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Abstract The involvement of purinergic signalling in the
physiology of erythrocytes, platelets and leukocytes was
recognised early. The release of ATP and the expression of
purinoceptors and ectonucleotidases on erythrocytes in health
and disease are reviewed. The release of ATP and ADP from
platelets and the expression and roles of P1, P2Y1, P2Y12 and
P2X1 receptors on platelets are described. P2Y1 and P2X1
receptors mediate changes in platelet shape, while P2Y12 re-
ceptors mediate platelet aggregation. The changes in the role
of purinergic signalling in a variety of disease conditions are
considered. The successful use of P2Y12 receptor antagonists,
such as clopidogrel and ticagrelor, for the treatment of throm-
bosis, myocardial infarction and stroke is discussed.
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Introduction

Purinergic signalling, ATP acting as an extracellular signalling
molecule, was proposed in 1972 [1]. Separate families of re-
ceptors for adenosine (P1) and adenosine 5′-triphosphate
(ATP) and adenosine 5′-diphosphate (ADP) (P2) were
recognised in 1978 [2] and receptors for purines and pyrimi-
dines cloned and characterised in the early 1990s (see [3]).
Four P1 receptor subtypes (A1, A2A, A2B and A3), seven
P2X ion channel receptor subtypes (P2X1–7) and eight P2Y
G protein-coupled receptors (P2Y1, 2, 4, 6, 11, 12, 13 and 14) have
been identified (see [4]).

The involvement of purinergic signalling in the biol-
ogy of erythrocytes, platelets and leukocytes was
recognised early, and this review aims to present an
historical account leading to our current understanding
of the various roles played by purine nucleotides and
nucleosides in health and disease. A valuable earlier
review was published about the roles of nucleotide re-
ceptors in blood cells [5].
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Erythrocytes

Extracellular actions of nucleotides

Early papers were concerned with intracellular ATP levels
(estimated at 107–284 μg/ml in a very early paper [6]) in
erythrocytes and their relation to the cell shape [7–9] and
storage ability [10]. There were also early papers concerned
with the ectoenzymes involved in the metabolism of external
adenine nucleotides [11–14]. A decrease in intracellular red
cell ATP levels during aging was reported [15]. Early papers
also showed that extracellular ATP increased Na+ and K+ per-
meability and altered the physical properties of mammalian
red blood cells [16–19]. Erythrocyte membrane preparations
(‘ghosts’) were used in numerous investigations of the actions
of ATP (e.g. [20, 21]) and ATPases [22]. Using RT-PCR of red
blood cell progenitor cells, messenger RNA (mRNA) expres-
sion of P2X1, P2X4 and P2X7, as well as P2Y1 receptors (but
not for P2Y2, P2Y4 or P2Y6) was reported [23]. The turkey
erythrocyte has also been utilised as a model for studies of
purinergic signalling [24]. For example, P2Y receptors were
identified and the kinetics of activation of phospholipase (PL)
C by P2Y receptor agonists examined [25, 26]. Phos-
phatidylinositol 4,5-bisphosphate hydrolysis was shown to
be regulated by P2Y receptors in turkey erythrocytes [27].
Later, this P2Y receptor was identified as the P2Y1 subtype
[28, 29]. Extracellular ATPwas reported to stimulate a volume
decrease in red blood cells from Necturus [30] and activate a
P2 receptor during hypotonic swelling [31].

Human erythrocytes were shown to express P2X7 receptors
on all erythrocytes examined from eight subjects. P2X2 recep-
tors were also identified, although they were at a far lower
staining intensity in six of the eight subjects [32]. These studies
also showed that purines increase cation fluxes in the potency
order of 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate
(BzATP) > ATP > 2-methythioATP > adenosine-5′-(γ-thio)-
triphosphate, while ADP and uridine 5′-triphosphate (UTP)
had no effect. A P2Y4-like receptor was claimed to increase
[Ca2+]i in red blood cells of the lizard [33]. Elevated intracel-
lular Ca2+ revealed a functional membrane nucleotide pool in
intact human red blood cells [34]. P2X7 receptor activation
caused phosphotidylserine exposure and cell shrinkage in hu-
man erythrocytes [35]. Erythrocytes are reservoirs of
epoxyeicosatrienoic acids, which are vasodilators, anti-
aggregatory and anti-inflammatory lipidmediators. Stimulation
of rat erythrocyte P2X7 receptors induces the release of
epoxyeicosatrienoic acids, arachidonic acid-derived lipid medi-
ators that dilate arterioles [36, 37]. Canine erythrocytes express
P2X7 receptors, which mediate a massive increase in cation
permeability compared to human erythrocytes [38, 39]. 5-
Nucleotidase activities were reported in human erythrocytes
[40]. Activation of P2Y1 receptors triggers two calcium signal-
ling pathways in bone marrow erythrocytes [41].

Extracellular adenosine was shown to significantly en-
hance glucose consumption and lactate production in washed
human red blood cells [42]. The adenosine receptor, present
on turkey erythrocytes, was shown to be coupled to adenylate
cyclase [43]. Adenosine is rapidly taken up by erythrocytes
[44, 45], which is critical since adenosine deaminase is local-
ised in the plasma membranes of erythrocytes [46]. A2 recep-
tors are present in embryonic red blood cells, but their num-
bers were reduced in later development [47]. Suicidal death of
erythrocytes or eryptosis is characterised by cell shrinkage and
cell membrane scrambling, and adenosine was shown to in-
hibit eryptosis [48]. It was reported that A2B receptors mediate
regulatory volume decrease in mature human erythrocytes
[49].

The level of intracellular ATP is crucial for maintaining the
function and structural integrity of circulating red blood cells
[50]. Elevated levels of ATP in red blood cells of patients with
renal failure was reported, 4.88 μmol/gHb compared to con-
trol 3.64 μmol/gHb [51]. The loss of adenosine 5′-
monophosphate deaminase activity in senescent erythrocytes
may explain elevated ATP levels [52].

Ticagrelor, a P2Y12 receptor antagonist, reportedly inhibits
adenosine uptake leading to augmentation of cardiac blood
flow in a canine model of reactive hypoxia [53]. The authors
suggest that ticagrelor may have additional benefits in patients
with acute coronary syndrome beyond inhibition of platelet
aggregation including the induction of ATP release, which
was shown to occur in studies of human red blood cells
[54]. The ticagrelor-induced adenosine increase may be ben-
eficial by improving peripheral endothelial function [55] and
also be cardioprotective by reducing myocardial infarct size
[56].

Damage to healthy tissue is a major limitation of radiother-
apy treatment of cancer patients, and radiation-induced release
of pro-inflammatory cytokines may be involved in the side
effects. In whole blood studies, ATP inhibited radiation-
induced tumour necrosis factor-α release and increased inter-
leukin (IL)-10 release, perhaps via P2Y11 receptors, and it was
concluded that ATP alleviates radiation toxicity, mainly by
inhibiting radiation-induced inflammation and DNA damage
[57]. TheATP released from erythrocytes is anti-adhesive, and
storage-induced deficiency in ATP release from transfused
erythrocytes may promote microvascular pathophysiology in
lung endothelial cells possibly via increased cell adhesion
[58].

ATP release

Human erythrocytes release ATP upon exposure to mechani-
cal deformation, β-adrenoceptor agonists, prostacyclin ana-
logues, reduced O2 tension, acidosis or swelling [59]. Release
of ATP from erythrocytes exposed to hypertonic solutions was
described by Deyrup in 1951 [60], and aging ATP-depleted
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human erythrocytes were later shown to release vesicles [61,
62]. The release of ATP from human erythrocytes was
shown to occur in response to a brief period of hypoxia in
the presence of hypercapnia, such as would be found in
exercising muscle [63] and was later demonstrated to simi-
larly occur in response to low O2 in the absence of hyper-
capnia [64]. It has been proposed that red blood cells are not
only O2 carriers but via ATP release have a direct role in
regulation of vascular tone leading to the appropriate distri-
bution of microvascular perfusion [64–67].

Erythrocytes release ATP in response to mechanical de-
formation as might occur when red cells are squeezed
through small vessels or deformed in areas of high velocity
[68–71] (Fig. 1). Increases in perfusate flow rate were a
sufficient mechanical stimulus for ATP release from red
blood cells in isolated rabbit lungs [72]. Studies with eryth-
rocytes from individuals with cystic fibrosis suggested that
this release required cystic fibrosis transmembrane conduc-
tance regulator (CFTR) [73] although they considered that it
was unlikely that this is the channel by which ATP exits the
red blood cell. Recent papers have reported that ATP release
in response to reduced oxygen tension occurs partly via the
hemichannel pannexin 1, which may also be the channel
involved in ATP release in response to mechanical deforma-
tion above a specific stress threshold [74–76] (Fig. 2).

The release of ATP from erythrocytes in response to both
low oxygen tension and mechanical deformation has been
shown to require signal transduction pathways involving
activation of pathway-specific membrane-bound adenylyl
cyclase, cyclic adenosine monophosphate (cAMP), protein
kinase (PK) A and CFTR; in addition, the direct stimulation
of the G protein Gi also results in the release of ATP [77–80].
Although not conclusively established, evidence suggests
that the release of ATP from erythrocytes in response to
reduced oxygen tension is linked to the oxygenation state
of the haemoglobin molecule via alterations in its confirma-
tion [81, 82]. The release of ATP from erythrocytes in re-
sponse to low O2 tension was demonstrated to occur in mil-
liseconds making it a physiologically relevant mediator of
microvascular blood flow [83]. A computational model to
measure the dynamics of O2-dependent ATP release from
erythrocytes confirmed this time course [84]. Data was sub-
sequently presented from studies of the simultaneous effect of
hypoxia and deformation on ATP release from erythrocytes to
suggest that at an oxygen saturation point of around 25 %
deformation contributes to ATP release, but beyond this satu-
ration point, ATP release is largely due to hypoxia [85]. Data
from in vivo and in vitro studies showed that significant
amounts of ATP were released from erythrocytes on exposure
to hypoxia and shear stress at the same time [86].

In addition to mechanical deformation and low oxygen
tension, erythrocytes release ATP in response to prostacyclin
analogs and β-adrenergic agonists. Although the

physiological impact of the latter is unclear, prostacyclin is
released from endothelial cells in response to shear stress
and, although it clearly has direct vasodilatory effects, its ca-
pacity to release ATP would enhance its effectiveness. The
release of ATP by prostacyclin analogs involves a distinct
signal transduction pathway which is initiated by activation
of Gs and involves distinct pools of cAMPwhich are regulated
by pathway-specific phosphodiesterases [87]. Prostacyclin
receptor-induced ATP release occurs via the voltage-
dependent anion channel, suggesting the presence of yet an-
other channel for ATP release from erythrocytes [88].

Fig. 1 Microfluidic approach for shear-triggered release of ATP. a
Schematic of the experimental apparatus (not to scale). A mixture of
red blood cells (RBCs) and luciferase/luciferin solution are pumped
through a microfluidic constriction. b Representative experimental
measurements of the photon emission rate resulting from the reaction
between luciferase/luciferin and ATP, measured versus position along
the channel (ℓc=1600 μm and wc=20 μm). The position x=0 is defined
as where the entrance to the constriction is located. The approximate ATP
concentration (CATP) converted from the calibration curve is shown on
the right axis. We focus here only on light collected outside of the
constriction; no appreciable signal was measured inside the constriction.
The error bars are reported as the standard error of the mean (n=5
different measurements). Note that the photon emission rate increases
far downstream from the constriction. (Reproduced from [103] with
permission.) (Copyright note: Wan, J., Ristenpart, W.D. & Stone, H.A.
(2008) Dynamics of shear-induced ATP release from red blood cells.
Proc. Natl. Acad. Sci. U. S. A, 105, 16432-16437. Copyright (2008)
National Academy of Sciences, USA)
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A number of factors affect erythrocyte ATP release.
Nitric oxide (NO) was shown to inhibit the signal trans-
duction pathway for ATP release from erythrocytes via its
action on heteromeric G protein, Gi [89]. Statins increase
erythrocyte deformability and reduce low O2-induced
ATP release [90]. ATP was released in the presence of
cell-free haemoglobin [91]. Fluoride causes ATP deple-
tion and oxidative stress in rat erythrocytes in vitro [92].
Insulin inhibits low oxygen-induced ATP release from hu-
man erythrocytes [93, 94].

The ATP degradation product, ADP, inhibits ATP release
by a negative feedback pathway mediated by P2Y13 receptors
on human red blood cells [95]. Caffeine enhances ATP release
from erythrocytes, most likely due to its effect on levels of
cAMP [96], while lactate, in the absence of changes in pH,
interferes with ATP release [97]. High blood lactate is a dan-
gerous metabolic consequence of several common diseases,
including septic shock and malaria. It has been proposed that
nitrite-induced vasodilation is due to nitrite enhancement of
release of ATP from erythrocytes, which then acts as a vaso-
dilator [98, 99].

Human limb muscle and skin blood flow increases signifi-
cantly with elevations of temperature. Erythrocytes from rabbits
release ATP and dilate skeletal muscle arterioles in the presence
of reduced oxygen tension [100]. Erythrocyte ATP release is
sensitive to physiological increases in temperature, possibly via
activation of CFTR channels [101]. The authors suggest that
this raises the possibility of treatment of patients with peripheral
vascular disease, by using local heating to stimulate erythrocyte
ATP release to increase flow and oxygen to limbs.

It has been suggested that the shape changes of erythro-
cytes related to intracellular ATP concentrations can be ex-
plained in terms of ATP-induced cytoskeletal changes in-
volved in binding of actin to spectrin filaments [102]. In a
more recent paper, data was presented to suggest a model
wherein the retraction of the spectrin-actin cytoskeleton net-
work triggers the mechanosensitive release of ATP, while a
shear-dependent membrane viscosity controls the rate of re-
lease [103].

Treatment of erythrocytes with diamide, a compound that
decreases erythrocyte deformity, inhibits low O2 tension-
induced ATP release [82, 104]. Hydroxyurea, a substance that
affects erythrocyte deformability, stimulates the release of
ATP from rabbit erythrocytes through an increase in calcium
and NO production [105]. Reducing erythrocyte membrane
cholesterol and simvastatin both increase cell deformability
and therefore ATP release [106]. Hypoxia-induced ATP re-
lease from human erythrocytes is triggered through mecha-
nisms involving haemoglobin [107]. Erythrocytes from older
healthy humans fail to release ATP during haemoglobin deox-
ygenation [108]. Exchange proteins activated by cAMP inhib-
it ATP release via activation of PKC [109]. ATP release fol-
lowing complement receptor 1 ligation increased the mobility
of the lipid fraction of erythrocyte membranes and had a stim-
ulatory effect on phagocytosis of immune-adherent immune
complexes [110].

It has been suggested that sensing of low blood O2 content
may involve ATP release from red blood cells, leading to
stimulation of sensory aortic body neurons via P2X2/3 recep-
tors [111]. ATP released from erythrocytes incubated with
hydroxyurea resulted in increased endothelium-derived NO
production [112].

Pathology

An important role of ATP release from erythrocytes in vascu-
lar regulation has been suggested to have predictive value in
disease processes. Infection with the malaria protozoan para-
site, Plasmodium falciparum, induces osmolyte and anion
channels in the host erythrocyte membranes involving ATP
release and autocrine purinergic signalling [113]. Purinergic
receptors are expressed in P. falciparum, where occupation by
ATP triggers increase in [Ca2+]i, which is essential for the
invasion of erythrocytes [114]. Hydrolysis of ATP with apy-
rase drastically reduced erythrocyte infection by the parasite.
The effect of parasite infection on the kinetics of extracellular
ATP accumulation was studied, using analysis of the rates of
ATP release and extracellular hydrolysis at different stages of
the infection cycle [115]. ATP depletion of erythrocytes stim-
ulates the phenotype associated with pyruvate kinase deficien-
cy and confers protection against Plasmodium in vitro [116].
Extracellular ATP did not induce osmolyte permeability in
non-infected human erythrocytes but induced osmolyte

Fig. 2 ATP release from pannexin-1 wildtype (Panx1+/+) (white bars)
and knockout (Panx1−/−) (grey bars) erythrocytes. ATP release, as
determined with a luciferase assay, is stimulated by hypotonic K+

solution (K+) more profoundly in Panx1+/+ erythrocytes than in Panx1−/
− erythrocytes. The Panx1 channel inhibitor probenecid (prob, 1 mM)
attenuated ATP release in Panx1+/+ cells but not significantly (P>0.05)
in Panx1−/− cells. (Reproduced from [76] with permission from Elsevier.)
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permeability in malaria-infected erythrocytes [117]. They
showed further that induction of osmolyte permeability in
Plasmodium-infected erythrocytes involved autocrine
purinoceptor signalling. In mouse erythrocytes harbouring
the malaria parasite, P. yoelii, nucleoside transport had abnor-
mally low sensitivity to nitrobenzylthioinosine [118]. In a
more recent study, it was suggested that ATP released by the
rupture of erythrocytes during the blood stage of Paramecium
chabaudimalaria induced an increase in the expression P2X7
receptors in CD4+ T cells [119]. A review has been published
concerned with malaria-infected erythrocytes and purinergic
signalling [120].

Leukotoxin is a virulence factor secreted by some bacteria,
which can cause localised aggressive periodontitis.
Leukotoxin-mediated haemolysis is significantly potentiated
by ATP release and P2X receptor activation of human eryth-
rocytes [121] (Fig. 3). The bacterium Escherichia coli can
produce virulence factors such as the exotoxin α-haemolysin
(HlyA). HlyA is a protein that induces haemolysis by creating
large pores in erythrocyte membranes, increasing permeability
thereby producing cell swelling, which finally ruptures the
erythrocyte. A study shows that this pore formation triggers
purinergic receptor activation to mediate the full haemolytic
action [122]. They showed that antagonists to P2X1 and P2X7
receptors and apyrase inhibited HlyA-induced lysis of eryth-
rocytes and concluded that selective P2X receptor antagonists
may ameliorate symptoms during sepsis with haemolytic bac-
teria. E. coli HlyA evoked ATP release and P2 receptor-
mediated Ca2+ influx in human erythrocytes through the toxin
pore [123, 124]. Another recent study proposed that erythro-
cytes damaged by HlyA insertion are effectively cleared from
the blood stream, reducing the risk of intravascular haemolysis
[125]. It was reported that, similar to haemolysis produced by
HlyA, leukotoxin and α-toxin complement-induced
haemolysis is amplified through ATP release and activation
of P2 receptors [126]. Adenosine deaminase activity was

altered in erythrocytes of dogs infected with Rangelia vitalii
as well as the serum concentration of adenosine [127]. It was
suggested that these changes may contribute to the pathogen-
esis of anaemia and immune response in infected dogs.

Isoproterenol substantially altered cardiovascular
haemodynamics and induced breakdown of ATP in erythro-
cytes to ADP and AMP, particularly in dying rats [128]. It was
suggested that the relative concentrations of ATP, ADP and
AMP in red blood cells may be used as a predictive biomarker
for cardiovascular mortality. There is impaired release of ATP
from red blood cells of humans with primary pulmonary hy-
pertension [129]. Prostacyclin analogs and phosphodiesterase
inhibitors had synergistic effects on ATP release from human
erythrocytes, and it was suggested that that could influence the
development of new therapeutic approaches for the treatment
of pulmonary arterial hypertension [130].

It was proposed that reduced ATP release from erythro-
cytes contributes to vascular disease in type 2 diabetes [131,
132]. In type 2 diabetes, erythrocytes are under high oxidative
stress and considered to be less deformable leading to lowered
levels of deformation-induced ATP release [133]. The selec-
tive phosphodiesterase 3 inhibitor, cilostazol, facilitates PO2-
induced ATP release from erythrocytes of humans with type 2
diabetes [134]. C-peptide and insulin were shown to have
synergistic effects on low O2-induced ATP release from hu-
man erythrocytes, suggesting that administration of a combi-
nation of C-peptide and insulin could help in the prevention
and treatment of peripheral vascular disease associated with
diabetes [135, 136].

It has been suggested that adenosine is a potentially
important therapeutic target for the treatment and preven-
tion of sickle cell disease, a debilitating haemolytic genetic
disorder where an abnormal type of haemoglobin precipi-
tates in erythrocytes when blood is deprived of oxygen
forming crystals that distort the cell (sickling) resulting
in anaemia and jaundice [137–139]. However,

Fig. 3 Model for leukotoxin from Aggregatibacter (LtxA)-induced
haemolysis. 1 Interaction between LtxA and the erythrocyte membrane
leads to an influx of ions and increase in [Ca2+]i. 2 The increase in [Ca

2+]i
stimulates a Ca2+-activated K+ efflux mediated by the Ca2+-activated K+

channel, KCa3.1. K+–Cl− co-transporters (KCCs) contribute to the K+

efflux. Initially, the K+ efflux exceeds the influx of ions leading to
osmotically obliged H2O efflux and volume reduction. ATP is released

from the cell through a yet unknown pathway and activates P2X receptors
on the erythrocyte membrane, which is required for the full haemolytic
effect of LtxA. In addition, activation of pannexin channels is also
necessary for LtxA-induced haemolysis. 3 Later, the influx of ions
exceeds the efflux of K+ resulting in osmotically obliged H2O influx
and cell swelling. Finally, the erythrocyte lyses. (Reproduced from
[121] with permission from John Wiley and Sons.)
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complicating this approach, adenosine signalling also in-
duces haemoglobin S polymerization, promoting sickling,
vasoocclusion, haemolysis and organ damage [140, 141]
(Fig. 4). Amyloid β peptide inhibits ATP release from
deoxygenated erythrocytes by activating red cell caspase
3, suggesting a pathophysiologic role for vascular amyloid
peptide in Alzheimer’s disease [142].

Platelets

Introduction

Platelets express P2Y1, P2Y12 and P2X1 receptor subtypes
involved in platelet aggregation (see Fig. 5).

Review articles have been published on various aspects of
purinergic signalling in platelets, including

& Platelet adenosine receptors [143–145]
& ATP and platelet dense bodies [146–148]
& Platelet P2X1 receptors [149–151]
& Platelets, P2Y receptors and pharmacology [152–167]
& Purinoceptor-evoked calcium signalling in human plate-

lets [168]
& Ectonucleotidases and platelets [169, 170]
& Thrombosis—clopidogrel/ticagrelor [160, 171–179]
& Platelets and inflammation [180, 181]
& P2Y receptor polymorphisms and disease [182]

P2Y1 and P2Y12 receptors

In 1956, it was shown that platelets contain very high concen-
trations of ATP [183] and that extracellular ATP is rapidly
broken down to ADP [184]. It was shown by Hellem and
coworkers that a factor derived from red blood cells was re-
sponsible for the adhesiveness of platelets to glass beads
[185]. This factor was identified as ADP, and the ability of
ADP to produce platelet aggregation was recognised early in
two Nature papers ([186, 187] and see [188, 189]). Later, the
possible mechanisms underlying ADP-induced platelet aggre-
gation were explored [190–193]. ATP itself did not induce
platelet aggregation but inhibited aggregation produced by
ADP and platelet shape change [194, 195].

ADP was shown to be a potent inhibitor of human platelet
plasma membrane adenylate cyclase [196], in retrospect an
early indication that ADP was acting via G protein-coupled
receptors, later identified as P2Y1 and P2Y12 receptors. ADP
induced binding of von Willebrand factor to human platelets
[197]. ATP analogues produced greater inhibition of aggrega-
tion induced byADP than did AMP analogues [198], which in
retrospect indicated inhibition via P2, rather than P1 receptors.
ATP, UTP, guanosine-5′-triphosphate (GTP) and cytidine

triphosphate inhibited platelet aggregation induced by colla-
gen and epinephrine by acting as antagonists of the P2Y12

receptor [199, 200]. ADP produces an increase in [Ca2+]i in
platelets [201]. Potentiation of ADP-induced platelet aggrega-
tion in platelet-rich plasma by 5-hydroxytryptamine (5-HT)
and adrenaline was shown [202]. Diadenosine tetraphosphate
(Ap4A) had anti-platelet aggregation activity [203]. ADP in-
duced platelet α-granule release [204].

The non-selective P2 receptor antagonist, suramin,
inhibited platelet aggregation induced by ADP [205]. It was
claimed in 1993 that ADP-induced increase in [Ca2+]i in plate-
lets was mediated by the P2T receptor (later identified as the
P2Y12 receptor) [206, 207]. ADP-induced platelet aggregation
was inhibited by the P2T receptor antagonists FPL 66096
[208] and FPL 67085 (also known as ARC 67085), both
ATP variants [209]. The human platelet ADP receptor acti-
vates Gi2 proteins [210], another indication that P2Y12 recep-
tors were involved. A radiolabelled selective antagonist,
[3H]PSB-0413, was shown to be a tool for radioligand binding
studies aimed at quantifying P2Y12 receptors to identify pa-
tients with P2Y12 receptor deficiencies and to quantify the
effect of P2Y12 targeting drugs [211].

ADP inhibited 5-HT uptake into human platelets [212].
The aggregation behaviour of post-mortem platelets has been
claimed to be a tool for estimating time of death [213]. The
P2Y1 receptor was also shown to be expressed by platelets and
megakaryocyte cell lines; it was antagonised by ATP [214,
215] and coupled to Gq [216]. Platelet shape change was iden-
tified as the main role of P2Y1 receptors [217, 218], although
it also contributes to platelet aggregation [219]. Evidence for
three P2 receptors on platelets was presented [220, 221]. The
cloning of P2X1-specific complementary DNA (cDNA) from
human platelets was achieved in 1998 [222]. BzATP was
claimed to be an antagonist of rat and human P2Y1 receptors
and of platelet aggregation [223]. It was confirmed that ADP
can induce aggregation of human platelets via both P2Y1 and
P2T (P2Y12) receptors [224]. The P2T receptor was identified
as a P2Y12 receptor in 2001 (see [225–227]). Combinations of
antagonists of P2Y1 and P2Y12 receptors were effective inhib-
itors of direct shear-induced platelet aggregation [228].

The chemokines, macrophage-derived chemokine, thymus
activation-regulated chemokine and stromal cell-derived fac-
tor one, which may be produced during inflammatory re-
sponses, coupled with low levels of ADP or thrombin to serve
as stimuli for activating platelet formation [229]. Evidence
was presented to show that collagen required not only the
thromboxane A2 (TxA2) receptor Tpα but also P2Y1 recep-
tors, to induce platelet shape change [230]. Stimulation of the
P2Y12 receptor is involved in platelet activation initiated by
the binding of von Willebrand factor to platelet receptor pro-
tein GP Ibα induced by a high shear rate [231]. Quantitative
RT-PCR studies showed that the order of expression of P2Y
receptor mRNAwas P2Y12 ≫ P2X1 > P2Y1 [232]. Depending
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on the experimental conditions, signalling from both fibrinogen
and P2Y1 and P2Y12 receptors are necessary for PLA2 activa-
tion, resulting in arachidonic acid liberation and TxA2 genera-
tion [233]. Using a high-resolution channelyzer, it was conclud-
ed that P2Y12, as well as P2Y1 receptors, play a role in control-
ling shape change in human platelets [234], although this is
controversial. Evidence has been presented to support the view
that for thrombin-induced human platelet activation, the P2Y12

receptor is the drug target compared to the P2Y1 receptor [235].
However, a synergistic interaction was reported between

antagonists of P2Y1- and P2Y12-mediated inhibition of ADP-
and thrombin-induced human platelet activation [236].

In healthy subjects, it has been claimed that ADP-induced
platelet aggregation is associated with a haplotype polymor-
phism of the P2Y12 receptor gene [237, 238]. Homozygosity
for the P2Y1 1622G allele is associated with increased receptor
signalling and platelet aggregation [239]. However, this P2Y12

receptor gene H2 haplotype was shown not to be associated
with increased ADP-induced platelet aggregation in a separate
study [240]. Furthermore, this genetic haplotype was not asso-
ciated with the risk of myocardial infarction in a large study
with more than 3000 patients [241]. Mutational analysis of the
residues important for ligand interaction with the human P2Y12

receptor is available [242]. Interestingly, all cells contain an
endogenous P2Y12 antagonist, farnesyl pyrophosphate, which
acts as a traditional competitive antagonist to ADP [243].

The P2Y1 receptor antagonist, MRS2500, was shown to be
the most potent inhibitor of P2Y1 receptor-mediated platelet
shape change and aggregation [244]. There is a complex sig-
nalling interaction between P2Y1 and P2Y12 receptors; P2Y12

receptors positively regulate P2Y1 action, while P2Y1 recep-
tors negatively regulate the action of P2Y12 receptors [245].

ADP caused desensitization of the P2Y1 receptor-driven cal-
cium signal, but P2Y12 receptor-mediated inhibition of cAMP
formation was not affected [246]. It was suggested that the
absence of desensitization of the P2Y12 receptor-mediated

Fig. 4 Adenosine worsens sickle cell disease (SCD) by increasing 2,3-
diphosphoglycerate (2,3-DPG) in red blood cells through the A2B

receptor. Increased amounts of ATP in circulation owing to chronic
sickle red blood cell hemolysis and tissue damage from vasoocclusion
are rapidly converted to adenosine. Activation of the A2A receptor on
natural killer T (NKT) cells suppresses the innate immune response and
limits inflammation and cellular injury during ischemia and reperfusion
injury. Top, in contrast, Zhang et al. [140] show that activation of the A2B

receptor by adenosine on erythrocytes increases 2,3-DPG levels through
cAMP-dependent protein kinase A (PKA) activation, which reduces

haemoglobin S (Hb S) oxygen affinity and promotes its polymerization
and red blood cell sickling. Bottom, ‘crossroads’ of adenosine signaling
determine positive or negative effects. The adenosine antagonist
polyethylene glycol-modified adenosine deaminase (PEG-ADA) may
be used to block adenosine signalling as a therapy for SCD; however,
the development of specific agonists and inhibitors of these receptors may
allow for selective inhibition of red blood cell A2B-dependent 2,3-DPG
production and activation of A2A-dependent immune modulation to ease
the disease more effectively. (Reproduced from [141] with permission
from The Nature Publishing Group.)

Fig. 5 Three P2 receptor subtypes, P2X1, P2Y1 and P2Y12, are involved
in ADP-induced platelet activation. Clopidogrel is a P2Y12 receptor
blocker that inhibits platelet aggregation and is in highly successful use
for the treatment of thrombosis and stroke. A P2Y1 receptor antagonist,
MRS 2500, inhibits shape change. (Modified from [403] with permission
from Elsevier.)
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platelet response could represent a mechanism to preserve the
haemostatic properties of unresponsive platelets. In another pa-
per, it was claimed that both P2Y1- and P2Y12-mediated platelet
responses desensitise rapidly, but by different kinase-dependent
mechanisms [247]. The desensitization of the P2Y receptor on
platelets requires receptor internalization, and it was claimed
that the GTP-binding protein ADP ribosylation factor 6 is re-
quired for P2Y receptor internalization [248].

ADP was shown to play a key role in irreversible platelet
aggregation through the activation of phosphoinositide 3-
kinase [249]. Platelet integrin αIIbβ3 plays a crucial role in
platelet aggregation, and it was claimed that phos-
phatidylinositol 3-kinase is essential for ADP-stimulated
αIIbβ3-mediated platelet activation and calcium oscillations
[250]. Continuous interaction between ADP and P2Y12 recep-
tors is critical for the maintenance of αIIbβ3 activation
[251–253]. Evidence was presented that P2Y12 receptors po-
tentiate platelet shape change induced by P2Y1 receptor acti-
vation by a Rho kinase-dependent mechanism [254]. The re-
sidual arachidonic acid-induced platelet activation in aspirin-
treated patients is mediated in part by ADP-induced platelet
activation [255]. It was suggested that the interaction of cal-
modulin with the P2Y1 receptor C-terminal tail may regulate
P2Y1-dependent platelet aggregation [256].

P2Y14 receptor mRNA and protein were shown to be
expressed by platelets, although the functional role of this
receptor is not yet known [257, 258]. Involvement of basic
amino acid residues in transmembrane regions 6 and 7 in
agonist and antagonist recognition of the human platelet
P2Y12 receptor has been reported [259]. A novel P2Y1 recep-
tor radioligand has been synthesised, which is valuable for
examining the expression of P2Y1 receptors on human and
mouse platelets [260]. Resolvin E1, generated during acute
inflammation, regulates ADP activation of human platelets
[261]. It was suggested that cAMP regulates ADP-
stimulated platelet activation due to inhibition of heat shock
protein (HSP) 27 phosphorylation via p38 mitogen-activated
protein MAP kinase [262]. 5-HT reuptake inhibitors reduce
P2Y12 receptor-mediated amplification of platelet aggregation
[263]. Inhibition of P2Y12 receptors potentiated the anti-
platelet effect of prostacyclin [264]. Circulating platelets are
exposed to NO released from endothelial cells, and NO re-
duces platelet aggregation and thrombus formation. Blockade
of P2Y12 receptors significantly increased the platelet inhibi-
tory actions of NO [265]. Platelet P2Y1 and P2Y12 and ara-
chidonic acid receptor inhibition is a prominent early feature
of coagulopathy in traumatic brain injury [266].

P2X1 receptors

ATP inhibited both collagen- and a thromboxane mimetic
(U46619)-induced platelet aggregations via a P2X-like recep-
tor [267], in retrospect by P2X1 receptors, since it was

blocked by α,β-methylene ATP (α,β-meATP). It was sug-
gested that human platelets express a P2X1 receptor, which
mediates rapid Ca2+ entry, in contrast to the P2Y receptors
which evoke release of calcium from intracellular stores
[268]. Clopidogrel did not affect the binding of α,β-meATP
to platelet P2X1 receptors [269]. The P2X1 receptor cDNA
and protein was identified on human platelets, but not leuko-
cytes [270–272]. It was reported that P2X1 receptors did not
play a significant role in ADP-induced platelet shape change
and aggregation [273]. ATP, but not ADP, is an agonist at
P2X1 receptors on human platelets [274]. However, a later
paper claimed that novel structurally altered P2X1 receptors
on platelets and megakaryocytic cells were preferentially ac-
tivated by ADP [275].

The P2Y1 receptor antagonist, adenosine-2′,5′-diphos-
phate, non-selectively antagonised the platelet P2X1 ion chan-
nel [276]. ATP, acting on P2X1 receptors, was claimed to
contribute to platelet activation in addition to the earlier sug-
gestion that ATP activation of P2X1 receptors had an inhibi-
tory action at metabotropic platelet receptors [277]. During
collagen-initiated platelet activation, the early secretion of
ATP resulted in P2X1-mediated stimulation, which played a
role as a positive regulator of further platelet responses [278].
From studies of P2X1 receptor knockout (KO) mice, it was
shown that accumulation of P2X1 KO platelets on a collagen-
coated surface was greatly reduced compared to wild-type
(WT) platelets, suggesting a role of P2X1 receptors in platelet
interaction with collagen [279].

The role of P2X1 receptors expressed by platelets has been
difficult to assess, due to its rapid desensitization. However,
P2X1 and P2Y1 receptor synergy was claimed in both murine
megakaryocytes and human platelets [280]. From a study of
P2X1 KO and WT mouse platelets treated with apyrase to
prevent desensitization, it was shown that collagen-induced
aggregation and secretion of P2X1-deficient platelets was de-
creased, as well as adhesion and thrombus growth on a
collagen-coated surface [281]. The mortality of P2X1 KO
mice in a model of systemic thromboembolism was reduced,
and it was concluded that P2X1 receptors contribute to the
formation of platelet thrombi, particularly in arteries in which
shear forces are high [281]. In contrast, over-expression of
P2X1 receptors in transgenic mice led to enhancement of
platelet dense granule secretion and aggregation evoked by
collagen or the TxA2 mimetic U46619; it also enhanced plate-
let responses under shear stress, but the responses to ADP or
thrombinwere normal [282]. The authors concluded that over-
expression of P2X1 receptors on platelets generated a novel
prothrombotic phenotype. It was reported that ADP did not
contribute to the rapid ionotropic P2X1 receptor-mediated re-
sponse in platelets but suggested that ATP plays a role during
haemostasis and thrombosis [283]. Pharmacological inhibi-
tion of the P2X1 receptor using NF449 also resulted in throm-
bosis inhibition in vivo [284].
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In an authoritative review of the emerging roles for P2X1
receptors in platelet activation, it was concluded that P2X1
receptors can mediate transient shape change and granule re-
lease, important early events in platelet activation, and that
ATP acting on P2X1 receptors can synergise with ADP acting
on platelet P2Y receptors to potentiate functional events, par-
ticularly under conditions of shear stress [149]. A detailed
description of the intracellular pathways involved in P2X re-
ceptor stimulation is shown in Fig. 6. Subsequently, it was
shown that ATP augments von Willebrand factor-dependent
shear-induced platelet aggregation through Ca2+-calmodulin
and myosin light chain kinase activation [285]. A major role
for P2X1 receptors in early collagen-evoked intracellular Ca2+

responses of human platelets was reported, contributing to
arterial thrombosis [286]. NF864, claimed to be the most po-
tent platelet P2X1 receptor antagonist, blocked α,β-meATP-
induced [Ca2+]i increases and shape change [287].

Evidence was presented to suggest that lipid rafts play a
significant role in the regulation of P2X1, but not P2Y1 recep-
tors in human platelets [288]. Another study concluded that
ATP should be considered alongside ADP and TxA2 as a
significant secondary platelet agonist [289]. Activation of
P2X1 receptors with ATP had a dual effect, causing a signif-
icant concentration-dependent increase in platelet NO produc-
tion and causing aggregation and adhesion, although platelet
aggregation was initially decreased [290]. Ap4A, a constitu-
ent of platelet dense granules, is an antagonist of plate-
let P2Y1 receptors where it inhibits the effects of ADP
and an agonist of platelet P2X1 and P2Y12 receptors
[291]. Margatoxin, a voltage-dependent K+ channel in-
hibitor, reduced the P2X1- and TxA2 receptor-evoked
[Ca2+ ] i i n c r e a s e s [292 ] . P2X1 recep to r s a r e

constitutively regulated by HSP90, and inhibitors of
HSP90 reduce trafficking of ATP-gated P2X1 receptors
and human platelet responsiveness [293].

P1 (adenosine) receptors

Adenosine was shown to be a competitive inhibitor of platelet
aggregation by ADP [294]. A receptor for adenosine on plate-
lets that mediated inhibition of platelet function via activation
of adenylate cyclase was recognised early [295–297]. Aggre-
gation of human platelets induced by ADPwas inhibited by 2-
azidoadenosine, a photolysable analogue of adenosine, and
deamination of adenosine by adenosine deaminase was
inhibited by 2-azidoadenosine [298]. Adenosine is taken up
and deaminated by platelets [299]. Dipyridamole inhibited
adenosine uptake into platelets [300] and potentiated the
anti-platelet action of adenosine [301, 302].

5′-N-ethylcarboxamidoadenosine was shown to be a potent
inhibitor of human platelet aggregation [303]. A xanthine
amine congener was introduced as a radioligand for A2 recep-
tors of human platelets [304]. Prostacyclin analogues dimin-
ished A2 receptor responsiveness of platelets [305]. The ef-
fects of adenosine derivatives confirmed that A2 receptors
mediate inhibition of human and rabbit platelet aggregation
[306], later identified as A2A receptors [307–309]. Synergistic
inhibition of thrombin-induced platelet aggregation by an NO
donor and adenosine was reported [310]. It was claimed that
there was A2 receptor-mediated inhibition of platelet aggrega-
tion in humans, but not in canine models [311].

Treatment of mouse and human blood with 5′-nucleotidase
(which led to increased extracellular adenosine) inhibited
platelet aggregation [312]. Gene expression profiling led to

Fig. 6 P2X1 receptor signalling
and regulation in the platelet.
Summary of the pathways
whereby P2X1 receptors have
been proposed to couple to
functional responses in platelets,
together with the mechanisms that
regulate these ion channels.
(Reproduced from [150] with
permission from Springer.)
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the identification of functional A2B receptors on human plate-
lets [313]. It was later shown that A2B receptors on mouse
platelets were upregulated under stress in vivo and played a
significant role in regulating ADP receptor expression [314].
ADP inhibited platelet aggregation in the presence of P2Y12

receptor antagonists due to its conversion to adenosine [315].
It has been claimed recently that adenosine may be the major
active ingredient for anti-platelet activity of black soybean,
used for the treatment of cardiovascular diseases [316].

In summary, platelets express pro-aggregatory P2Y1 and
P2Y12 receptors, anti-aggregatory A2A and A2B receptors, as
well as P2X1 receptors, which appear to have synergistic ac-
tions with the P2Y receptors.

ATP release

Upon stimulation, platelets secrete ATP and ADP, which
evoke platelet aggregation (see [159]). ATP release from acti-
vated platelets was shown using cell surface-attached firefly
luciferase [317]. Later, lumi-aggregometers were used as an
ATP release assay for the assessment of platelet function dis-
orders [318–320]. An HPLC assay has also been used to de-
termine ATP and ADP secretion [321]. The vesicular nucleo-
tide transporter, VNUT, has been claimed to be responsible for
vesicular storage and release of nucleotides from platelets
[322, 323] (Fig. 7).

Ectonucleotidases

It was suggested that ADPasemay act as a platelet aggregation
inhibitor in the placental and foetal circulation [324]. The
ecto-ATPase present on human platelets, responsible for
breaking down ATP to ADP, was examined, and a direct role
of ecto-ATPase activity on platelet aggregation was shown to
be relatively small [325]. ATP diphosphohydrolase (apyrase)
was later identified on rat platelets to hydrolyse ATP to ADP
[326–328]. ATPDase/CD39 expression was described in hu-
man platelets and endothelial cells [329] to modulate platelet
activation and thrombus formation [330]. Endothelial cells
contribute to control of platelet reactivity via endothelial
ectoNTPDase-1/CD39 [331, 332] by rapidly metabolizing
ADP released from platelets, thereby preventing further plate-
let activation or recruitment. Acetylsalicylic acid inhibited
ATP diphosphohydrolase activity by platelets from adult rats
[333]. Extracellular hydrolysis of ATP by intact rat blood
platelets is achieved by NTPDase 3 and 5′-nucleotidase,
resulting in the production of adenosine [334]. Ebselen, which
exhibits anti-oxidant, anti-inflammatory, anti-atherosclerotic
and cytoprotective properties, inhibited the extracellular hy-
drolysis of ATP [334]. The possibility of inhibiting platelet
P2X1 receptors or elevating CD39/NTPDase1 activity as nov-
el therapeutic approaches to reduce platelet reactivity and re-
cruitment of platelets at prothrombotic locations has been

discussed [335]. Reduced degradation of ADP by
ectonucleotidases contributes to the amplification of ADP-
evoked aggregation [336].

Fig. 7 a Transmission electron micrograph of an untreated rabbit platelet
after the uranaffin reaction. Four 5-HT organelles (→) are selectively
stained. One of these (asterisk) has apparently fused with the platelet
membrane to release its contents (5-HT and ATP), possibly by the
process of exocytosis. Note the difference in staining between the
membrane of this organelle and the platelet plasma membrane. α-
Granules (arrowhead). (Reproduced from [322] with permission; Prada,
M., Lorez, H.P. & Richards, J.G. (1982) Platelet granules. In Poisner, A.
M. & Trifaro, J. M. (eds), The Secretory Granule. Elsevier Biomedical,
Amsterdam, pp. 279-316, Copyright Elsevier.) b Schematic diagram of
nucleotide storage and release in platelets. Vesicular nucleotide
transporter (VNUT) is associated with dense granules and transports
nucleotides into granule using Δψ that is established by V‐ATPase.
VNUT is thus involved in nucleotide release and that is inhibited by
glyoxylate, a VNUT inhibitor. (Reproduced from [323] with permission
from Wiley Periodicals, Inc.)
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After ovariectomy, there was a decrease in the ecto-
hydrolysis of ATP by platelet NTPDase and 5′-nucleotidase,
indicating that hormonal deprivation affects platelet aggrega-
tion [337]. Distinct roles for PKC isoforms have been de-
scribed in the regulation of platelet P2Y receptor function
and trafficking [338]. Plasma ectonucleotidases prevent de-
sensitization of purinergic receptors on platelets [339]. En-
hanced NTPDase and 5′-nucleotidase activities in platelets in
human pregnancy suggests that these enzymes are involved in
thromboregulation in pregnancy [340]. Intravascular ADP
augments platelet activity during strenuous exercise, and these
prothrombotic responses are counteracted by concurrent re-
lease of soluble nucleotide-inactivating enzymes [341].

Thrombosis

Antagonists to P2T (P2Y12) receptors were reported for use
against ADP-induced arterial thrombosis [154]. Non-peptide
glycoprotein inhibitors were reported to show anti-thrombotic
efficacy against ADP-induced platelet aggregation [342]. An
analogue of ATP, AR-C67085MX, was identified as a very
potent antagonist at P2T platelet receptors [343]. Defective
platelet aggregation and increased resistance to thrombosis
were reported in P2Y1 receptor KO mice [344].

Percutaneous coronary interventions with metal stents ini-
tially had serious problems causing life-threatening stent
thrombosis. It was not until the addition of a P2Y12 receptor

Fig. 8 Purinergic receptors and mechanism of action of clopidogrel.
Clopidogrel is a pro-drug of which approximately 85 % is hydrolysed
by esterases in the blood to inactive metabolites, and only 15 % is
metabolised by the cytochrome P450 (CYP) system in the liver into an
active metabolite. The active metabolite irreversibly inhibits the
adenosine diphosphate (ADP) P2Y12 receptor. The P2X1 receptor,
which uses adenosine triphosphate (ATP) as an agonist, is involved in
platelet shape change through extracellular calcium influx and helps to
amplify platelet responses mediated by other agonists. Activation of the
P2Y1 receptor leads to alteration in shape and initiates a weak and
transient phase of platelet aggregation. The binding of ADP to the Gq-
coupled P2Y1 receptor activates phospholipase C (PLC), which generates
diacylglycerol (DAG) and inositol triphosphate (IP3) from
phosphatidylinositol bisphosphate (PIP2). Diacylglycerol activates
protein kinase C (PKC) leading to phosphorylation of myosin light
chain kinase (MLCK-P), and IP3 leads to mobilization of intracellular

calcium. The P2Y1 receptor is coupled to another G-protein, G12, which
activates the BRho^ protein and leads to the change in platelet shape. The
binding of ADP to the Gi-coupled P2Y12 receptor liberates the Gi protein
subunits αi and bγ, resulting in stabilization of platelet aggregation. The
α1 subunit inhibits adenylyl cyclase (AC) and, thus, reduces cyclic
adenosine monophosphate (cAMP) levels, which diminishes cAMP-
mediated phosphorylation of vasodilator-stimulated phosphoprotein
(VASP-P). The status of VASP-P modulates glycoprotein (GP) IIb/IIIa
receptor activation. The subunit βγ activates the phosphatidylinositol 3-
kinase (PI3K), which leads to GP IIb/IIIa receptor activation through
activation of a serine-threonine protein kinase B (PKB/Akt) and of
Rap1b GTP binding proteins. Prostaglandin E1 (PGE1) activates AC,
which increases cAMP levels and status of VASP-P. Solid arrows
indicate activation; dotted arrows indicate inhibition. (Reproduced from
[404] with permission from Elsevier.)
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antagonist (first ticlopidine, later clopidogrel) to aspirin that
stent thrombosis could be prevented. A randomised, blinded,
clinical trial of clopidogrel, a thienopyridine like the later drug
prasugrel, versus aspirin showed improved protection against
thrombosis, ischaemic stroke and myocardial infarction [345].
The CURE study demonstrated that addition of clopidogrel to
aspirin reduced the incidence of myocardial infarction, which
led to the worldwide adoption of this dual anti-platelet therapy
for patients with acute coronary syndromes [346]. Inhibition
of ADP-induced platelet aggregation by clopidogrel was re-
ported [171, 347], and it was shown to act as an antagonist to
P2YAC (later identified as P2Y12), but not P2Y1 and P2X1
receptors [348]. The anti-platelet activity of clopidogrel was
shown early to be dependent on hepatic transformation to an
active metabolite as an antagonist to P2Y12 receptors ([349,
350] and see [351]) (Fig. 8). A subpopulation of patients are
not responsive to clopidogrel, due to polymorphisms of either
the cytochrome P450 isoenzyme, CYP2C19 [352] or the
P2Y12 receptor [353]. A new dysfunctional platelet P2Y12

receptor variant associated with bleeding diathesis has been
identified [252].

Apyrase, an ectoenzyme that metabolises ATP and ADP
released from platelets and endothelial cells, reduces platelet
activation and was recommended for the treatment of platelet-

mediated thrombosis [354]. Reversible P2Y12 receptor antag-
onists, BX 667, INS50589 and Arg256, were shown to be
inhibitors of platelet aggregation and thrombus formation
[355–357]. Unlike the irreversible action of the anti-
thrombotic clopidogrel, an orally active, reversible direct
P2Y12 receptor antagonist, AZD 6140 (ticagrelor), was intro-
duced for the prevention of myocardial infarction [358].
Ticagrelor and prasugrel are more potent P2Y12 receptor in-
hibitors compared to clopidogrel and both have been shown to
demonstrate improved clinical effects in preventing myocar-
dial infarction [359, 360]. Additional inhibition by P2Y1 re-
ceptor antagonists of platelet aggregation produced by P2Y12

receptor antagonists has been considered [361, 362]. A com-
plex of high molecular weight heparin and ATP prevented
thrombus formation [363]. ADP-inducible platelet reactivity

Fig. 9 Cartoon representation of the P2Y12 receptor–AZD1283 complex
structure. The P2Y12 receptor is coloured green and AZD1283 is shown
as magenta spheres. Cholesterol and lipids have yellow carbons. The
disulphide bridge is shown as lime sticks. Missing loops and membrane
boundaries are indicated as black and blue dashed lines, respectively.
(Reproduced from [377] with permission from The Nature Publishing
Group.)

Fig. 10 a P2X receptor-mediated inward currents are absent in P2X1
receptor-deficient mice megakaryocytes. α,β-Methylene ATP (α,β-
meATP; 10 μM) evoked rapid transient inward currents in wild-type
(+/+) megakaryocytes; these were absent in megakaryocytes from P2X1
receptor-deficient (−/−) mice. Bar indicates period of drug application.
(Reproduced from [280] with permission from John Wiley and Sons.) b
Effect of pulse amplitude on the depolarization-evoked [Ca2+]i increase
during stimulation of P2Y receptors. [Ca2+]i responses of rat
megakaryocytes to ADP (1 μM, horizontal bar) and step
depolarizations from a holding potential of −75 mV. The effect of
depolarization during ADP application was assessed after the agonist-
evoked increase had settled to a raised plateau level. Effect of
increasing the amplitude of the depolarizing step in 5 mV increments
up to 75 mV. (Reproduced from [393] with permission from John
Wiley and Sons.)
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increased with age [364]. Various side effects have been re-
ported for both clopidogrel (bleeding, liver and bone injury,
enhanced lipopolysaccharide-induced inflammation) [365,
366] and ticagrelor (bleeding, dyspnoea) [367]. In more recent
reports, it was suggested that there may be a role for endoge-
nous adenosine in ticagrelor-induced dyspnoea [368, 369].

As well as the anti-thrombotic use of clopidogrel, other
actions have been identified. For example, clopidogrel has
been used for the prevention of cardiac ischaemic complica-
tions in percutaneous coronary intervention [370–372].
Clopidogrel has also been reported to enhance periodontal
repair in rats through decreased inflammation [373]. P2Y12

receptor antagonists are widely used in combination with as-
pirin for the treatment of thrombosis, especially for patients
with acute coronary syndrome and those undergoing percuta-
neous coronary intervention [374, 375]. Clopidogrel has also
been reported to prevent endothelial dysfunction and vascular
remodelling in aortas from hypertensive rats [376].

An important recent publication describes the crystal struc-
ture of the P2Y12 receptor complex with a non-nucleotide
reversible P2Y12 receptor antagonist, AZD1283 [377]
(Fig. 9). This will aid medicinal chemists to develop further
new P2Y12 receptor antagonists. P2Y12 receptor antagonists
are now one of the world’s most used medications and have
saved many lives by preventing myocardial infarction and
stroke. Recently, a fast acting P2Y12 receptor antagonist
(Cangrelor), which is given as an infusion, was shown to
prevent stent thrombosis and myocardial infarction. Since it
is rapidly degraded, it reduces bleeding risk.

Megakaryocytes

Megakaryocytes are platelet precursor cells in bone marrow.
ADP, as for platelets, raised [Ca2+]i and evoked release of
granules from megakaryocytes and aggregation [378–380].
Release of ATP from megakaryocytes was reported [381].
Rat megakaryocytes responded to ATP, which mediated acti-
vation of K+ channels and oscillations of cytoplasmic calcium
concentrations [382]. Adenine enhanced the ATP-induced
Ca2+ oscillations [383] and suramin, and reactive blue 2
antagonised this action [384]. Patch clamp studies confirmed
the presence of both ATP- and ADP-activated receptors in rat
megakaryocytes [385]. A P2T (P2Y12) receptor was identified
on the human megakaryocyte cell line, Dami [386]. The au-
thors reported that this cell line also responded to ATP and
UTP, suggesting the presence of P2U receptors, later identified
as P2Y2 and/or P2Y4 receptors. The presence of these recep-
tors was also described for the human megakarioblastic Meg-
01 cell line [387]. ADP induced rapid inward currents through
Ca2+ cation channels in mouse, rat and guinea pig megakar-
yocytes [388]. Functional expression of an ADP-activated re-
ceptor in Xenopus oocytes injected with megakaryocyte
(CMK11-5) RNAwas reported [389]. P2X1 receptor mRNA

was identified in two megakarioblastic cell lines, Dami and
CHRF-288 cells [270]. A study has characterised the function-
al P2X1 receptor in mouse megakaryocytes both pharmaco-
logically and electrophysiologically [280, 390] (Fig. 10a). A
P2Y1 receptor was also shown to be expressed by
megakarioblastic cells [214, 391, 392]. Ca2+ signals evoked
via P2Y1 receptors can be markedly potentiated by
depolarisation or inhibited by hyperpolarisation [393]
(Fig. 10b). As platelets have no nucleus, the level of P2X1
receptor expression depends on transcriptional regulation in
megakaryocytes, the platelet precursor cell. It was shown that
Sp1/3 and NF-1 mediate transcription of the human P2X1
receptor gene in megakarioblastic Meg-01 cells [394].
Acetylsalicylic acid, a cyclooxygenase-1 inhibitor and anti-
thrombotic agent, enhanced P2Y receptor-mediated outward
current in rat megakaryocytes [395]. ADP released by mega-
karyocytes regulates pro-platelet formation by human mega-
karyocytes via P2Y13 receptors [396, 397].

Leukocytes

Leukocytes are white blood cells. They consist largely of im-
mune cells, which have been reviewed in detail in an associ-
ated article (see [398]). The different immune cells are all
involved in protecting the body from foreign substances and
in antibody production. In disease, a variety of the cell types
may appear in the blood, notably immature forms of the nor-
mal red and/or white bold cells.

Extracellular ATP and ADP at micromolar concentrations
lead to impaired production of interferon-γ and IL-12 in leu-
kocytes in the lipopolysaccharide-stimulated whole human
blood model of sepsis [399]. ATP contributes to atherogene-
sis, via P2Y2, P2Y6, P2X4 and P2X7 receptors by inducing
leukocyte recruitment in mice [400]. Abacavir is linked to
cardiovascular disease, and ATP has been shown to play a role
in leukocyte accumulation induced by abacavir, via P2X7
receptors [401]. P1 (adenosine) receptor mRNA expression
has been described in human leukocytes of patients with val-
vular disease [402].
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