducing neuroinflammation, oxidative stress, and
excitotoxicity, as well as exerting trophic effects in neuronal
and glial cells. In agreement, guanosine was shown to be
protective in several in vitro and/or in vivo experimental
models of central nervous system (CNS) diseases including
ischemic stroke, Alzheimer’s disease, Parkinson’s disease,
spinal cord injury, nociception, and depression. The mecha-
nisms underlying the neurobiological properties of guanosine
seem to involve the activation of several intracellular signaling
pathways and a close interaction with the adenosinergic sys-
tem, with a consequent stimulation of neuroprotective and
regenerative processes in the CNS. Within this context, the
present review will provide an overview of the current litera-
ture on the effects of guanosine in the CNS. The elucidation of
the complex signaling events underlying the biochemical and
cellular effects of this nucleoside may further establish guano-
sine as a potential therapeutic target for the treatment of sev-
eral neuropathologies.
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Abbreviations

6-OHDA  6-Hydroxydopamine
ARS Acute restraint stress

ATP Adenosine 5'-triphosphate
AB Amyloid (3-peptide

CNS Central nervous system

cAMP Cyclic adenosine monophosphate

CREB cAMP response element binding protein

FGEF-2 Fibroblast growth factor 2

FST Forced swimming test

GBP Guanine-based purine

GDP Guanosine 5'-diphosphate

GMP Guanosine 5'-monophosphate

GTP Guanosine 5'-triphosphate 1-methyl-4-
phenylpyridinium

iNOS Inducible nitric oxide synthase

MAPK Mitogen-activated protein kinase

NMDAR  N-methyl-D-aspartate receptor

NGF Nerve growth factor

NF-xB Nuclear factor-kappaB

OGD Oxygen and glucose deprivation

PC12 Pheochromocytoma

PI3K Phosphatidylinositol-3 kinase

QA Quinolinic acid

ROS Reactive oxygen species

SCI Spinal cord injury

SOD Superoxide dismutase

TST Tail suspension test
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Introduction
The purinergic system

Nucleotides and nucleosides from the purinergic system are
essential constituents of all living cells, exerting intracellular
and extracellular signaling roles in diverse physiological pro-
cesses [1]. The concept of purinergic signaling was first pro-
posed by Burnstock in 1972, who suggested that adenosine 5'-
triphosphate (ATP) can act as a neurotransmitter [2], an idea
that faced criticism and generated controversy, since the role
of this molecule as the energy currency in biochemical path-
ways was already well established. Subsequent studies led to
the discovery of several transmembrane receptors for the
purinergic system, which were categorized into two major
groups in accordance with the ligand that binds them. Thus,
it was established that P1 receptors have the nucleoside aden-
osine as ligand and P2 receptors bind to ATP or adenosine 5'-
diphosphate (ADP) [3]. The further elucidation of their struc-
tural and biological properties allowed the creation of a more
precise categorization, in which P2X is a family of receptors
that recognize only ATP and acts by modulating the activity of
ion channels, whereas P2Y is a family of G-protein-coupled
receptors that can bind ATP as well as many other nucleotides
triggering a cascade of signaling events [4, 5]. Currently, it is
known that P1, P2X, and P2Y families of purinergic receptors
include several subtypes, many of which can form
homomultimers and heteromultimers. These receptors are
widely distributed throughout the central nervous system
(CNS), participating in synaptic transmission and mediating
neuron—glia and glia—glia interactions [6].

The purinergic nucleoside adenosine is present in the ex-
tracellular space in low concentrations that can be dramatical-
ly increased with metabolic alterations such as those that occur
following episodes of ischemia, hypoxia, inflammation, and
trauma [7, 8]. During physiological stimuli, adenosine can be
formed intracellularly from the degradation of adenosine
monophosphate (AMP) and directly released from neurons
by nucleoside transporters [9, 10], exerting a key role as a
homeostatic transcellular messenger and neuromodulator
[11, 12]. However, under metabolic stress, the extracellular
concentration of adenosine mainly derives from the metabo-
lism of released ATP, which is degraded by sequential reac-
tions mediated by the activity of ecto-nucleotidases [10, 13].
Considering the modulatory and cytoprotective functions of
this nucleoside, the adenosinergic system has been investigat-
ed as a therapeutic target for a wide range of conditions such
as cardiovascular diseases, immune/inflammatory conditions,
cancer, and diseases of the CNS [12, 14].

To date, purinergic research has focused primarily on
adenine-based nucleotides and adenosine, while the guanine-
based components of this system have received less attention.
The guanine-based purines (GBPs) comprise the nucleotides
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guanosine 5'-triphosphate (GTP), guanosine 5'-diphosphate
(GDP), and guanosine 5’-monophosphate (GMP). These can
be further metabolized into guanosine extracellularly by ecto-
nucleotidases. This nucleoside, in turn, may be converted into
guanine by the enzyme purine nucleoside phosphorylase [15].
Although the role of GTP and GDP as modulators of intracel-
lular transduction cascades through G protein signaling is well
established [16], in recent years several studies have highlight-
ed the fact that GBPs have an important extracellular role,
which is relevant in both physiological and diseased
conditions.

Role of purinergic nucleosides in the brain

Adenosine has a crucial role in excitable tissues such as the
heart and the brain due to its inhibitory properties in the re-
lease of virtually every classical neurotransmitter [1]. Thus,
this nucleoside is proposed as a fine-tuner of neural activity
through the direct activation of adenosinergic receptors or
through interplay with others neurotransmitters/
neuromodulators [17]. Adenosine binds to members of the
P1 family of purinoceptors, which are G-protein-coupled re-
ceptors [18]. There are four types of adenosine receptors
(AR, AsaR, AR, and A3R), but the most prevalent in the
brain are the A;R and AR subtypes, with AR activation
being responsible for the modulatory effects of this nucleoside
on excitatory synapses [11]. It should also be noted that, since
adenosine is a product of ATP hydrolysis and these two mol-
ecules often exert opposite effects, they can undergo homeo-
static regulation [19].

Taking into account its activity in the regulation of synaptic
transmission, and the observation that extracellular levels of
adenosine are increased in conditions of energy imbalance, it
is not surprising that this nucleoside exerts a neuroprotective
role in pathologies characterized by a dysregulation of the
metabolic status and neuronal excitability, such as ischemic-
and seizure-induced neuronal injury [10, 20]. In addition, sev-
eral studies have proposed a role for adenosine in neurodegen-
erative and neuropsychiatric disorders, suggesting that the ma-
nipulation of this system, mostly through the activation of
A R and A, R, may be a potential strategy for the pharmaco-
logical treatment of these neurological conditions [21-24].

With regards to GBPs, the intracellular role of guanine
nucleotides during signaling through G-protein-coupled re-
ceptors, the largest family of membrane-bound receptors, is
well known. Indeed, they are involved in the modulation of
most cellular responses to hormones and neurotransmitters
and are also important targets for the development of novel
therapeutic approaches [25, 26]. The extracellular role of
GBPs is still not fully understood, and it is currently the focus
of increasing interest [27]. It is believed that GTP can be
stored in synaptic vesicles within neural cells and released into
the synaptic cleft [28]. Nevertheless, under injury conditions,
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astrocytes are the main source of purines in the extracellular
space and the release of these molecules is associated with the
reparative role that these glial cells exert in the CNS [29].
GBPs are released into the extracellular space most likely as
nucleotides that are rapidly catabolized by ecto-5"-nucleotid-
ases to guanosine, leading to extracellular concentrations of
this nucleoside that increase even more following an insult or
damage [29-31]. Notably, guanosine (rather than its adenine
counterpart) is preferentially accumulated under physiological
conditions as well as in response to injury [30]. Furthermore,
while extracellular adenine-based purines are rapidly metabo-
lized following an insult, guanosine concentration increases
progressively [30]. Interestingly, the experimental observation
that its levels remain high even after several days following
the occurrence of an ischemic stroke raises the possibility that
this nucleoside may be an endogenous neuroprotective mole-
cule released in pathological situations [32]. Indeed, despite
the fact that, to date, cell surface receptors specific for guano-
sine have not yet been identified, several studies have indicat-
ed that this nucleoside plays an important role as an extracel-
lular signaling molecule, activating molecular pathways that
lead to neuroprotective and trophic effects with relevance for
the development and functioning of the CNS [15, 27, 33, 34].

Neurotrophic effects of guanosine

The neurotrophic effects of guanosine have been reported in
hippocampal neurons, glial cells, and pheochromocytoma
(PC12) cells, where this molecule was shown to induce pro-
liferation and differentiation, and neurite arborization and out-
growth, as well as exert antiapoptotic effects [15, 29, 35-37].
These actions seem to be mediated by the ability of this nu-
cleoside to stimulate the astrocytic release of several endoge-
nous regulators of survival, proliferation, and differentiation,
including trophic factors such as nerve growth factor (NGF),
transforming growth factor beta (TGFf3), and fibroblast
growth factor 2 (FGF-2) [15, 37-39]. In addition, the release
of these factors by guanosine may be related to the modulatory
effects that this molecule has on astrocytic activity. For in-
stance, guanosine is able to stimulate the proliferation of these
glial cells [40, 41] and to improve the interaction neuron—
astrocyte, an effect likely mediated by the reorganization of
extracellular matrix components caused by this nucleoside
[42]. On the other hand, adenosine may also be implicated
in some of the neurotrophic effects elicited by guanosine, in
particular its mitogenic properties. This hypothesis was pro-
posed based on the observation that guanosine leads to an
increase in adenosine concentrations. Furthermore, antago-
nists of both AR and A;4R partially prevent the mitogenic
activity elicited by guanosine, whereas guanosine itself
is not considered an effective ligand for P1 and P2 receptors
[40, 41].

Of note, the neurotrophic effects of the nucleotide GTP
(including its proliferative and neuritogenic activities, which
are mediated by the release of trophic factors) are similar to
those of guanosine [37, 43—45]. However, these effects are not
dependent on the conversion of GTP into guanosine by ecto-
nucleotidases and seem to involve the activation of distinct
(and in some cases even complementary) pathways by these
two GBPs [41, 46].

Neuritogenic effects of guanosine

The functional connections between neurons are created
through projections that originate from neurite sprouting.
This process has a role in neural development and is also an
important feature of neuronal differentiation and functional
recovery, where initial neurites may differentiate into den-
drites or axons [47, 48]. An important and widely used in vitro
model to investigate neuronal differentiation and neurite out-
growth is the exposure of PC12 cells to NGF [49]. Although
experimental evidence has shown that the neuritogenic effects
of NGF can be enhanced by the A, s-receptor-mediated activ-
ity of adenosine and related agonists [50, 51], subsequent
studies found that two GBPs, guanosine and GTP, possess
even stronger neuritogenic effects [43, 44]. The experimental
observation that both these GBPs stimulate neurite outgrowth
by activating distinct mechanisms suggests that their
neuritogenic effects are independent on the conversion of
GTP into guanosine. Of note, guanosine appears to induce
neuritogenesis through activation of cAMP-dependent path-
ways (similar to those triggered by NGF) as well as cAMP-
independent pathways (distinct from those triggered by NGF)
[52]. Further studies found that this cAMP-independent trans-
duction mechanism may involve the induction of both consti-
tutive and inducible heme oxygenase isoenzymes, as well as
an increase in the levels of cyclic GMP (cGMP) [53]. Besides,
it has also been suggested that protein kinase C-related kinase
(PRK1), a protein known to be involved in cytoskeleton reg-
ulation, plays an important role in neurite outgrowth induced
by guanosine [54].

In line with the proposed neuritogenic properties of guano-
sine, a study conducted by Guarnieri et al. sought to investi-
gate whether this nucleoside was capable of promoting a ma-
ture neuronal phenotype in human SH-SY5Y neuroblastoma
cells [55]. Gene profiling revealed that guanosine is able to
induce an S-phase cell cycle arrest and neurite outgrowth that
are comparable to those elicited by well-known inducers of
neuronal differentiation, such as retinoic acid and phorbol-12-
myristate-13-acetate (PMA). In addition, this study also ob-
served that the neuritogenic effects of guanosine are associat-
ed with the modulation of neuronal differentiation markers,
suggesting that this nucleoside may play a role during this
stage of the neurogenic process during development and/or
pathological events [55].
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The role of guanosine on glutamatergic transmission

Despite the fact that glutamate is the main excitatory neuro-
transmitter in the mammalian brain, this molecule can also act
as a neurotoxin when present in high concentrations [56, 57].
Neuronal dysfunction and death mediated by excessive gluta-
matergic stimulation are a common neuropathological mech-
anism that underlies cell death in several CNS diseases. Thus,
under physiological conditions, the glutamatergic system is
tightly regulated [58—60]. Since there is no enzymatic system
capable of rapidly removing glutamate from the synaptic cleft,
an efficient mechanism of uptake is necessary to maintain a
low concentration of this neurotransmitter in the extracellular
space. Such uptake is conducted by glutamate transporters,
which are present in many cell types including neurons and
astrocytes, being astrocytic uptake the most important mech-
anism responsible for maintaining glutamate concentrations in
the synaptic cleft below toxic levels [60, 61]. Within this sce-
nario, GBPs were reported to stimulate astrocytic glutamate
uptake, an effect that was not observed with hydrolysis-
resistant analogs of these molecules. Thus, the stimulatory
effect of guanine-based nucleotides on astrocytic glutamate
uptake is likely due to the conversion of these molecules into
guanosine [62]. It is important to note, however, that the stim-
ulation of astrocytic glutamate uptake by guanosine is only
significant when the concentration of this neurotransmitter is
high in the synaptic cleft. This suggests that the effect of
guanosine on the uptake of glutamate by astrocytes depends
on an imbalance in the extracellular levels of this neurotrans-
mitter, reinforcing the notion that guanosine may have a neu-
roprotective role in response to CNS injuries [63]. In addition,
preliminary in vitro evidence suggests that the ability of gua-
nosine to stimulate astrocytic glutamate uptake is age-
dependent [64, 65]. Future studies are warranted to confirm
this hypothesis. Since a reduction in the expression and activ-
ity of glial glutamate transporters is a key feature in the path-
ogenesis and progression of many neurodegenerative dis-
eases, compounds such as guanosine that act by counteracting
this impairment constitute promising therapeutic targets for
the treatment of these neurological conditions [66—68].

Metabolism and intracellular signaling pathways
triggered by guanosine

In comparison to its adenine-based counterpart, the biological
mechanisms underlying the neurotrophic, neuritogenic, and
neuroprotective properties of guanosine are still not fully un-
derstood and are currently the focus of much attention. Given
the rapid metabolism of purines, various studies sought to
determine whether the neuroprotective properties of guano-
sine were indeed due to this nucleoside and not to the stimu-
lation of an unknown humoral effector or metabolite of this
nucleoside [69—72]. Within this context, it was observed that
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the plasmatic levels of guanosine increase in a dose- and time-
dependent manner following systemic administration [69].
Indeed, the basal plasmatic concentration of guanosine can
double 90 min after intraperitoneal injection of this nucleo-
side, with maximum plasmatic levels of its metabolites (gua-
nine, xanthine, and uric acid) being detected as soon as 15—
30 min after administration [70]. Since the levels of these
metabolites remain constant for up to 3 h after treatment, it
is likely that this nucleoside has a prolonged half-life in the
extracellular medium [29]. Moreover, this nucleoside was
shown to be widely distributed in body tissues after systemic
administration, being able to enter the CNS in 7.5 min, where
its concentrations continue to rise, reaching a maximum
30 min following administration [69, 70]. A similar pattern
was observed following administration by oral route, as evi-
denced by a dose-dependent increase in the concentrations of
guanosine and its metabolites in the cerebrospinal fluid [72,
73]. This is in agreement with the fact that guanosine can be
taken up by nucleoside transporters [74, 75], which can be
found in intestinal cells, brain microvessels, and in the
blood—brain barrier [76-78].

Once in the synaptic cleft, guanosine exerts its biological
effects by synchronizing distinct signaling pathways that seem
to be related with the activation of P1 receptors and a specific
G protein binding site [29, 79, 80]. It was demonstrated that,
although guanosine is not considered an effective ligand for
P1 receptors [41, 81], antagonists of these receptors are able
to, at least partially, inhibit the proliferative [41, 45] and
antiinflammatory [82, 83] activities elicited by this nucleo-
side. This evidence suggests that extracellular guanosine
may contribute to cell signaling, through an indirect mecha-
nism involving the adenosinergic system [84, 85]. However, it
should be noted that many of the effects of guanosine persist
in the presence of P1 antagonists [43], indicating that this
nucleoside also acts by distinct mechanisms that are indepen-
dent of the adenosinergic system. Within this context, it has
been proposed that the biological activity of guanosine may be
mediated, at least in part, by its own specific receptors [15, 39,
82, 86]. Indeed, a G-protein-coupled site seems to be impor-
tant for the neuroprotective effects of this nucleoside, namely,
during the guanosine-induced stimulation of glutamate uptake
and the release of trophic factors by astrocytes [39, 82, 86]. In
support of this hypothesis, binding sites for guanosine, distinct
from the well-characterized P1 and P2 receptors, were found
in rat brain membranes [87-89]. In addition, experimental
evidence suggests that this binding site has an important role
in signal transduction mediated by this nucleoside [39, 82,
86]. However, since this putative guanosine receptor has not
yet been cloned, its existence remains a matter of controversy.

Several lines of evidence have suggested that the activation
of the phosphatidylinositol-3 kinase (PI3K)/Akt and the
mitogen-activated protein kinases (MAPKSs) signaling path-
ways mediates the biological properties elicited by guanosine,
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including its ability to modulate glutamatergic transmission
[82, 90], as well as its antiapoptotic [86, 91], antioxidant
[92], and antiinflammatory effects [83]. These intracellular
signaling cascades may be directly or indirectly triggered by
guanosine, as part of its response against neuroinflammation
and oxidative stress. Within this context, it has been shown
that this nucleoside is able to prevent the production of reac-
tive oxygen species (ROS) and to counteract alterations in
inflammatory parameters, such as an increase in interleukin
6 (IL-6) and tumor necrosis factor alpha (TNF-«) and a de-
crease in the levels of the antiinflammatory cytokine interleu-
kin 10 (IL-10) [92, 93]. Furthermore, the guanosine-induced
activation of the PI3K/Akt and MAPKSs signaling pathways is
also related to the inhibition of nuclear factor-kappaB
(NF-kB) and inducible nitric oxide synthase (iNOS) [82, 83,
94] and with the induction of the expression of heme-
oxygenase-1 (HO-1) [53, 83, 92, 94].

The effects of guanosine in CNS neuropathologies

Taking into account the broad spectrum of biological ef-
fects triggered by guanosine (Fig. 1), it is not surprising
that this nucleoside was shown to be neuroprotective both
in vitro and in vivo against a plethora of different insults,
including excitotoxins [95, 96], apoptosis induced by
staurosporine [86], stress-induced oxidative damage [97],
sepsis-induced cognitive impairment [98], hepatic enceph-
alopathy [99], azide-induced oxidative damage [100], lipo-
polysaccharide (LPS)-induced inflammation [94], ische-
mic damage [63, 101, 102], toxicity induced by amyloid
B peptide (AP) [91, 103] as well as 1-methyl-4-
phenylpyridinium (MPP") and 6-hydroxydopamine (6-
OHDA) [36, 104-106], and spinal cord injury (SCI)
[107, 108]. Based on these studies, the modulation of the
purinergic system has emerged as a therapeutic approach
for the treatment of various neurological conditions, and
guanosine in particular may be a therapeutic target for sev-
eral of these neuropathologies.

In the following sections, we provide an overview of the
neuroprotective effects and mechanisms of action of guano-
sine in experimental models of seizures, ischemia,
Alzheimer’s disease, Parkinson’s disease, SCI, depression,
and nociception (Table 1).

Anticonvulsant effects of guanosine

Epilepsy is a neurological disorder in which the normal func-
tioning of the brain is disrupted by episodes of neuronal hy-
perexcitability, resulting in a burst of brain activity [109].
Since glutamate is the main excitatory neurotransmitter in
the brain, its participation in many aspects of the initiation
and propagation of seizures is well established and a role for

astrocytic glutamate transporters in the neuropathology of this
disorder has been proposed [60, 110-112]. In fact, the impor-
tance of astrocytic uptake can be emphasized by the observa-
tion that knock-out mice for specific types of astrocytic
glutamate transporters exhibit lethal spontaneous seizures
[111, 113].

Given this background, various studies have evaluated the
potential neuroprotective effects of GBPs in experimental in
vivo models of epilepsy (i.e., following local or systemic ad-
ministration of endogenous excitatory compounds such as
quinolinic acid (QA)) [96, 114]. In particular, QA is an endog-
enous neurotoxic metabolite that is normally present in low
concentrations in the brain and appears to be involved in the
ethiopathology of epileptic convulsions [115, 116]. Besides
being an N-methyl-D-aspartate receptor (NMDAR) agonist,
QA can also increase glutamate release and impair the uptake
of this neurotransmitter by astrocytes [117, 118]. Within this
scenario, it has been shown that administration of GMP or
guanosine protects against QA-induced seizures, an effect that
was later attributed specifically to guanosine (through the con-
version of GMP into this nucleoside) [95, 119]. Additionally,
the protective effects of guanosine were also confirmed fol-
lowing seizures induced by alpha-dendrotoxin, a glutamate
releaser [114, 120]. Guanosine appears to be neuroprotective
against excitotoxicity-induced seizures by preventing the
stimulation of synaptosomal glutamate release [121] and the
reduction in astrocytic glutamate uptake [95, 96] caused by
excitotoxins. Moreover, electrophysiological studies have
suggested that the neuroprotective properties of guanosine
against QA-induced excitotoxicity are associated with an elec-
trical response at the network level that differs from that in-
duced by the NMDAR antagonist MK-801. This observation
supports the idea that the mechanism of glutamatergic modu-
lation elicited by guanosine differs from the mechanisms of
classic glutamatergic antagonists. In addition, guanosine was
also able to prevent the increase in gamma oscillations in-
duced by QA [122]. The increase in this electrophysiological
pattern is associated with the occurrence of psychotic symp-
toms and cognitive impairments, which are commonly in-
duced by NMDAR antagonists such as MK-801 and ketamine
[123—-126]. Therefore, these results suggest that guanosine
might be associated with less side effects when compared with
classic NMDAR antagonists [122]. In fact, guanosine is able
to prevent the locomotor stimulation induced by MK-801, but
not amphetamine- or caffeine-induced hyperlocomotion, rein-
forcing the notion that this molecule may be a safer modulator
of glutamatergic activity [127]. Still, since guanosine leads to
an accumulation of extracellular adenosine [128, 129] and the
anticonvulsant properties of the latter are well known [130], it
is possible that some of the anticonvulsant effects of guano-
sine may be attributed to adenosine. Nevertheless, there is
evidence that the protective effects of guanosine against
excitotoxicity-induced cell death and epileptic activity are
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Fig. 1 Mechanisms underlying the effects of extracellular guanosine.
Astrocytes are the main source of guanine-based purines (GBPs) in the
central nervous system (CNS). Guanosine present in the extracellular
space originates from the catabolism of guanine nucleotides by ecto-
nucleotidases, which are increased following injury. It is believed that
accumulation of cyclic adenosine monophosphate (cAMP) and
activation of phosphatidyl inositol 3-kinase (PI3K)/Akt and mitogen-
activated protein kinases (MAPKSs) signaling pathways play a crucial
role in the biological activity of this nucleoside. These signaling
pathways appear to be related with the activation of a specific G-

mediated, at least partially, through mechanisms that are inde-
pendent of its adenine counterpart [114].

It is worth pointing that the anticonvulsant activity of gua-
nosine exhibits some specificity toward the glutamatergic sys-
tem, since this nucleoside is unable to protect mice against
seizures induced by picrotoxin, a y-aminobutyric acid
(GABA)4 receptor antagonist [95, 114]. Additionally, a recent
study provided evidence that guanosine reduces the number of
spike—wave discharges in a genetic animal model of human
absence epilepsy, suggesting that this nucleoside may also be
effective in the treatment of non-convulsive epileptic seizures
[131].

Protective effects of guanosine against hypoxia/ischemia

Stroke is a neurological condition that occurs when the brain
is deprived of its supply of oxygen and glucose, leading to
neuronal damage and cell death [132, 133]. Although ische-
mic stroke is one of the leading causes of death, its underlying
neuropathological mechanisms, including the occurrence of
post-stroke inflammation and delayed cell death, are still poor-
ly understood [134, 135]. One of the main factors that
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protein-coupled receptor for guanosine, but its existence is still a matter
of debate. Moreover, the activity of P1 receptors also contributes to
guanosine effects, although the exact molecular interactions underlying
this contribution are currently unknown. At the synaptic level, guanosine
stimulates astrocytic glutamate uptake, preventing events linked to
excitotoxicity. Moreover, this nucleoside also stimulates the astrocytic
release of trophic factors and activates neuroprotective mechanisms
including antiapoptotic, antiinflammatory, and antioxidant responses.
Figure was produced with permission using Servier Medical Art (Www.
servier.com)

contribute to cell death following an ischemic insult is the
increased release of glutamate associated with a reduction in
the expression of its astrocytic transporters, which results in
the occurrence of excitotoxicity [68, 136, 137]. This phenom-
enon results in the overstimulation of glutamatergic receptors
and consequent mitochondrial dysfunction, excessive genera-
tion of ROS, and activation of pro-death signaling pathways
[138]. Considering the importance of glutamate clearance
from the synaptic cleft, it is not surprising that upregulation
of these transporters may be neuroprotective in ischemia
[68, 136].

Taking into account the biological properties of guanosine,
this purine may be an interesting therapeutic target to prevent
the damage that occurs during the post-ischemic period. This
hypothesis is supported by the observation that cortical con-
centrations of guanosine are elevated after focal stroke and
remain high for a period of up to 7 days following the ische-
mic event [32]. In addition, cultures of rat astrocytes submitted
to 30 min of hypoxia/hypoglycemia present a 3.5-fold in-
crease in spontaneous release of guanosine [30]. The protec-
tive effects of this nucleoside against hypoxia/ischemia were
further demonstrated in several in vitro models, including
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Table 1 Effects of guanosine in
in vitro and in vivo model of CNS
dysfunctions

Seizures—in vivo

Glutamatergic-specific anticonvulsant effect [93]

| Seizures; | death [112]

Anticonvulsant effect [61]

| Seizures; | death [117]

| Synaptosomal glutamate release induced by QA [118]

1 Glutamate uptake [94]

| Seizures (through a mechanism distinct from that of MK-801) [119]
| Oxidative stress; 1 endogenous antioxidants [87]

Stroke (hypoxia/ischemia)

In vitro In vivo
1 Neuronal and glial viability [136] 1 Guanosine (up to 7 days following ischemia) [32]
1 Release of guanosine by astrocytes after ischemia [30] 1 Rats survival; | tissue damage [145]
1 Glutamate uptake [62] | Ischemic cell death; 1 functional recovery [146]
1 Pro-survival signaling; 1 potassium channels activa- | Hippocampal damage induced by chronic
tion [137] hypoperfusion [179]
| Apoptosis [145] | Infarct volume [100]
1 Glutamate uptake [99] |Inflammatory parameters; | infarct volume [91]
1 Glutamate uptake [138] | Oxidative stress; 1 glutamate uptake [148]

| Oxidative damage; 1 antioxidant response [89]

| IL-8; | ROS formation [100]

| ROS production; | inflammatory parameters [82]
1 Cell viability; 1 extension of neurites [52]

Alzheimer’s disease—in vitro

| Apoptosis; 1 pro-survival signaling [88]
| Neuroinflammatory parameters [90]

| Oxidative stress | apoptosis [101]

Parkinson’s disease
In vitro In vivo
| Apoptosis; 1 pro-survival signaling [157]
1 Pro-survival; | pro-inflammatory signalings [36] 1 Motor function; 1 neurogenesis in the SVZ and SNc;
| Apoptosis (proteasome inhibitor model) [106]
Glioprotection; 1 pro-survival [102]
| Apoptosis; mitochondrial stress-induced damage
[103]

Spinal cord injury—in vivo

1 Locomotor function; 1 remyelination; 1 oligodendrocyte activation [166]
1 Motor and sensory functions; | inflammation; | apoptosis [105]

1 cell proliferation; T NG2+ cells and oligodendrocytes [106]

Depression—in vivo

1 Antidepressant-like effect [171]

| Stress-induced behavior; | hippocampal oxidative damage [95]
1 NeuroD+ cells in ventral hippocampus [173]

Pain/nociception—in vivo

1 Glutamate uptake [184]

Modulation of glutamatergic pathways [183]

Protective against MK-801-induced hyperalgesia [185]

Antinociceptive in chronic neuropathic pain model [186]

Modulation of adenosine receptors and non-NMDA glutamate receptors [72]

1L-8 interleukin 8, NeuroD neurogenic differentiation protein, NG2+ cells polydendrocytes, QA quinolinic acid,
ROS reactive oxygen species, SNc substantia nigra pars compacta, SVZ subventricular zone
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chemical hypoxia in spinal cord cells (both in neuronal and
glial cells), and ischemic damage in brain slices [63, 82, 101,
139-141].

The mechanisms involved in the neuroprotective effect of
guanosine against ischemic damage have been extensively
studied in brain slices submitted to oxygen and glucose dep-
rivation (OGD), an experimental model used to mimic the
pathological conditions of ischemia [63, 82, 102]. Using this
model, it was demonstrated that the ability of guanosine to
stimulate glutamate uptake plays an important role in its pro-
tection against OGD-mediated insults [63]. The mechanisms
underlying this glutamatergic modulation by guanosine may
involve the activation of a Gjj,-protein-coupling binding site
as well as a putative oligomeric interaction resulting in A;R
activation and AR blockage [82] and the consequent acti-
vation of the PI3K/Akt and MAPKs signaling cascades [82,
140, 141]. In agreement, these signaling pathways have been
associated with the regulation of astrocytic glutamate trans-
porters [142—144]. Furthermore, in vitro studies in cultured
astrocytes have also suggested that guanosine exerts its effects
by increasing the expression of inward rectifying K (Kir)
channels [145]. The involvement of K™ channels was further
supported by the observation that the protective effects of this
nucleoside against OGD followed by reoxygenation in hippo-
campal slices are dependent on the activation of Ca®*-activat-
ed K* (BK) channels [140].

On the other hand, it is well known that stroke triggers a
persistent neuroinflammatory reaction [146]. Therefore, com-
pounds that can suppress the activity of inflammatory compo-
nents may also improve clinical outcomes in stroke patients
[147]. Indeed, guanosine also prevents OGD-induced inflam-
mation and oxidative stress, reducing the production of ROS
and inhibiting the induction of NF-kB and iNOS. This
guanosine-elicited response seems to be also mediated by
the above mentioned putative oligomeric interaction between
P1 receptors [79, 82]. Thus, the neuroprotective role of gua-
nosine against ischemic damage is thought to depend on the
synchronization of different signaling pathways involving
both inhibition of excitotoxicity and reduction of inflammato-
ry reactions. In addition, these studies also raise the possibility
that this nucleoside might act through existing complexes of
adenosinergic receptors [79, 82].

The neuroprotective action of guanosine following stroke
has also been confirmed in vivo, where systemic administra-
tion of guanosine at the time of stroke resulted in a dose-
dependent neuroprotection with reduction of neurological def-
icits and infarct volume in rodents [148]. A subsequent study
found that this effect is even stronger when guanosine was
administered during both the pre- and post-ischemic periods
[149]. Additionally, its therapeutic potential was also observed
in response to reperfusion injury in rat models of middle ce-
rebral artery occlusion [102]. Despite the fact that reperfusion
is necessary after stroke to restore blood flow, this may also
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cause further injury in the brain as a result of a complex series
of events including glutamate release and excessive ROS gen-
eration [150]. Importantly, the mechanisms underlying the
neuroprotective activity of guanosine in in vivo models of
cerebral ischemia are in agreement with those observed in
vitro, involving the modulation of glutamatergic transmission,
attenuation of inflammatory parameters, and the induction of
an antioxidant response [93, 101, 151].

The identification of neuroprotective agents that are capa-
ble of modulating the complex cascade of biochemical and
cellular events involved in stroke is a recognized priority
[152]. Thus, given its biological properties and the fact that
guanosine is able to reach the brain after systemic administra-
tion [69, 70], this nucleoside has emerged as an interesting
candidate for the development of therapeutic interventions
aimed at protecting brain cells from ischemic injury in stroke
patients.

Protective effects of guanosine in neurodegenerative
diseases

Since excitotoxicity, neuroinflammation, and oxidative stress
are key mechanisms during neurodegenerative processes [59,
153], compounds with recognized neuroprotective and neuro-
trophic effects are promising candidates for the development
of new pharmacological interventions aimed at counteracting
neurodegeneration [154]. As such, guanosine has also been
tested in experimental models of neurodegenerative diseases,
particularly Alzheimer’s disease and Parkinson’s disease.
Alzheimer’s disease is a pathological condition associ-
ated with the progressive accumulation of amyloid-f3
(AP) peptides into extracellular plaques and of phosphor-
ylated tau protein into intracellular neurofibrillary tangles.
These abnormal protein aggregates may in turn contribute
to neuronal dysfunction and degeneration through mech-
anisms that include an increase in the production of ROS
and oxidative stress [155, 156]. In agreement with the fact
that guanosine exerts its protective effects, at least in part,
by counteracting oxidative damage [157, 158], the neuro-
protective effects of this nucleoside against cell death in-
duced by AP were confirmed in vitro in neuroblastoma
cells [91, 103]. These studies also provided evidence for
the involvement of pro-survival signaling pathways (i.e.,
activation of PI3K/Akt and MAPKSs) in the effects of gua-
nosine [91, 103]. In addition, guanosine was also shown
to counteract inflammatory processes in microglial cells
exposed to A3 [83], and to interrupt amyloidogenic path-
ways promoted by oxidative stress in neuroblastoma cells
[103]. This antioxidant activity may be related, at least
partially, to its ability to stimulate the endogenous antiox-
idant response. This hypothesis is in agreement with pre-
vious studies showing that this nucleoside can induce an
increase in the expression and/or activity of endogenous
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antioxidant enzymes such as HO-1 [92, 100] and super-
oxide dismutase (SOD) [97].

Guanosine was shown to be equally neuroprotective in
both in vitro and in vivo models of Parkinson’s disease, a
progressive neurological disorder characterized by the occur-
rence of excitotoxicity, oxidative stress, neuroinflammation,
and mitochondrial dysfunction, which culminate in the degen-
eration and death of dopaminergic neurons located in the
substantia nigra and their projections to the striatum of the
basal ganglia [159]. Given that guanosine is known to coun-
teract these cellular events [63, 83], Pettifer et al. demonstrated
that this purine can also protect against cytotoxicity induced
by MPP" [106], a dopaminergic neurotoxin known to induce
biochemical changes similar to those observed in Parkinson’s
disease [160, 161]. In agreement with the effects of guanosine
in models of stroke/ischemia and Alzheimer’s disease (see
above), it was also demonstrated that guanosine is able to
prevent apoptotic events induced by MPP" in neuroblastoma
cells, even after the activation of pro-apoptotic pathways has
occurred in these cells [106]. This finding was confirmed by
further studies demonstrating that this nucleoside protects
cells exposed to MPP" or 6-OHDA (another toxin commonly
used to mimic Parkinson’s disease) by attenuating mitochon-
drial dysfunction and activating pro-survival signaling path-
ways [36, 104, 105].

Interestingly, these in vitro findings were also confirmed
using a clinically relevant model of Parkinson’s disease, the
proteasome inhibitor (PSI) model. In this in vivo model of
parkinsonism, a functional improvement (i.e., decrease in mo-
tor dysfunction) was detected in rats chronically treated with
guanosine [38]. In addition to a reduction in apoptosis induced
by this purine, this study also found that guanosine treatment
caused an increase in the number of dopaminergic neurons in
the substantia nigra as well as cell proliferation in the
subventricular zone (SVZ). Indeed, given the neurotrophic
effects of guanosine [15], it is not surprising that chronic ad-
ministration of this nucleoside will influence cell proliferation
and even neurogenesis in the injured brain. Although further
studies are warranted to fully characterize which growth fac-
tors modulate the proliferation and neurogenic properties of
guanosine, work by Su et al. has suggested that FGF-2 may be
one of the mediators of these effects [38]. In addition, a sub-
sequent study by the same group has shown that guanosine
stimulates neural stem cells through activation of cAMP and
phosphorylation of cAMP response element-binding protein
(CREB) [162], a transcription factor that mediates the expres-
sion of several proteins involved in the induction of
neuroplasticity [163]. Moreover, this study also demonstrated
that guanosine stimulated the expression of brain derived neu-
rotrophic factor (BDNF) [162], a neurotrophin expressed fol-
lowing CREB phosphorylation that has a well-known role in
the regulation of functional (i.e., synaptic) and structural (i.e.,
neurogenic) neuroplasticity [164].

Protective effects of guanosine in spinal cord injury

SCI is caused by the disruption of spinal cord architecture
through trauma or disease, leading to an inflammatory process
and apoptosis, as well as myelin degradation [165, 166]. With
the aim of finding molecular interventions for the treatment of
SCI, the identification and development of neuroprotective
therapies to stimulate axonal growth is a recognized priority
[167]. Taking into account that, in addition to its well-
established neuroprotective activities, guanosine also stimu-
lates regenerative processes in the CNS [15], various studies
sought to investigate the potential of this nucleoside as a ther-
apeutic intervention for the treatment of SCI. Within this sce-
nario, one study has demonstrated that repeated systemic ad-
ministration of guanosine for a period of 2 weeks following
SCI in rats (beginning 4 h post-injury) results in an improve-
ment of sensory and motor function as well as a reduction in
inflammation and apoptotic cell death, an effect probably at-
tributable to its neuroprotective properties [107]. Importantly,
in support of the idea that guanosine also stimulates regener-
ative processes [15], it has been shown that this nucleoside is
able to induce functional recovery even when administered
5 weeks after SCI, an effect that is accompanied by the acti-
vation of endogenous cells from the oligodendrocyte lineage
and remyelination of the surviving nerve fibers [108, 168].

Protective effects of guanosine in mood disorders

The neuroprotective mechanisms of guanosine are, at least in
part, similar to those of antidepressants, including its neuro-
trophic properties [169, 170], the modulation of glutamatergic
transmission [171], and the ability to induce the PI3K/Akt and
MAPKSs signaling pathways [172]. As such, our group is cur-
rently investigating the potential antidepressant-like properties
of'this nucleoside. We first evaluated the acute effects of treat-
ment with this nucleoside in two behavioral models predictive
of antidepressant activity in mice, the tail suspension test
(TST) and the forced swimming test (FST). We found that
guanosine has antidepressant-like effects in these behavioral
tests, decreasing the immobility time of mice in both the TST
and the FST [173]. This effect was observed at doses (0.05—
5 mg/kg, administered orally) lower than those commonly
used in in vivo studies that have assessed its neuroprotective
efficacy (around 8 mg/kg) [38, 96, 148]. Moreover, the use of
specific pharmacological inhibitors suggested that these be-
havioral effects were dependent on the activation of the
PI3K/Akt signaling pathway, as well as its downstream target
mammalian target of rapamycin (mTOR) [173], an important
regulator of protein synthesis that has been implicated in syn-
aptogenesis and fast-acting antidepressant responses [174]. In
a subsequent study, we also evaluated whether treatment with
this nucleoside would be able to prevent behavioral alterations
induced by acute restraint stress (ARS) in mice. We found that
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pre-treatment with guanosine was able to prevent the ARS-
induced increase in immobility time in the FST. In addition,
we also demonstrated that this behavioral effect of guanosine
appears to be dependent, at least in part, on the antioxidant
properties of this nucleoside, since the guanosine-induced
amelioration of the depressive-like behavior was accompanied
by a reduction in oxidative stress through the restoration of the
normal activity of endogenous antioxidant enzymes in the
hippocampus. In particular, guanosine caused a significant
increase in the activity of superoxide dismutase (SOD) in mice
submitted to ARS, reinforcing the notion that some of the
protective effects of this nucleoside are only observed follow-
ing an initial insult [97]. Recently, we also found that chronic
treatment (21 days) with guanosine has an antidepressant-like
effect in the TST, which is likely unrelated to its acute effect,
since in this study animals were tested 24 h after receiving the
last guanosine dose. Immunohistochemistry analyses demon-
strated that this effect appears to be positively correlated with
an increase in neuronal differentiation in the ventral hippo-
campal dentate gyrus [175]. Given that the neuronal circuitry
of this aspect of the hippocampus is thought to play a role in
mood regulation and anxiety [176], our findings suggest that
guanosine may function as an endogenous regulator of emo-
tional behaviors and stress responses through a mechanism
that involves, at least in part, the modulation of adult hippo-
campal neurogenesis in this hippocampal subregion [175].
On the other hand, taking into account the crucial role of
glutamatergic neurotransmission in learning and memory pro-
cesses [177] and the fact that guanosine stimulates astrocytic
glutamate uptake in a concentration-dependent manner [63,
178], high doses of this nucleoside may have an amnesic
effect. This hypothesis is supported by studies showing that
guanosine (administered either intraperitoneally or orally) im-
pairs the performance of rats in the inhibitory avoidance task,
a paradigm commonly used to assess working memory [71,
179]. Notably, this amnesic effect of guanosine appears to be
comparable to those elicited by glutamatergic antagonists
[180]. However, it was also shown that chronic administration
of guanosine did not result in impairments in spatial learning
and memory as assessed by the Morris water maze test [181].
Future studies are warranted to clearly elucidate the effects of
guanosine in learning and memory. Nevertheless, it is worth
noting that the anxiolytic properties of guanosine [120] are not
associated with alterations in body weight, body temperature,
and food and water consumption, as well as locomotor activity
(as assessed with the rotarod test) [120]. It has also been dem-
onstrated that this nucleoside does not affect sleeping time
induced by barbiturates, suggesting that guanosine itself does
not have sedative properties [72]. Finally, it has also been
shown that chronic treatment with high doses of guanosine
is not associated with renal or hepatic damage in rodents
[72]. Together, these studies suggest that administration of this
nucleoside is safe and is not associated with major side effects.
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Protective effects of guanosine in neuropathic pain

Glutamatergic neurotransmission plays a crucial role in nor-
mal and pathophysiological nociception [182], and alterations
in glutamate uptake have been implicated in the induction and
maintenance of neuropathic pain [183, 184]. Within this sce-
nario and taking into consideration the proposed mechanism
of guanosine in the modulation of glutamatergic transmission
(“The role of guanosine on glutamatergic transmission” sec-
tion), various studies have evaluated the behavioral effects of
guanosine treatment in animal models of pain transmission.
Of note, the antinociceptive effect of guanosine in several
chemical and thermal models of acute pain, as well as against
chronic neuropathic pain, appears to be dose-dependent (for
both the acute and chronic administration of this nucleoside).
While the antinociceptive effect of guanosine seems to be
independent from the opioid system, it appears to rely, at least
in part, on the ability of guanosine to stimulate the uptake of
glutamate [185—188]. In addition, it seems that adenosine re-
ceptors also play a relevant role in the antinociceptive proper-
ties of guanosine [72].

Conclusion

The elucidation of the cellular and biochemical mechanisms
underlying CNS diseases is crucial for the development of
therapeutic strategies. Since neuroinflammation, oxidative
stress, and glutamatergic excitotoxicity are common features
in several neurological conditions, compounds capable of
counteracting these events are valuable candidates for putative
new interventions [67]. Within this scenario, it is not surpris-
ing that biological molecules possessing a wide spectrum of
biological properties have become promising therapeutic can-
didates for the treatment of these CNS diseases. In particular,
the nucleoside guanosine has recently demonstrated its thera-
peutic potential in both in vitro and in vivo models of several
neurological pathologies. Moreover, this nucleoside is able to
reach the CNS through systemic and oral routes and its ad-
ministration is associated with low toxicity and minimal side
effects [70, 72, 73].

Despite the increasing number of studies supporting the
therapeutic potential of guanosine, the neurobiological mech-
anisms underlying its neuroprotective properties are still not
fully understood. In particular, further elucidation of the inter-
action between guanosine and the adenosinergic system is
warranted. In addition, even though recent evidence has pro-
posed the existence of a putative G-protein-linked cell surface
receptor that may be modulating the effects of guanosine [15,
82, 87, 88], such receptor has not yet been cloned and char-
acterized. Answering these questions will certainly enhance
our understanding of how guanosine modulates distinct sig-
naling pathways. In turn, elucidation of such mechanisms will
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result in the development of effective therapeutic strategies for
several neuropathological conditions.

Of note, purine-related compounds are already being tested
in clinical trials [189, 190]. Based on the pre-clinical findings
described in this review, future clinical trials are warranted to
determine whether the neuroprotective properties of guano-
sine repeatedly observed in in vitro and in vivo models of
several neurological conditions are replicated in individuals
afflicted with these disorders.
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