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Abstract Neuroinflammation limits tissue damage in re-
sponse to pathogens or injury and promotes repair. There are
two stages of inflammation, initiation and resolution. P2X
receptors are gaining attention in relation to immunology
and inflammation. The P2X7 receptor in particular appears
to be an essential immunomodulatory receptor, although
P2X1 and P2X4 receptors also appear to be involved. ATP
released from damaged or infected cells causes inflammation
by release of inflammatory cytokines via P2X7 receptors and
acts as a danger signal by occupying upregulated P2X recep-
tors on immune cells to increase immune responses. The
purinergic involvement in inflammation is being explored
for the development of novel therapeutic strategies.
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Introduction

Inflammation involves a complex haemostatic mechanism
that enables the body to detect and fight foreign antigens
and restore tissue integrity. ATP serves as an acute ‘danger
signal’ and behaves as a mediator of inflammation and immu-
nity [1, 2]. Purinergic signalling contributes to the fine tuning
of inflammation and immune responses in such a way that the

danger to the host is eliminated efficiently with minimal dam-
age to healthy tissues [3]. Brain inflammation occurs follow-
ing responses to insults, such as bacterial and viral infection,
stroke, traumatic injury, and neurodegenerative disorders.
During the course of inflammation, there is upregulation of
P2X purinoceptors located on immune cells (neutrophils, eo-
sinophils, monocytes, macrophages, mast cells, and lympho-
cytes). ATP release from injured cells enhances the inflamma-
tory response through increased synthesis of prostaglandin E2

(PGE2) [4] via P2X7 receptors [5]. P2X receptor involvement
in inflammation also occurs in irritable bowel syndrome [6, 7],
lung injury and fibrosis [8, 9], systemic inflammation [10],
arthritis [11], fever [12], and rhinosinusitis [13]. Purinergic
signalling in different inflammatory cells involves
purinoceptor responses in immune cells (see [14]). Microglia
are immune cells in the central nervous system (CNS) [15].
They mediate neuroinflammatory responses to insult in re-
sponse to a variety of triggers, including toxic metabolites
and autoimmunity by detection of pathogens [16]. In addition
to microglia, astrocytes as well as perivascular monocytes and
macrophages invading to sites of insult from the circulation
promote neuroinflammation [17]. Neuronal activity also con-
tributes to inflammation [18]. Activation of P2X7 receptors
promotes neuroinflammation by causing the release of inflam-
matory cytokines, such as interleukin (IL)-1β and tumour ne-
crosis factor-α [19–21]. P2X3 receptors are upregulated in the
colonic mucosa of humans with inflammatory bowel disease
[22]. There is increased release of ATP from endothelial cells
during acute inflammation [23]. ATP triggers cytokine release
from inflammatory cells, acts as a chemotactic factor and, after
breakdown by ectoenzymes to adenosine, is a potent immu-
nosuppressant [24, 25]. ATP may reach a concentration of
several hundred micromoles within the interstitium of in-
flamed tissues [26, 27]. P2X receptors play a central role in
inflammation, particularly the P2X7 receptor. P2X1 receptors
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[28, 29] and P2X4 receptors [30] probably also play a role in
inflammation and immunity (Fig. 1).

Multiple inflammatory mediators, including cytokines,
chemokines, and prostaglandins, are elevated in the cerebro-
spinal fluid and in post-mortem brain tissues of patients with a
history of neuroinflammatory conditions, as well as neurode-
generative diseases [31]. P2X receptors are involved in

immune-related neuroinflammatory dysfunctions, including
ischaemia and neurodegenerative diseases (see [32]).

Activation of an inflammasome, a protein complex consisting
of caspase-1, apoptosis-associated speck-like protein, and nod-
like receptor proteins (NLRP1 or NLRP3) [33] expressed in
myeloid immune precursor cells is involved. NLRP
inflammasomes are activated by the recognition of pathogens-

Fig. 1 Release of extracellular adenosine triphosphate (ATP) and
adenosine diphosphate (ADP) and activation of ATP (P2) receptors
during inflammation. During inflammatory conditions that occur in
vascular thrombosis, hypoxia, ischemia, inflammatory bowel disease,
and acute lung injury, multiple cell types release nucleotides, typically
in the form of ATP or ADP, from the intracellular compartment into the
extracellular space. The release of nucleotides includes release of ATP
from necrotic cells, pannexin-hemichannel-dependent release of ATP
during apoptosis, and release of ATP through connexin hemichannels
from activated inflammatory cells such as polymorphonuclear
granulocytes (neutrophils). In addition, release of extracellular ATP has
been shown to occur through vesicular exocytosis or connexin
hemichannels from endothelial and urothelial cells, osteoblasts, and
astrocytes, as well as nerves (not shown). An additional source of

extracellular nucleotides in inflammatory conditions is provided by
activated platelets, which release ATP and ADP through the release
of granules and exocytosis. In the extracellular space, these nucleotides
function as signalling molecules that can activate P2Y receptors (G
protein-coupled receptors) or P2X receptors (ligand-gated ion
channels). Examples of nucleotide-receptor signalling in inflammatory
conditions include P2Y6- or P2X7-receptor signalling, which mediates
vascular inflammation, and P2Y1-, P2X1-, and P2Y12-receptor
signalling, which mediate platelet activation. Activation of P2 receptors
of the P2Y2 and P2X7 family that are expressed on dendritic cells is
thought to play a role in promoting lung inflammation in chronic lung
diseases such as asthma (reproduced from [9], with permission from the
Massachusetts Medical Society)
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associated molecular patterns or damage-associated molecular
patterns (DAMPs) [34]. Inflammasomes are involved in P2X7
receptor coupling to IL-1β release [19].

ATP release occurs from damaged cells at the site of injury
and from activated immune cells, glial cells, and endothelial cells.
ATP release in vivo has also been shown in response to contact
allergens [35], irradiation, allograft rejection [36], and intraperi-
toneal lipopolysaccharide administration [4], as well as mechan-
ical distortion [37, 38]. ATP released during viral infection is an
important inflammatory regulator that activates the
inflammasome pathway and regulates inflammatory responses
[39]. P2X4 receptors were claimed to influence inflammasome
activation after spinal cord injury [40]. The secretion of ATP by
bacteria infected macrophages leads to activation of P2X7 recep-
tors [41]. Prevention of cell death or ATP release through p38 or
AKTactivation interfered with inflammasome activation and IL-
1β production. Overexpression of P2X7 receptors was reported
in the intestinal mucosa of Crohn’s (inflammatory) disease pa-
tients [42].

Reviews focussing on nucleotide signalling during inflam-
mation are available [14, 43–47].

Inflammation and P2X receptors

Changes in P2X receptor subtype expression in
neuroinflammatory conditions in various in vitro and in vivo
models have been reported. P2X4 receptors are associated
with an early inflammatory mediator, PGE2 [30]. P2X4 recep-
tors, similar to P2X7, form a large conductance pore on the
cell membrane, facilitating ion efflux and subsequent
inflammasome activation [5]. The P2X4 receptor may act as
an initial trigger, while the P2X7 receptor, in concert with
pannexin 1, may amplify the signal [47]. The P2X4 receptor
contribution to PGE2 release in mice is of minor relevance
when compared to that of P2X7 receptors [4].

Of the seven P2X subtypes, the P2X7 receptor is the most
important for involvement in mediating neuroinflammation
[20]. Activation of P2X7 receptors results in DAMP, initiating
neuroinflammatory cascades [5]. Further, the formation of the
P2X7 receptor pore appears to be necessary for activating the
inflammasome [48]. The P2X7 receptor is one of the most
potent plasma membrane receptors responsible for the release
of inflammatory cytokines of the IL-1 family, IL2, IL6, and
IL18 [45, 49, 50]. P2X7 receptor activation is a strong stimu-
lus for IL-18 as well as Il-1β [51, 52] and IL-1α secretion
[53]. Microglia are the main source of IL-1β release, but it has
also been claimed that IL-1β release from neurons is impor-
tant [40]. IL-2 synthesis in lymphocytes requires functional
P2X receptors [54], probably P2X7 [55, 56]. P2X7 receptors
also mediate biglycan-stimulated IL-1β release from mouse
macrophages [57]. A P2X7 receptor-P2X4 receptor interac-
tion in the process of IL-1β and IL-18 release has been

identified in bone marrow-derived dendritic cells [58].
Smoking contributes to the pro-inflammatory status of
perivascular visceral adipose tissue by enhancing the expres-
sion and activity of the P2X7 receptor-inflammasome com-
plex [59]. Stimulation of P2X7 receptors drives release of both
exosomes and microvesicles from several different cell types
relevant to inflammation.

P2X7 receptors are expressed on glial and immune
cells of monocyte-macrophage origin and on presynaptic
terminals on neurons, with the highest levels on microg-
lia [60–63]. P2X7 receptors, acting via different path-
ways, play a major role in the promotion as well as
in the suppression of inflammation in different patho-
physiological conditions ([64, 65] and see [46]). P2X7
receptors mediate transforming growth factor β secre-
tion. P2X7 receptor activation also releases a potent
immunosuppressive agent, HLA-G [66, 67] and vascular
endothelial growth factor, another major player in in-
flammation [68]. Another function of P2X7 receptors
in inflammation is the activation of transcription factors
such as NFkB and NFAT [69, 70]. P2X7 receptor acti-
vation opens a cation-specific channel activating several path-
ways, including the inflammasome, leading to the stress-
activated protein kinase pathway that results in apoptosis,
and the mitogen-activated protein kinase pathway.
Ectonucleotidases control P2X7 receptor function, including
the resolution as well as the initial phases of inflammation (see
[71]). [11C]-A-740003, a P2X7 receptor antagonist, has been
used as a novel tracer of neuroinflammation [72].

P2X7 receptors trigger the activation of the NLRP3
inflammasome, the main intracellular complex involved in
the transduction of danger signals and in the initiation of in-
flammation [73]. The role of the NLRP3 inflammasome in
pro-IL-1β processing and pyroptosis places the P2X7 receptor
at the centre of cytokine immunology. Since the discovery of
the inflammasome [33], whether activation by pathogen- and
damage-associated molecular patterns requires a direct, phys-
ical, interaction with the scaffold NLR inflammasome pro-
teins has been discussed. Ca2+ might be a suitable second
messenger responsible for inflammasome activation [39],
and this would be consistent with the role of the P2X7 receptor
as a trigger of the NLRP3 inflammasome since P2X7 receptor
opening drives a large Ca2+ influx from the extracellular
space.

ATP, the extracellular messenger of cellular injury,
accumulates to hundred micromolar levels at sites of
injury and inflammation [26, 27]. In the presence of
inflammation or stress, there is a fast increase of extra-
cellular ATP to near millimolar levels quickly mediating stim-
ulation of pro-inflammatory pathways [74]. Some P2X7 re-
ceptor polymorphisms appear to protect against infection, but
others increase the risk of developing chronic inflammatory
diseases [75].
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Immune cells and inflammation

The participation of P2X receptors in inflammation and im-
munity is gaining attention probably because of the role
played by P2X7 receptors in IL-1β processing and release.
All immune cells, whether of the myeloid or lymphoid line-
age, express at least one P2X receptor subtype, and many
express all seven subtypes [2, 45, 76–81]. Mononuclear
phagocytes are the inflammatory cell type where P2X receptor
expression has been best characterized [82]. Monocyte/
macrophage and myeloid dendritic cells express P2X1,
P2X4, and P2X7 receptors [45]. P2X5 receptors are expressed
by T lymphocytes. The function of P2X5 receptors in inflam-
mation is not clear. Neutrophils and eosinophils express
P2X1, P2X4, and P2X7 receptors, although the level of ex-
pression is different in the quiescent or activated state [83–85].
P2X1, P2X4, and P2X7 receptors are expressed on T and B
lymphocytes and natural killer cells [45]. ATP released
by tissue damage, acts as a danger signal by acting on
P2 receptors on immune cells to stimulate the immune
response [86]. P2 receptors are present on immune cells
and their expression is modulated by inflammatory cy-
tokines [87]. P2X receptors have been implicated in the
participation of the immune system in inflammatory
pain [88, 89]. P2X1, P2X4, P2X7, and perhaps P2X3
receptors are expressed by mast cells [90, 91]. Mast
cells were the cell type in which the properties of the
P2X7 receptor were initially observed and characterized
by Cockcroft and Gomperts [92]. P2X receptor expres-
sion is also present on microglia, both in vitro and in vivo,
particularly P2X4 and P2X7 receptors [93, 94]. P2X receptors
on mast cells are involved in the pathogenesis of chronic air-
way allergic inflammation [91].

Inflammatory pain

P2X7 receptors are involved in inflammatory pain [95–99].
There is reduced inflammation-induced hyperalgesia in rats
following treatment with oxidized ATP, a P2X7 receptor an-
tagonist [100]. P2X7 receptors play a transductional role in the
development of inflammatory pain [101].

A review includes a discussion of the role of P2X3 recep-
tors in inflammatory pain [102]. During the inflammatory
process in peripheral tissue, neither prostaglandins nor sym-
pathetic amines can sensitize primary afferent neurons by
themselves; they depend on previous neuronal P2X3 receptor
activation [103]. Spontaneous and evoked responses of spinal
nociceptive neurons are attenuated by P2X3 receptor antago-
nism in inflamed rats [104]. Data has been presented to indi-
cate that antagonism of spinal P2X3/P2X2/3 receptors regu-
lates an indirect activation of the opioid system to alleviate
inflammatory hyperalgesia [105]. P2X4 receptors probably

also participate because of their involvement in neuropathic
pain [106, 107], which is relevant for inflammation. Mice
lacking P2X4 receptors show impaired inflammasome activa-
tion [40] and do not develop pain hypersensitivity in response
to inflammatory agents, and this is paralleled by a complete
absence of PGE2 in inflammatory exudates [30]. There is also
a suggestion that P2X4 receptors might modulate P2X7 recep-
tor activity [56]. P2X7 receptor antagonists reduce inflamma-
tory pain in rats [100, 108–110]. Chronic inflammatory pain
was abolished in P2X7 receptor knockout mice [95]. Central
sensitization of nociceptive neurons in medullary dorsal horn
of rats involves P2X7 receptors [111]. P2X7 receptor antago-
nism of chronic pain is likely mediated through immuno-
neural interactions that affect the release of inflammato-
ry cytokines [112]. Inflammatory pain involved in dress-
ing changes of burn patients was relieved by puerarin,
an isoflavonoid derived from a Chinese herb [113]. The
effects were correlated with the decreased expression of
P2X7 receptor mRNA and protein in peripheral blood
mononuclear cells in burn patients.

Pathology and inflammation

Purinergic contributions to neuroinflammation in relation to
disorders of the CNS are being explored. Pathological neuro-
inflammation, promoting apoptosis and necrosis, and
influencing the synaptic and intrinsic membrane properties
of neurons contributes to CNS pathologies [114]. A role for
neuroinflammation occurs in neurodegenerative diseases,
such as Alzheimer’s disease, Parkinson’s disease, multiple
sclerosis, amyotrophic lateral sclerosis, Huntington’s disease,
stroke, and epilepsy [115]. Neuroinflammation is also a path-
ological factor in psychiatric mood disorders [116, 117]. The
NLRP3 inflammasome is a central mediator of systemic in-
flammation and a link between psychological stress and the
emergence of depression and other psychiatric illnesses [118]
and ATP, accumulated following insult, induces NLRP-
mediated IL-1β processing [93]. Epidemiological and gene-
linking studies have implicated P2X7 in a host of CNS dis-
eases [119, 120]. Neuroimmunological changes occur in psy-
chiatric disorders, including major depressive disorder, bipo-
lar disorder, obsessive compulsive disorder, and schizophre-
nia. Chronic inflammation associated with diabetes, obesity,
or autoimmune diseases increases the risk of psychiatric dis-
orders (see [47]). These disorders are characterized by chron-
ic, low grade, or intermittent inflammation, in contrast to neu-
rodegenerative diseases, where there is acute inflammation in
the brain parenchyma. Schizophrenia is considered to be a
neurodevelopmental disorder, and foetal neuroinflammation,
resulting from maternal infection, is implicated [116].
Enhanced levels of pro-inflammatory cytokines in the brain
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and enhanced microglial activation occur in foetal neuroin-
flammation, leading to abnormal brain maturation.

Associations between susceptibility or resistance to para-
sites and bacteria and loss- or gain-of-function polymorphisms
in the P2X7 receptor indicate that it is important in infectious
disease [121]. ATP activation of the NLRP3 inflammasome
protects mice against bacterial infection [122]. The P2X7 re-
ceptor plays a role in acute and chronic stages of infection as
well as a ‘danger signal’ in the initial stages of inflammation
(see [71]).

Therapeutic potential

Purinergic-based therapies may be useful to halt excessive
inflammation and promote repair of neuroinflammatory dis-
orders [4, 80, 123, 124].

P2X7 receptor antagonists are promising targets for anti-
inflammatory therapy [125, 126], including inflammation in
the CNS [11, 95, 100, 127, 128]. In view of its potent pro-
inflammatory effect, the analgesic activity of P2X7 receptor
blockers is of interest for therapeutic implications [99].
Blockade of P2X7 receptors reduced nociception in animal
models of chronic inflammatory pain [96, 125, 129–132].
Relief of inflammatory pain was produced by the P2X7 recep-
tor antagonist, oxidized ATP, in arthritic rats [11]. Blockade by
the selective P2X7 receptor antagonist, A-839977, was lost in
IL-1αβ knockout mice [133].

P2X3 receptor antagonists have also been suggested to be a
therapeutic target for pain therapy [134]. Application of apy-
rase to CD39-deficient mice prior to ischaemia reduced infarct
volumes and neutrophil counts [135, 136]. Kinase inhibitors
have been recommended for the treatment of inflammatory
and autoimmune disorders, such as rheumatoid arthritis, pso-
riasis, organ transplantation, and autoimmune diseases [137,
138].

Activation of the purinergic pathway may be implicated in
transplantation-related injuries. Following transplantation,
ATP, the pro-inflammatory danger signal, is released from
damaged cells to promote proliferation of immune cells, T cell
activation, and inflammation. Targeting purinoceptors may
promote immunosuppression and reduce inflammation. The
ectonucleotidases, CD39 and CD73, hydrolyze ATP to the
anti-inflammatory mediator adenosine, which suppresses
pro-inflammatory cytokine production leading to improved
graft survival. The mechanisms of action of several immuno-
suppressive drugs, such as calcineurin and mTOR inhibitors,
involve purinergic signalling. Targeting the purinergic signal-
ling pathway by increasing ectonucleotidase activity and/or
boosting short term adenosine-mediated immunosuppression
have potential in preventing allograft vascular injury, amelio-
rating rejection, and promoting tolerance.

Conclusion

P2X receptors mediate the responses to ATP, one of the most
ancient evolutionary extracellular messengers (see [139]).
ATP is an intracellular molecule, so its release is suited to
signal cell distress or injury. This ‘danger signal role’ of
ATP became more and more relevant in multicellular animals.
P2X receptors play important roles in pathophysiology (see
[140, 141]) and P2X7 receptors, in particular, are vitally in-
volved in inflammation.
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