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Extracellular ATP protects endothelial cells against DNA damage
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Abstract Cell damage can lead to rapid release of ATP to
extracellular space resulting in dramatic change in local ATP
concentration. Evolutionary, this has been considered as a
danger signal leading to adaptive responses in adjacent cells.
Our aim was to demonstrate that elevated extracellular ATP or
inhibition of ectonucleoside triphosphate diphosphohydrolase
1 (ENTPD1/CD39) activity could be used to increase toler-
ance against DNA-damaging conditions. Human endothelial
cells, with increased extracellular ATP concentration in cell
proximity, were more resistant to irradiation or chemically
induced DNA damage evaluated with the DNA damage
markers γH2AX and phosphorylated p53. In our rat models
of DNA damage, inhibiting CD39-driven ATP hydrolysis
with POM-1 protected the heart and lung tissues against
chemically induced DNA damage. Interestingly, the phenom-
enon could not be replicated in cancer cells. Our results show
that transient increase in extracellular ATP can promote resis-
tance to DNA damage.
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Introduction

ATP is an intracellular energy source and an important extra-
cellular signaling molecule. ATP is readily released from var-
ious cell types at certain basal rates after cell activation and
after cell damage [1, 2]. Burst of ATP functions as
evolutionally conserved danger signal for neighboring cells
[3]. It is possible that the acute elevation of extracellular
ATP is meant to protect surrounding tissue from further dam-
age. Extracellular ATP can promote cellular survival and stim-
ulate proliferation and migration [4, 5]. Several external fac-
tors are able to drive cells to apoptosis by destabilizing the
nuclear chromatin. It remains obscure whether extracellular
ATP could protect cells, such as endothelial cells (EC), against
DNA-damaging conditions. Our aim in this study was to es-
tablish whether elevated extracellular ATP concentration,
through CD39 inhibition, would influence DNA damage sen-
sitivity in ECs.

Double-strand DNA breaks (DSBs) are the most hazardous
form of DNA damage as they cause chromosomal rearrange-
ments. Accumulating DSBs may induce apoptosis or cellular
dysfunction. DSBs occur at basal levels due to various envi-
ronmental factors, and approximately 50 endogenous DSBs
occur in every cell during cell cycle [6]. Moreover, several
cancer therapies such as chemotherapy and gamma irradiation
induce DSBs also in non-malignant cells.

ATP and its metabolites act through several cell surface P1
and P2 receptors. Extracellular ATP is readily hydrolyzed by
cell membrane-bound and soluble enzymes [7]. The most
prominent ATP-hydrolyzing ectoenzyme in endothelial cell
( EC ) s u r f a c e i s e c t o n u c l e o s i d e t r i p h o s p h a t e
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diphosphohydrolase 1 (ENTPD1/CD39) [8]. It is also highly
expressed by other cell types [7]. The overall concentration of
extracellular ATP is regulated through ATP release and its
hydrolysis by ectoenzymes such as CD39.

The effect of ATP-mediated signaling on DNA damage
prevention and repair remains less studied. In this study, we
show a protecting role of CD39 attenuation against DNA
damage in ECs in vitro and in rat pulmonary and cardiac
tissues in vivo. We suggest that targeting the ATP-mediated
pathway could represent an attractive strategy for tissue pro-
tection during radiotherapy or chemotherapy.

Materials and methods

Cell culture

Human pulmonary microvascular ECs (ScienCell, Carlsbad,
CA, USA, cat. 3000) were cultured in EBM-2 supplemented
with EGM-2 bullet kit (Lonza Clonetics, Walkerville, MD,
USA, cat. CC-3162). Human chronic myelogenous leukemia
cells (K562, Sigma-Aldrich, Munich, Germany, cat.
89121407) and human diffuse large B cell lymphoma cells
(SUDHL-4, ATCC, Teddington, UK, cat. CRL-2957) were
cultured in RPMI-1640 (Sigma, cat. R0883) supplemented
with 10 % FBS, 2 mM L-glutamine, and 1 % penicillin/
streptomycin.

DNA damage was induced with γ-irradiation (4–5 Gy),
methyl methanesulfonate (MMS, 500 μM, Sigma, cat.
129925), and doxorubicin hydrochloride (DOX, 1 μM,
Tocris, Bristol, UK, cat. 2252). Overnight pretreatments with
10 μM ATP-γ-S (Tocris, cat. 4080) or 100 μM sodium
polyoxotungstate (POM-1) (Tocris, cat. 2689) were used.

RNA interference

Small interfering RNA (siRNA) was used to silence CD39
expression (Dharmacon, cat. L-015973-00-0005). Non-target
siRNAwas used as a control (Dharmacon, cat. D-001810-01-
05). The ECs were siRNA treated according to the previously
described method [9]. Previously, it has been demonstrated
that the CD39-siRNA is effective in these ECs with qRT-
PCR and immunofluoresence stainings [10]. Here, the effec-
tiveness of the CD39 siRNA is shown in protein level
(Fig. S1).

Western immunoblotting

Whole cell or tissue lysates were prepared as previously de-
scribed [9]. Primary antibodies used are the following: anti-
phospho-histone H2A.X (Ser139) 1:1500 (Merck Life
Science, Millipore, Espoo, Finland, cat. MABE205), p53
(ser15) 1:1000 (Cell Signaling, Leiden, The Netherlands,

cat. 9284), and β-actin 1:2000 (Santa Cruz Biotechnology,
Heidelberg, Germany, cat. sc-1615). Secondary antibodies
used are the following: goat anti-rabbit IgG-HRP (Santa
Cruz Biotechnology, cat. sc-2004) and donkey anti-goat
IgG-HRP (Santa Cruz Biotechnology, cat. sc-2020).

Immunocytochemistry

After 4-h recovery from γ-irradiation, the cells were fixed
with 4 % paraformaldehyde and permeabilized with 0.1 %
Triton-X-100. Primary antibody was γH2AX (Ser139)
1:100 (Millipore, cat. MABE205). Secondary antibody was
Alexa Fluor 488 1:100 (Life technologies, cat. A-21206). The
cells were stained with DAPI prior to mounting. The slides
were evaluated and photographed under fluorescent micro-
scope, and γH2AX foci in single cells were calculated with
ImageJ software (40 cells per condition) as previously de-
scribed [11].

Immunohistochemistry

The collected rat heart and lung tissues were fixed with 10 %
formalin for 24 h and then transferred to 70 % ethanol. After
fixation, the tissues were paraffin embedded and sectioned to
microscopy slides. The primary antibody was γH2AX
(Ser139) 1:1000 (Millipore), and the secondary antibody
was in Rabbit-on-Rodent HRP-Polymer kit (Biocare
Medical, Concord, CA, USA, Cat. RMR622), which was used
according to the manufacturer’s instructions. Tissue samples
were analyzed under a microscope, and quantification was
done with ImageJ software with IHC Toolbox plugin [12] to
determine the ratio between positive and total nuclei.

Caspase assay

K562 and SUDHL-4 cells were seeded in 96-well plate, 104

cells per well, in supplemented growth media and let to recov-
er overnight. Next, the cells were treated with 100 μMPOM-1
or vehicle, let to recover overnight, and then treated with 1 μM
DOX or vehicle for 24 h before caspase 3/7 activity measure-
ment (Caspase Glo 3/7 assay, Promega, Nacka, Sweden, cat.
G8091).

Animals

Male Sprague-Dawley (SD) rats (170–200 g,N=3) were used
in experiments, which were done with the permission of the
National Animal Experiment Board. The rats were given
POM-1 (Tocris) (10 mg/kg, intraperitoneal (i.p.)) or PBS in
three consecutive days. At the third day, the rats were further
treated with monocrotaline (MCT) (60 mg/kg, s.c., Sigma,
Cat. 2401), DOX (Tocris) (6 mg/kg, i.p.), or PBS. In MCT
group, lungs were collected 24 h after injection, and in the
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DOX group, hearts were collected 8 h after injection. In all
groups, the rats were euthanatized with CO2.

Statistics

Statistical analysis was done with Prism GraphPad 6 (La Jolla,
CA, USA). Unpaired t test was used for comparing groups.
Results are expressed in mean±SEM from at least three inde-
pendent experiments. P<0.05 was considered as significant,
and in the figures, p values are expressed with stars: *P<0.05,
**P<0.01, and ***P<0.001.

Results

Silencing of CD39 protects ECs from DNA damage

Suppression of CD39 expression in ECs significantly de-
creased γH2AX expression in both control and γ-irradiated
cells when compared to non-target (NT) siRNA-treated cells
(Fig. 1a). Compared to control, the γH2AX protein expres-
sion was 56 % lower after 45-min recovery (p=0.0090) and
69 % lower after 4-h recovery (p=0.0009) in CD39-deficient
cells (Fig. 1a). Supporting results were obtained from immu-
nocytochemistry experiments where the number of γH2AX
foci in individual cells (Fig. 1b) was quantified in γ-irradiated
cells (p=0.0008). Similarly to irradiation, the expression level
of γH2AX in CD39-siRNA silenced cells was 60 % lower
after 4-h MMS treatment (p=0.0143), compared to control
siRNA-treated cells (Fig. 1c). Results from CD39-deficient
cells treated with DOX for 4 h supported the hypothesis
(p= 0.0524) (Fig. 1c). Similarly, the CD39-deficient ECs
treated with MMS had significantly decreased (59 %) expres-
sion of phosphorylated p53 protein, a marker of activated
DNA damage pathway, when compared to control
(p=0.0023, Fig. 1d), while the total p53 protein expression
remained unaltered (Fig. S3).

Both ATP and POM-1 protect ECs from DNA damage

ATP analogue, ATP-γ-S, pretreatment markedly decreased
γH2AX expression after irradiation (p=0.0592)- or MMS
(p= 0.0461)-induced DNA damage (Fig. 2a) compared to
control cells. Similarly, CD39 inhibitor POM-1 pretreatment
significantly decreased γH2AX expression at basal level
(p=0.0136) and after MMS (p=0.0036)-induced DNA dam-
age (up to 80 %, Fig. 2b) compared to control cells. The
expression level of serine 15-phosphorylated p53 was sup-
pressed 47% in POM-1-treated ECs compared to control after
exposure to MMS-induced DNA damage (p = 0.0163,
Fig. 2c), while the total p53 protein expression remained un-
altered (Fig. S4).

ATPase activity is decreased in CD39 siRNA
and POM-1-treated cells

Specific ATPase activity was significantly decreased in POM-
1-treated and CD39-deficient ECs compared to control cells
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Fig. 1 CD39 siRNA silenced ECs have decreased γH2AX protein
expression after irradiation or chemically induced DNA damage. a
γH2AX protein expression from CD39 siRNA silenced (CD39) and
non-target siRNA (NT)-treated ECs at basal level and after irradiation
followed by 45-min or 4-h recovery time. The bars represent the optical
density (OD) of the γH2AX/β-actin ratio from three independent western
immunoblot (WB) experiments. b Immunocytochemistry from γH2AX
protein expression after irradiation from CD39 siRNA silenced (CD39)
and non-target siRNA-treated (NT) ECs. Histogram represents a quanti-
fication of average number of γH2AX foci/cell; 40 cells per condition
were analyzed with ImageJ. c γH2AX protein expression and quantifi-
cation after MMS- or DOX-induced DNA damage from CD39 siRNA
silenced (CD39) and non-target siRNA (NT)-treated ECs. d Serine 15
phosphorylated p53 protein expression and quantification after MMS-
induced DNA damage from CD39 siRNA silenced (CD39) and non-
target siRNA (NT)-treated ECs. β-Actin was used as a loading control
in all experiments
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(Fig. S2). Moreover, POM-1 treatment had no additional in-
hibitory effects on CD39 siRNA silenced cell ATPase activity.

POM-1 treatment enhanced DNA damage resistance
in vivo

To test whether the observed effects of CD39 inhibition and
ATP accumulation would apply also in vivo, we used SD rats.
The γH2AX expression in lung lysates was significantly low-
er in MCT animals pretreated with POM-1 compared to con-
trol animals (48 %, p=0.0109, Fig. 3a). Similarly, we discov-
ered significantly lower γH2AX expression in heart lysates in

DOX-treated rats that were pretreated with POM-1 (53 %,
p=0.0371, Fig. 3b). Semiquantitative immunohistochemistry
analysis confirmed the result in cardiac cells. The γH2AX
expression in cardiac tissue was significantly lower in POM-
1-pretreated rats compared to animals, which received DOX
without POM-1 pretreatment (p=0.0013, Fig. 3c).

POM-1 treatment does not rescue cancer cells
against DOX treatment

Human leukemia- and lymphoma-derivedK562 and SUDHL-
4 cells, respectively, were treated with POM-1 and subse-
quently exposed to DOX for 24 h. Immunoblot analysis of
γH2AX expression showed no difference between the groups
(Fig. 3d). To test whether CD39 inhibition could protect these
cancer cells against DOX-induced apoptosis, we evaluated
caspase 3/7 activity after 24-h DOX treatment with or without
POM-1 pretreatment. We did not observe any attenuation of
caspase 3/7 activity in POM-1 pretreated cells (Fig. 3e). The
POM-1 pretreatment significantly increased caspase 3/7 activ-
ity after DOX treatment in K562 cells and had no effect in
SUDHL-4 cells.

Discussion

In this study, we show for the first time how suppression of
CD39 and resulting elevated extracellular ATP niche [10] can
promote resistance to DNA damage under various DNA-
damaging conditions in vitro and in vivo. In addition, we
demonstrate that inhibition of CD39 does not promote DNA
damage repair or apoptosis resistance in transformed cancer
cells.

Homologous recombination (HR) and non-homologous
end joining (NHEJ) are the twomain DNA repair mechanisms
used in cells to repair DSBs. The cell cycle phase is the major
determinant of the used mechanism. The more effective and
less error-prone HR is active only in G2/S phase when the
homologous DNA strand can be used as a template [13] while
NHEJ operates in all cell cycle phases [14]. In this study, DNA
damagewas induced with four different DNADSB-producing
mechanisms. The high-energy γ-irradiation breaks the DNA
strands directly and mainly involves the NHEJ repair pathway
[15, 16]. It is not fully confirmed whether MMS directly in-
duces DSBs, but it stalls DNA replication and HR is involved
in the repair of stalled replication forks [17]. DOX induces
DNA damage through increased oxidative stress and by inter-
calating the DNA strands [18]. MCT is metabolized to
genotoxic MCT pyrrole and to (+/−)6,7-dihydro-7-hydroxy-
1-hydroxymethyl-5H-pyrrolizine (DHP) in vivo, which leads
to DNA crosslink and DHP-DNA adduct formation, which
are repaired by Fanconi anemia pathway following HR [19,
20].
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Cells are constantly exposed to DSBs that need to be ef-
fectively repaired to ensure the normal cell function [6]. DNA
damages stall the DNA replication and cell cycle and inhibit
cell proliferation. Moreover, accumulated DNA damages can
drive cells to apoptosis. As extracellular ATP has been shown
to induce DNA replication and cell proliferation in ECs and in
smooth muscle cells [4, 21], it could be plausible that these
effects are partly mediated through enhanced DNA damage
repair. ATP-induced cell proliferationmight have a connection
to enhanced DNA damage repair as our results demonstrate
that basal levels of γH2AXwere lower in ATP-activated cells.

Suppression of CD39 not only increases the extracellular
ATP but also leads to decreased extracellular adenosine levels

in ECs [4]. Adenosine is widely considered to be anti-
inflammatory and protective toward vasculature. On the other
hand, sustained high adenosine concentration can also be
harmful and pro-apoptotic to lung ECs [22]. In CD39-
siRNA and POM-1-treated ECs, the decreased adenosine
could contribute to DNA damage sensitivity. However,
ATP-γ-S treatment, considered not affecting significantly
adenosine levels, showed results consistent with CD39 sup-
pressed cells. Other growth factor signaling pathways have
been shown to enhance DSB repair after γ-irradiation.
Epidermal growth factor receptor variant III (EGFRvIII) sig-
naling has been shown to have a key role in the radioresistance
in glioblastoma. EGFRvIII is known to activate downstream
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effectors such as phosphatidylinositol 3-kinase (PI3K), Akt-1,
Ras, and mitogen-activated protein kinase (MAPK) [23–25].
This downstream signaling eventually leads to DNA-
dependent protein kinase (DNA-PKcs) hyperactivation and
enhanced DSB repair [25]. Interestingly, ATP has been shown
to activate the same downstream signaling pathways and even
function in synergy with EGF receptor signaling [26–28].

The few previous studies connecting purinergic signaling
to DNA damage repair have been mainly done with cancer
cell lines, such as lung cancer. Previous study demonstrated
that ATP sensitizes cancer cells to irradiation-induced DNA
damage through P2Y6 and P2Y12 receptor activation [29,
30]. In a wider study with six different cancer cell lines,
ATP treatment protected against DOX-induced cytotoxicity
only in non-metastatic CL1.0 lung cancer cells [31]. Few stud-
ies have shown that extracellular ATP promotes survival in
non-small cell lung cancer A549 cell line [32, 33]. However,
this has not been shown to be a cause of enhanced DNA
damage resistance. The distinct purine receptor representation
in cancer- and non-malignant cells could explain the differ-
ence in cellular response [34]. Other explanation could be
difference in purine-inactivating cell surface enzymes be-
tween ECs and cancer cells. While CD39 is the main ATP-
hydrolyzing enzyme in ECs, cancer cells have additional
phosphatases, which could explain the differential response
to CD39 inhibition with POM-1 [35]. Our results with cancer
cells, where γH2AX expression in POM-1-pretreated cells
was increased after DOX-induced DNA damage, fit well to
these previous findings. In addition, CD39 inhibition with
POM-1 was not able to rescue the cancer cells from DOX-
induced cytotoxicity (Fig. 3e). As opposite to cancer cells, in
circulating blood cells, others have described that ATP inhibits
the radiation-induced DNA damage ex vivo [36].

The great improvements in early cancer detection and can-
cer treatment strategies have decreased the rate of cancer-
related deaths over the last decades [37]. Unfortunately, at
the same time, the risk of late-onset cardiovascular complica-
tions is increased due to chemotherapy and radiotherapy [38].
Currently, cardiovascular morbidity is the most common non-
malignant cause of death among the cancer survivors [39].

Our study, together with previous observations, indicates
that there is a profound difference in ATP signaling between
cancer cells and non-cancer cells. Considering the protective
actions of transient elevation of extracellular ATP in non-
cancer cells, we reason this as an attractive strategy for tissue
protection during cancer treatments. Additional research is
still needed to discover the full mechanism of ATP
signaling-mediated resistance to DNA damage in quiescent
differentiated cells. Future studies are also needed to better
understand the differences in ATP responses between cancer
and non-cancer cells and whether certain cancer cells are re-
sponsive to ATP similarly than differentiated cells. We pro-
pose that targeting and inhibiting CD39 activity could be an

attractive strategy to suppress especially cardiovascular injury
associatedwith cancer treatments. Larger in vivo experimental
series are now needed to further evaluate the clinical utility of
this observation.
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