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Abbreviations
AR Adenosine receptor
EL Extracellular loop
GPCR G protein-coupled receptor
IL Intracellular loop
TM Transmembrane helix
NECA Adenosine-5′-N-ethyluronamide
PD Parkinson’s disease
PET Positron emission tomography
SAR Structure–activity relationship
SPECT Single photon emission tomography
UDPG Uridine-5′-diphosphoglucose

Introduction

There are four subtypes of adenosine receptors (ARs, or
alternately P1 receptors), i.e., A1, A2A, A2B, and A3, and
eight subtypes of P2Y receptors (P2YRs), i.e., a family of
Gq-coupled P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs and a
second family of Gi-coupled P2Y12, P2Y13, and P2Y14Rs
(Table 1) [1, 2]. The native agonists for these twelve recep-
tors are clearly divided between purine nucleosides (ARs)
and purine and pyrimidine nucleotides (P2YRs), although a
high concentration of AMP (1 mM) activates the A1AR,
independent of P2YR activity [3]. The two A2 subtypes are
coupled to Gs protein to stimulate adenylate cyclase, and the
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Abstract The medicinal chemistry and pharmacology of the
four subtypes of adenosine receptors (ARs) and the eight
subtypes of P2Y receptors (P2YRs, activated by a range of
purine and pyrimidine mono- and dinucleotides) has recently
advanced significantly leading to selective ligands. X-ray
crystallographic structures of both agonist- and antagonist-
bound forms of the A2AAR have provided unprecedented
three-dimensional detail concerning molecular recognition in
the binding site and the conformational changes in receptor
activation. It is apparent that this ubiquitous cell signaling
system has implications for understanding and treating many
diseases. ATP and other nucleotides are readily released from
intracellular sources under conditions of injury and organ
stress, such as hypoxia, ischemia, or mechanical stress, and
through channels and vesicular release. Adenosine may be
generated extracellularly or by cellular release. Therefore,
depending on pathophysiological factors, in a given tissue,
there is often a tonic activation of one or more of the ARs or
P2YRs that can be modulated by exogenous agents for a
beneficial effect. Thus, this field has provided fertile ground
for pharmaceutical development, leading to clinical trials of
selective receptor ligands as imaging agents or for conditions
including cardiac arrhythmias, ischemia/reperfusion injury,
diabetes, pain, thrombosis, Parkinson’s disease, rheumatoid
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other two AR subtypes inhibit adenylate cyclase through Gi

protein. In some cells, the A2BAR is dually coupled to Gs and
Gq and consequently elevates phosphoinositides, mobilizes
calcium and activates phospholipase C and MAPK
[111–115]. This signaling pathway appears to be important
in mast cells, in which A2A and A2BARs have opposing
actions. ARs are the site of action of widely consumed alkyl-
xanthines, which act as competitive antagonists. Knockout
mice and selective ligands as pharmacological tools (Figs. 1,
2, and 3) are now available for all AR subtypes and for many
of the P2Y subtypes (except for P2Y11 that is absent in the
mouse) [4]. Many ligands for these receptors are under con-
sideration for pharmaceutical development.

Processing of ARs and P2YRs in the cell has been studied,
including posttranslational modification and trafficking, intra-
cellular localization, and the related phenomena of agonist-
induced desensitization, internalization, and degradation
[5–7]. The mechanisms of release, uptake, and degradation
of extracellular nucleosides and nucleotides have also been
explored [8, 9]. The ubiquitous presence of pharmacologically
active endogenous ligands of ARs and P2YRs warrants care-
ful consideration in experimental design.

Structure of adenosine and P2Y receptors

The ARs and the P2YRs share the overall topological structure
typical of G protein-coupled receptors (GPCRs) belonging to
family A: seven α-helical domains (TM) that cross the cell
membrane and are connected by three extracellular (ELs) and
three intracellular (IL) loops, the N terminus in the extracellular
part and the C terminus in the intracellular part of the receptor.
Nevertheless, from comprehensive sequence comparisons and
phylogenetic analyses, it is clear that ARs and P2YRs belong
to two different groups of the rhodopsin-like family of GPCRs
[10], respectively, the rhodopsin α-group and γ-group of
GPCRs [11].

Within the AR family, the average sequence identity
between subtypes of the same species is about 47%, which
increases to an average of ∼57% if only the TM domains are
considered. The residues in the binding cavity involved in
ligand recognition are mostly conserved among the AR
subtypes and between species, with the A3AR being the
most divergent from the other subtypes, as shown in Table 2.
Specific variable amino acids in the binding site are most
likely involved in the ligand selectivity or the unique phar-
macological behavior of each AR subtype.

For the ARs, structural information has been available
since 2008 with the high resolution X-ray structure of the
human A2AAR in complex with the antagonist 4-(2-[7-amino-
2-(2-furyl)]1,2,4] triazolo[2,3-a][1,3,5]triazin-5-yl-amino]
ethyl)phenol 44 (ZM241385) [12]. The crystal structure of the
A2AAR in its inactive conformation gave insight into the

ligand recognition mechanism, showing the key residues
involved in the ligand binding and the major interac-
tions anchoring the antagonist to the binding site. Many
of the site-directed mutagenesis data previously available for
the ARs were structurally explained, and new mutational
experiments were guided by the knowledge gained from the
A2AAR structure, helping to further define the ligand binding
cavity of this AR [13].

The antagonist-boundA2AAR structure has since improved
widely the modeling approaches to the ARs, suggesting for
example the possible binding modes of agonists to the A2AAR
[13, 14] or aiding the modeling of the other AR subtypes [15].
Before the release of the A2AAR X-ray structure, other struc-
tural templates were used for the modeling of the ARs, as
detailed in a recent review by Dal Ben et al. [16]. More
recently, new crystal structures of a thermostabilized (by
mutagenesis) A2AAR in complex with the xanthine derivative
8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-
l,3-dipropylxanthine (XAC, structure not shown) and caffeine
30 were made available [17]. New structural insights into the
activation mechanism and the conformational changes that
occur upon agonist binding to the A2AAR were revealed with
the recent release of new crystal structures of the A2AAR in
complex with different agonists, the bulky substituted agonist
2-(3-[1-(pyridin-2-yl)piperidin-4-yl]ureido)ethyl-6-N-(2,2-
diphenylethyl)-5′-N-ethylcarboxamidoadenosine-2-carboxa-
mide 19 (UK432097) [18], the native agonist adenosine 1, and
the non-selective adenosine-5′-N-ethyluronamide 3 (NECA)
[19]. These new crystal structures lack a coupled G protein,
but nevertheless, they are helpful in understanding the func-
tion of the ARs, and they will aid the drug design approaches
for the AR family, thereby also improving the quality of
models for other AR subtypes. The conformational changes
upon activation of the A2AAR resemble those of opsin, but
there are other changes more specific to this receptor structure
such as a see-saw movement of TM7 [18]. Homology models
of A1AR and A3AR based on the agonist-bound structure of
the A2AAR, were recently proposed with docked agonists in
the binding site [15].

The crystal structures of the A2AAR revealed a peculiar
orientation of the ligand in the binding site of the receptor
when compared to the available structures of other GPCRs,
e.g., bovine rhodopsin or the β-adrenergic receptors. The
binding site for the ligands in the ARs is located near the
extracellular portion of the domains TM3, TM5, TM6, and
TM7, and the ligands are in a roughly vertical orientation
with respect to the plane of the membrane. A crucial residue
anchoring the aromatic core of agonists and antagonists in
the binding pocket of A2AAR is Asn6.55 (using the num-
bering convention of Ballesteros and Weinstein [20]), a
residue conserved among the AR subtypes and also among
different species. His6.52, Thr3.36, Ser7.42, and His7.43 play
key roles in the binding of the hydrophilic ribose moiety of

Purinergic Signalling (2012) 8:419–436 421
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AR affinites (Table 1) and
selectivities of many of these
ligands are available [1, 55]
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Fig. 3 a Nonselective and
selective P2YR agonists and
related substances (including
nucleotide derivatives).
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P2YR antagonists (including
nucleotide and nucleotide
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nucleoside agonists, while they are less critical in the binding
of antagonists. Residues from the extracellular domain EL2
are also involved in anchoring ligands in the binding pocket.
Phe168 in A2AAR, a residue conserved among the ARs,
interacts through a strong π–π stacking with the aromatic core
of agonists and antagonists. Glu169, conserved in A1AR and
A2BAR but substituted with a hydrophobic valine in human
A3AR, interacts with both agonist and antagonist H-bond
donor groups, i.e., the exocyclic amino group of ZM241385,
the exocyclic amino groups of NECA and adenosine, or the
urea moiety at the C2 position of UK432097. Trp6.48, the so-
called “toggle switch” of GPCR activation, is conserved
among the ARs and was found in close proximity to the
ligands in the A2AAR complexes. While the residues
surrounding the ligand core in the A2AAR structure are mostly
conserved in the binding pocket of the AR subtypes, other
residues are less conserved, and possibly, they might be
involved in the selectivity of the receptors for different
substituted ligands. Those less conserved residues are located
mainly in the most extracellular part of the binding cavity
embedding the substitutuent groups projecting from the core
of the ligands. For example, Leu267(7.32) in A2AAR is
substituted with a serine in A1AR, with a lysine in A2BAR,
and a glutamine in A3AR. Met270(7.35) in A2AAR is a
threonine in A1AR and a leucine in A3AR. Also in EL3, there
are some nonconserved residues, such as His264 of A2AAR,
which is substituted with an asparagine in A2BAR and a
glutamate in A3AR (Table 2).

Sequence alignments, phylogenetic analysis, and effector
coupling of the P2YRs have distinguished two P2YR subfa-
milies [2, 21]. The P2Y1-like family activates the phospholi-
pase C signaling pathway through coupling with Gq protein.

P2Y11R also couples with Gs protein to activate adenylate
cyclase. The other family of P2YRs is the P2Y12-like family,
which couples to Gi protein to inhibit the adenylate cyclase
pathway [23, 24]. The sequence identity between the two
subfamilies is quite low, with only 20% identity between
P2Y1R and P2Y12R, while the sequence identity is higher
between the members within the same subfamily, for example,
with a 45% identity between P2Y12R and P2Y14R.

Unlike the ARs, no experimentally determined structural
information is yet available for the P2YR family, and so far,
the only structural characteristics of the P2YRs have come
from structural modeling [21, 25–28].Mostly, the modeling of
P2YRs has focused on identifying the putative binding site
and the analysis of the residues involved in the ligand binding
and receptor specificity, with the aim to gain information on
the ligand recognition mechanism. Site-directed mutagenesis
and structure–activity relationship (SAR) analysis have been
used to support and guide the modeling of the P2YRs [29–36],
which has been used to identify new key residues important
for the ligand binding and receptor activation [25, 37–39].
Several models based on different structural templates have
been published for many of the P2YRs. The bovine rhodopsin
crystal structure was used to build models for P2Y1R [21,
39–41], P2Y2R [31, 35, 42], P2Y4R [42], P2Y6R [43, 44],
P2Y11R [45], P2Y12R [21], and P2Y14R [46].

The putative binding pocket of the P2Y1R, suggested by
the modeling and supported by the many available muta-
genesis data, is located near the extracellular region of TM3,
TM6, and TM7. The positively charged residues of P2Y1R
Arg3.29, Lys6.55, and Arg7.39, conserved among the
P2Y1-like receptors (Table 3), appear to be involved in the
coordination of the negatively charged phosphate groups of

Table 2 List of the key residues in the binding pocket of the A2AAR compared with the corresponding residues in other AR subtypes and in ARs of
different species (h, human; m, mouse; r, rat)

Rec/Res TM2
2.61

TM3
3.32

TM3
3.33

TM3
3.36

TM3
3.37

EL2 EL2 TM5
5.38

TM5
5.42

TM6
6.48

TM6
6.51

TM6
6.52

TM6
6.55

TM7
7.35

TM7
7.39

TM7
7.42

TM7
7.43

h_A1 A66 V87 L88 T91 Q92 F171 E172 M180 N184 W247 L250 H251 N254 T270 I274 T277 H278

m_A1 A66 V87 L88 T91 Q92 F171 E172 M180 N184 W247 L250 H251 N254 I270 I274 T277 H278

r_A1 A66 V87 L88 T91 Q92 F171 E172 M180 N184 W247 L250 H251 N254 I270 I274 T277 H278

h_A2A A63 V84 L85 T88 Q89 F168 E169 M177 N181 W246 L249 H250 N253 M270 I274 S277 H278

m_A2A A60 V81 L82 T85 Q86 F163 E164 M172 N176 W241 L244 H245 N248 M265 I269 S272 H273

r_A2A A60 V81 L82 T85 Q86 F163 E164 M172 N176 W241 L244 H245 N248 M265 I269 S272 H273

h_A2B A64 V85 L86 T89 Q90 F173 E174 M182 N186 W247 V250 H251 N254 M272 I276 S279 H280

m_A2B A64 V85 L86 T89 Q90 F173 E174 M182 N186 W247 V250 H251 N254 M272 I276 S279 H280

r_A2B A64 V85 L86 T89 Q90 F173 E174 M182 N186 W247 V250 H251 N254 M272 I276 S279 H280

h_A3 A69 L90 L91 T94 H95 F168 V169 M177 S181 W243 L246 S247 N250 L264 I268 S271 H272

m_A3 A70 L91 L92 T95 H96 F169 R170 M178 S182 W244 L247 S248 N251 M265 I269 S272 H273

r_A3 A71 L92 L93 T96 H97 F170 R171 M179 S183 W245 L248 S249 N252 M266 I270 S273 H274

Residues are denoted in the top row by a numbering convention as described [20]

Images displaying the role in ligand binding of amino acids in the binding site of various ARs are found in references [12–19, 62]
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nucleotide ligands. Hydrophilic residues in the binding pocket
were suggested to surround the ribose moiety of the nucleo-
tides, while hydrophobic residues created a favorable environ-
ment for the aromatic nucleoside core of the nucleotides
derivatives. Position 6.52 is a histidine residue that is con-
served across the P2YRs, and mutagenesis studies on P2Y1R,
P2Y2R, and P2Y12R have implicated this residue in ligand
recognition [28, 33, 35, 47]. Mutagenesis studies on the
P2Y1R also showed the crucial role of two disulfide bridges
for the correct function of the receptor: a disulfide bridge
between TM3 and EL2, conserved among family A GPCRs,
and a second disulfide bridge between the N terminus and
EL3 [32].

The P2YR models have been improved and refined con-
tinually using updated information from studies of their struc-
tural biology and mutagenesis. Recent advances in the
structural biology of GPCRs have provided alternative tem-
plates to the bovine rhodopsin structure as a basis for the
homology modeling. For example, the sequence identity be-
tween rhodopsin and human P2Y12R, the site of action of the
active metabolite [37] of the blockbuster antithrombotic
Clopidogrel [2], is only 16% overall and 19% for only the
TM regions, while the sequence identity between human
P2Y12R and the chemokine receptor CXCR4 is 22% overall
and 26% for the TM domains. The X-ray structures of the
human CXCR4 in its inactive state in complex with a small
antagonist and a long peptide were released in late 2010 [48].
A sequence comparison between P2Y12R and CXCR4 sug-
gested other structural features of CXCR4 that might be
shared by P2Y12R, making the crystal structure of CXCR4 a
more suitable template than other available GPCR crystal
structures for the modeling of P2Y12 and other P2YRs [49,
50]. A model of P2Y12R based on the CXCR4 crystal
structure and guided by the mutagenesis data and SAR

studies available on the P2Y12R was recently published [49].
The homology models of P2Y2R and P2Y4R based on the
CXCR4 crystal structure were used to explain the selectivity
of agonists toward these two P2YR subtypes [50]. The mod-
eling studies of P2Y12R showed how key residues in the
binding pocket in TM6 and TM7, Arg6.55, Lys7.35, and
Tyr6.58, were involved in the anchoring of the negatively
charged phosphate groups of the nucleotide ligands. Those
residues are conserved across the P2Y12-like subfamily of
P2YRs, as shown in Table 3. Other hydrophobic or aromatic
residues from TM1, TM3, TM6, and TM7 were suggested to
form a suitable environment for the aromatic core of nucleo-
tides derivatives, while the ribose moiety was surrounded by
hydrophilic residues.

Key ligand tools for studying adenosine and P2Y
receptors

AR agonists and antagonists

Selective agonist and antagonist ligands for each of the four
AR subtypes are now available as pharmacological tools. The
medicinal chemistry of the A2BAR is the least developed of
the four subtypes, with selective antagonists and a few selec-
tive agonists reported only since 2000 [51, 52]. The optimal
binding features of AR ligands have also been predicted on the
basis of quantitative SAR (QSAR) approaches, such as com-
parative molecular field analysis (CoMFA) [116–119], al-
though the use of X-ray structural data is now able to
provide greater insight than earlier approaches. The selective
AR ligands now include compounds that are stable in vivo,
high affinity radioligands for binding assays or in vivo imag-
ing by positron emission tomography or single photon

Table 3 List of the key residues in the putative binding pocket of the human P2YRs

Rec/Res TM3
3.29

TM3
3.32

TM3
3.33

TM3
3.37

TM5
5.47

TM6
6.48

TM6
6.51

TM6
6.52

TM6
6.55

TM6
6.58

TM7
7.35

TM7
7.36

TM7
7.39

P2Y1
b R128 F131 H132 Y136 F226 Y273 F276 H277 K280 N283 Y306 Q307 R310

P2Y2
b R110 F113 Y114 Y118 F207 F258 F261 H262 R265 Y268 Y288 K289 R292

P2Y4 R112 F115 Y116 Y120 F209 F258 F261 H262 R265 Y268 Y288 K289 R292

P2Y6 R103 F106 Y107 H111 F201 F252 F255 H256 K259 Y262 Y283 K284 R287

P2Y11 R106 F109 T110 L114 C214 Y261 Y264 H265 R268 N271 Y303 Q304 R307

P2Y12 S101 F104 Y105 Y109 F198 F249 F252 H253 R256 Y259 K280 E281 L284

P2Y13 S99 F102 Y103 Y107 F217 F247 F250 H251 R254 Y278 K278 E279 L282

P2Y14 A98 F101 Y102 Y106 F195 F246 F249 H250 R253 Y256 K277 E278 L281

Residues are denoted in the top row by a numbering convention as described [20]. Residues in bold have been shown using site directed
mutagenesis to be important in ligand recognition

Images displaying the role in ligand binding of amino acids in the binding site of various P2YRs are found in references [25–27, 31, 33, 35, 38, 40,
42–47, 49, 50]

Residues in the ELs that affect ligand recognition include: D204, E209, and R287 (in P2Y1R) [31]; R177, R180, and R272 (in P2Y2R) [31]
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emission tomography [53], that bind irreversibly to the recep-
tor affinity probes, fluorescent and other spectroscopic probes,
and multivalent conjugates that retain high potency. An over-
view of SAR is provided below for AR agonists and
antagonists.

1. Agonists: The SAR of adenosine derivatives as AR
agonists has been well explored [1, 54], and selective
agonists and antagonists for all four subtypes have been
reported (Figs. 1 and 2 and affinities of selected com-
pounds listed in Table 1). Data on selectivity of AR
ligands have been collected [1, 55]. Typically, these
agonists are nucleoside derivatives substituted at one
or more of the following positions: ribose 5′, adenine
C2, and adenine N6. Hydrophobic groups substituted at
the adenine C2 position (linked by NH or S) often
provide selectivity for the A2AAR (e.g., 16, 18, 20),
and hydrophobic groups substituted at the adenine N6

position often provide selectivity for the A1AR (e.g., 5–
14). An N6-(4-aminophenylethyl) derivative, APNEA 4,
is a nonselective AR agonist with high affinity for both
A1 and A3ARs, and has been used as a radioligand in its
[125I] 3-iodo form. In exceptional cases, this selectivity
pattern may be altered to display A2AAR selectivity, as in
17, or with combined modifications, as in 19. Nonnucleo-
side agonists of the A1AR are also known, including the
clinical candidate Capadenoson 15 [56].

The most common ribose modification that enhances
AR potency is a small N-alkyl-uronamide at the 5′ posi-
tion, as in the potent nonselective agonist NECA 3, an N-
ethyl-uronamide. The presence of an N-ethyl-uronamide
is typical of A2AR-selective agonists (A2A: 16, 18, and
19; A2B: 22), and a N-methyl-uronamide is typical of
A3AR-selective agonists (23–28). The ribose moiety of
nucleoside ligands having high AR affinity could also be
substituted with a limited set of other modifications [54,
55, 57–60], for example: carbocyclics, including a ring-
constrained methanocarba (fused cyclopropyl and cyclo-
pentyl rings as in A3AR-selective 27 and 28), 4′-thio in
place of oxo (68), 2′-methyl (9), 2′-methoxy (12), and 3′-
amino-3′-deoxy (25). By comparing the AR binding
affinities of isomeric bicyclic methanocarba adeonsine
analogues that maintain either a North (N), as in 27 and
28, or a South (S) conformation, it was determined that
there is a strong preference for the (N) conformation in
binding to the A3AR. This bicyclic modification of ribose
often enhances the affinity, as well as selectivity, at the
A3AR [54]. The (N)-methanocarba modification is also
preferred over the (S)-methanocarba modification at the
A1AR, but affinity enhancement was not observed. The
preference of the (N) over (S) conformation of the ribose
moiety was also determined using C methylation at the 2′
and 3′ positions [59].

It is to be noted that some nucleoside derivatives act as
full agonists at certain AR subtypes and antagonists or
partial agonists at other subtypes. Typically, the efficacy
at the A3AR is particularly sensitive to structural modifi-
cation of the nucleoside derivative. Thus, reducing the
flexibility or H-bond donating ability of the ribosemoiety,
especially around the 5′-amide group, or introducing
certain sterically bulky hydrophobic substituents at the
N6 or C2 position tends to lower the relative efficacy at the
A3AR [61]. Various 8-cycloalkylamino adenosine deriv-
atives or those modified at the ribose hydroxyl positions
have reduced efficacy at the A1AR or A2AAR [60]. The
introduction of bulky groups at the 5′ position has been
shown to reduce efficacy at the A1AR [56].

Selective agonists for the A1AR [54, 57] include: R-
PIA 6, CPA 7 and its more selective 2-chloro analogue
CCPA 8, and CHA 11 (all of which have been radio-
labeled as tracers for binding experiments); SPA 5 (ex-
cluded from crossing the blood brain barrier). CPA,
CCPA, and CHA are more selective for the A1AR in
mouse than in human, in comparison to the A3AR. (S)-
ENBA 13 displays high A1AR selectivity (human, rat) in
comparison to both A2AAR and A3AR, but also has
reduced water solubility. A 4′-truncated (N)-methano-
carba nucleoside containing an N6-dicyclopropylmethyl
group (not shown) fully activated the A1AR with moder-
ate selectivity [15]. CGS21680 16 and DPMA 17 are
A2AAR selective in binding to the rat and mouse
A2AARs, but in the human, they bind with similar affinity
to the A3AR. The nonnucleoside 3,5-dicyanopyridine
derivative 21 and the nucleoside derivative 22 are mod-
erately A2BAR selective. A3AR-selective agonists typi-
cally have combined N6 and ribose 5′ modications (23–
28). Introduction of certain bulky groups at the 5′ position
of A1AR reduced the efficacy in functional assays, to
provide partial agonists [57].N6-Benzyl substitution tends
to provide greater between-species consistency in A3AR
binding affinity [61], while smallN6-alkyl groups, such as
methyl (26) are often more potent at the human A3AR
than at rat and mouse A3ARs. However, N

6-benzylade-
nosine derivatives are variable in their A1AR binding
affinity depending on the substitution pattern, which can
reduce A3AR selectivity. The product of enzymatic action
of adenosine deaminase, inosine, also activates the A3AR
in the micromolar range [1].

2. Antagonists: The prototypical AR antagonists are theoph-
ylline 29, caffeine 30 and other naturally occurring xan-
thines, but these are of micromolar affinity and not
subtype-selective antagonists. Both synthetic purine and
nonpurine (e.g., nonselective 35, A1AR-selective 39,
A2AAR-selective 44–49, A3AR-selective 60–67) hetero-
cycles have been extensively explored as subtype-
selective AR antagonists [55]. Purine derivatives as
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selective AR antagonists include xanthines (e.g., high
affinity 8-phenylxanthines 31–34 (including water-
soluble and peripherally selective sulfophenyl derivatives
31 and 32), A1AR-selective 8-cycloalkylxanthines 36–38,
A2AAR-selective 8-styrylxanthines 42 and 43, A2BAR-
selective 8-arylxanthines 52–59) and adenines (e.g.,
A1AR-selective 39–41, A2AAR-selective 50 and 51,
A3AR-selective 69). A3AR-selective nucleoside 68
behaves as an antagonist in functional assays, which is
related to the absence of the 5′-hydroxymethyl group that
is associated with the conformational change needed to
activate the A3AR [15].

The in silico screening of chemical libraries of diverse
structure by docking to an X-ray structure or even a
homology model is now an accepted method of discover-
ing new chemotypes that bind to a given GPCR. Non-
nucleotide antagonists of ARs and P2YRs have been
discovered in this manner [62].

P2YRs

Progress in the development of selective agonist and antag-
onist ligands for P2YRs (Fig. 3, and potencies of selected
compounds listed in Table 1) has accelerated in recent years.
Detailed SAR analyses are available for activation by
nucleotides of most of the P2YRs [2, 63]. One must keep
in mind that extracellular nucleotides can be interconverted
in situ to different phosphate forms or to the corresponding
nucleoside, which may complicate pharmacological studies.
In some cases, the addition of an inhibitor of ectonucleoti-
dases or of other enzymes involved in this conversion, or
even addition of a purified enzyme, aids in the interpretation
of pharmacological data. A challenge is to design P2YR
ligands that are stable in vivo. Nevertheless, there are now
nucleotide agonists selective for P2Y1, P2Y2, P2Y4, P2Y6,
and P2Y14Rs and nucleotide antagonists selective for P2Y1

and P2Y12Rs. The diastereoselectivity of binding of the
phosphate groups of nucleotide agonists selective at the
P2Y1, P2Y2, P2Y4 and P2Y11 Rs has been characterized
[29, 41, 42]. Also, subtype-selective non-nucleotide antag-
onists have been introduced for P2Y1, P2Y6, P2Y11, P2Y12,
P2Y13, and P2Y14Rs. Isolated reports have suggested non-
nucleotide antagonists of the P2Y2R, but these so far are
weakly binding. Chemically diverse library screening is
now being applied to the problem of identifying new struc-
tural leads for receptor antagonists, e.g., the A2AAR,
P2Y12R and P2Y14R [49, 62, 64]. A general description of
SAR is provided below for each of the P2Y subtypes.

P2Y1R One of the earliest potent agonists of the P2Y1R
identified was 2-MeSADP 72 (Fig. 3a). However, like the
native agonist ADP 70, it also activates the P2Y12R and

P2Y13R. There has been a question about the ability of 5′-
triphosphate derivatives such as 2-MeSATP 73 to activate
the P2Y1R; some studies show it to be an agonist while
others demonstrate low efficacy [2].

The introduction of conformationally restricted (i.e.,
rigid) ribose substitions has established the favored ribose-
ring conformation for each of the subtypes of the P2Y1-like
subfamily [38, 43]. Principally, this approach has made use
of the methanocarba ring system consisting of fused cyclo-
propane and cyclopentane, as applied earlier to the ARs, in
exploring the biologically active conformations of nucleo-
side and nucleotide derivatives. Thus, the North (N)-meth-
anocarba analog of 2-MeSADP, i.e., MRS 2365 76 is a
selective, high affinity agonist of the P2Y1R that does not
appreciably activate the other ADP-preferring subtypes, i.e.,
P2Y12 and P2Y13Rs [65]. The (N)-methanocarba modifica-
tion is also known to improve the stability of the phosphate
esters toward nucleotidases, especially the 5′-monophos-
phate toward the hydrolytic action of the ectonucleotidase
CD73. Borano analogues of the phosphate group have been
found in some cases to preserve potency and to enhance
selectivity of P2YR agonists, e.g., P2Y1R agonists [66].

Many nucleotide antagonists of the P2Y1R have been
introduced. Usually, these are adenine nucleotides contain-
ing bisphosphate groups, for example, a ribose 3′,5′-
bisphosphate moiety. N6-methyl 2′-deoxyadenosine
bisphosphate derivatives MRS 2179 93 and its 2-chloro
analogue MRS 2216 (not shown) are selective P2Y1 antag-
onists [38]. In both agonist and antagonist series, only
limited substitution of the N6 position of ADP and other
nucleotides, i.e., methyl and ethyl, is tolerated at the P2Y1R.
The same (N)-conformational constraint of the ribose moi-
ety that enhances P2Y1R agonist action also favors potency
and selectivity in nucleotide antagonists. For example, the
ring-constrained (N)-methanocarba nucleotide bisphos-
phates MRS 2279 94 and MRS 2500 95 are selective, high
affinity antagonists of the P2Y1R [67]. Antagonists of the
P2Y1R of moderate affinity may also be derived from acy-
clic nucleotides, such as the bisphosphate derivative MRS
2298 (not shown) [67].

A representative antagonist of the P2Y1R discovered
through optimization of a high throughput screening hit is
a substituted 1-phenyl-3-methyl pyrazol-5-one 110, which
has a Ki of 90 nM and is orally bioavailable [68]. Other
structurally diverse antagonists of the P2Y1R have been
reported.

2

428 Purinergic Signalling (2012) 8:419–436

P2Y2 and P2Y4Rs UTP 79 is a native agonist of both P2Y2R
and P2Y4R. Another native ligand, ATP 71, activates the
P2Y2R, but at the P2Y4R its action is species-dependent, i.
e., it acts as an antagonist at the human homologue and
agonist at the rat P2Y4R. Synthetic UTP analogues with
selectivity for the P2Y2R have been reported, e.g., UTPγS



77, 2-thioUTP 82 and MRS 2698 (not shown), which is
300-fold P2Y2R-selective in comparison to the P2Y4R [35].
Recently, an N4-alkoxyimino derivative of CTP, MRS 4062
83, was found to be a full agonist of the P2Y4R with ∼30-
fold selectivity in comparison to the P2Y2R and P2Y6R
[50]. Molecular modeling and docking of N4-alkoxyimino
derivatives of CTP defined a new subpocket facing the
exterior of the P2Y4R that could accommodate steric bulk.

Dinucleoside tetraphosphates, e.g., INS 365 (Diquafosol)
92 and Up4-2′-deoxyC (structure not shown, INS 37217,
Denufosol) are moderately potent agonists of both P2Y2R
and P2Y4R. In general, dinucleotides are more stable to
hydrolysis by nucleotidases than are nucleotides bearing a
free terminal phosphate group [69]. MRS 2768 90 (uridine
tetraphosphate δ-phenyl ester) is somewhat selective for the
P2Y2R but is less potent than other P2Y2R agonists [70].

Several weak antagonists of the P2Y2R that are uracil
derivatives, e.g., AR-C126313 and AR-C 118925 (not
shown), have been reported but full pharmacological charac-
terization is still lacking [2]. For lack of better antagonists, the
anti-infective drug suramin 102 and the large anthraquinone
dye Reactive blue 2 100 (RB2), which is a mixture of iso-
mers, are used as partially selective antagonists of the P2Y2R
and P2Y4R, respectively. It should be noted that suramin and
many other weak P2YR antagonists typically display other
activities, such as inhibition of ectonucleotidases, which may
complicate the interpretation of experiments [2].

P2Y6R UDP 78 is the native agonist of the P2Y6R, but was
recently found to also activate the P2Y14R [71]. UDPβS 80,
3-phenacyl UDP (PSB 0474) 84, 5-iodo-UDP (MRS 2693)
85 and dinucleoside triphosphates, such as Up3U 91 and
INS 48823 (not shown) [2], have been used as moderately
selective agonists of the P2Y6R [44]. Probing the confor-
mation of the ribose ring at the P2Y6R by molecular mod-
eling and chemical synthesis of ring-constrained analogues
has clearly identified the South (S)-conformation as the
receptor-preferred conformation at this subtype [43]. Thus,
a rigid bicyclic (S)-methanocarba-UDP (not shown) was
more potent than UDP, and the corresponding ring-
constrained isomer with a (N)-conformation was inactive.
The di-isothiocyanate derivative MRS 2578 109 is a non-
competitive P2Y6R antagonist that has limited stability in
aqueous medium and presumably reacts irreversibly with
the receptor.

P2Y11R ATPγS 75 is usually used as a potent but nonselec-
tive P2Y11R agonist. Few P2Y11R-selective agonists have
been reported, but an atypical agonist NF546 104 of the
suramin class of antagonists was reported to activate this
receptor selectively [72]. However, several reported P2Y12R
antagonists, such as 2-propylthio-β,γ-dichloromethylene-
ATP (AR-C 67085 97), also act as potent P2Y11R agonists.

The suramin derivative NF 157 103 is an antagonist of the
P2Y11R, but it is not selective with respect to the nucleotide-
gated ion channels P2X1R, P2X2R, and P2X3R. NF340 105
related to suramin is a selective P2Y11R antagonist.

P2Y12R ADP 70 is the native agonist of the P2Y12R, and
another native ligand, ATP 71, acts as a competitive antag-
onist. Many nucleotide (96–98) and non-nucleotide (111–
115) antagonists of the P2Y12R have been reported, because
of commercial interest. The thienopyridine Clopidgrel 113 is
a blockbuster antithrombotic agent, which must be first
activated in two steps by cytochrome P450 in the liver to
subsequently irreversibly inhibit the P2Y12R [2, 37, 70].
The recently approved antithrombotic Prasugrel 114 belongs
to this thienopyridine family of P2Y12 antagonists. Compet-
itive P2Y12R antagonists that do not require preactivation
are also under development, for example, the antithrombotic
nucleotide derivative AR-C 69931MX 98 (Cangrelor). An
uncharged nucleoside derivative that binds potently to the
P2Y12R, AZD 6140 99 (Ticagrelor) was recently approved
to reduce cardiovascular death and heart attack in cases of
acute coronary syndrome. A major metabolite of 99 that is
formed by oxidative loss of the hydroxyethyl side chain also
acts as a potent P2Y12R antagonist [22]. A sulfonate deriv-
ative related to RB2, PSB-0739 101, is a representative
nonnucleotide antagonist of the P2Y12R that displays high
affinity and was used in the characterization of the effects of
site directed mutagenesis of the receptor and in molecular
modeling [34, 49].

P2Y13R ADP 70 is a native agonist of the P2Y13R, while
ATP 71 at high concentrations is at best a weak partial
agonist. The pyridoxal phosphate derivative MRS 2211
108, is a selective antagonist of the P2Y13R and related to
the nonselective P2 antagonists PPADS 106 and iso-PPADS
107 [73]. However, MRS2211 and other pyridoxal phos-
phate derivatives also inhibit protein interactions of the 14-
3-3 family of intracellular phosphoserine/threonine-recogni-
tion proteins [74].

P2Y14R UDP-glucose 88, other UDP-sugars and UDP 78
are native agonists of the P2Y14R [71]. A synthetic 2-thio
analog of UDP-glucose, i.e., MRS 2690 89, is a more potent
and selective agonist at the P2Y14R. α,β-difluoromethy-
lene-UDP, MRS 2802 86, and the more potent α,β-methy-
lene-2-thio analogue MRS2905 87 are inactive at the P2Y6R
and fully activate the human P2Y14R.

Allosteric modulation of ARs and P2YRs

In addition to orthosteric agonists that bind at the same site
on the receptor as the native agonist, allosteric modulators
for ARs and P2YRs have been studied. The structure and
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action of positive allosteric modulators (PAMs) and nega-
tive allosteric modulators (NAMs) for ARs and P2YR have
been recently reviewed [75]. This includes both heterocyclic
derivatives and nucleotide analogues that resemble a native
P2Yagonist. Some of the PAMs have no action of their own
and require the presence of an agonist, either the endoge-
nous ligand or a synthetic agonist, and other PAMs are
allosteric agonists that act in the absence of orthosteric
ligands. The SAR of PAMs of the A1AR (e.g., the tetrahy-
drobenzothiophene derivative T-62) and A3AR (e.g., the
imidazoquinolinamine derivative LUF6000 and the quino-
line derivative LUF6096, structures not shown) has been
extensively explored. Recently, AEA061 was reported as a
PAM of the A2AAR [76].

Ligands in the clinic and in current clinical trials

The biological role of adenosine and P2YRs has been
extensively explored, contributing to the entry of certain
selective ligands on a clinical pathway [54, 70, 77, 78].
Table 4 lists those AR and P2YR ligands in the clinic for
therapeutic and diagnostic applications, including those cur-
rently in clinical trials for chronic diseases, such as inflamma-
tory, ischemic, and neurodegenerative diseases, and for other
conditions.

AR ligands as clinical candidates and approved drugs

Adenosine may be released from intracellular sources or
generated by the action of ectonucleootidases on ATP that
is released under stress conditions. Therefore, depending on
pathophysiological factors, in a given tissue, there is often a
tonic activation of one or more of the ARs that can be
modulated by exogenous agents. AR agonists are currently
in clinical trials for various conditions, including cardiac
arrhythmias, neuropathic pain, myocardial perfusion imag-
ing, cardiac ischemia, autoimmune inflammatory diseases,
and cancer [57, 79–84].

The first AR agonist to be approved was adenosine 1 itself
(as Adenocard), used as a rapidly metabolized therapeutic
treatment of cardiac arrhythmias, specifically paroxysmal
supraventricular tachycardia (PSVT), by slowing atrioventric-
ular (AV) nodal conduction, an A1AR effect. Its short half-life
upon intravenous infusion (seconds) avoids some side effects,
although A2AAR-related side effects still may occur. Other
agonists of the A1AR have been in clinical trials for pain and
cardiac arrythmias, including atrial fibrillation, supraventricu-
lar arrythmias, paroxysmal supraventricular tachycardia, and
atrial flutter [54, 57]. CVT-3619 (GS9667, not shown), a
partial A1AR agonist, has been in clinical trials for type 2
diabetes [54]. Side effects associated with A1AR agonists
applied to cardioprotective and cardiovascular regeneration

may be overcome by using partial A1AR agonists such as
Capadenoson 15 [85].

Adenosine (as Adenoscan) is used as a pharmacological
stress agent for cardiovascular imaging based on its A2AAR-
dependent vasodilatory effect in the coronary artery. Also,
more advanced A2AAR-selective agonists [79] are either
already approved for this purpose (CVT-3146, 20) or in
clinical trials (ATL-146e, Apadenson, 18). A2AAR agonists
also have anti-inflammatory and anti-ischemic effects, and
have been in clinical trials for related conditions, including
sickle cell disease by targeting iNKT cells [58, 84]. Selec-
tive agonists of A2A, A2B or A3ARs have been shown to
have anti-inflammatory effects due to inhibition of the re-
lease of pro-inflammatory cytokines and other mechanisms
[80, 86, 87]. This also led to former clinical trials of A2AAR
agonists for the treatment of chronic and neuropathic pain
and diabetic foot ulcers. However, an A2AAR agonist was
found ineffective for treating foot ulcers. A2AAR agonists
also show beneficial effects in wound healing, because A2A

and A2BARs stimulate granulation tissue formation by in-
ducing new matrix production and angiogenesis [88, 89].
A2BAR agonists have been proposed for the treatment of
hyperlipidemia and atherosclerosis [90].

A2AAR antagonists (e.g. 42, 45, 48, and 51) are being
developed for treatment of Parkinson’s disease (PD) and
other disorders of the central nervous system including
addiction [79, 91], and several clinical candidates have
been radiolabeled for in vivo imaging [53]. In the stria-
tum, a heterodimer of the A2AAR and the D2 dopamine
receptor is thought to establish the inverse action of
dopamine and adenosine agonists; thus, an A2AAR antag-
onist would have a net effect similar to a D2 agonist.
A2AAR antagonists could also be of interest in preventing
fibrosis in the liver and elsewhere [88] or in the treatment
of cancer [92]. A2BAR antagonists are under consider-
ation for treating inflammatory diseases, diabetes, and
asthma [81, 82], although trials of CVT-6883 55 were
unsuccessful.

Native adenosine acting at various AR subtypes has anti-
ischemic activities in multiple organs, for example, a cardio-
protective action, either as a preconditioning agent or during
ischemia reperfusion. Adenosine and more selective AR ago-
nists, e.g. A3AR agonists such as CP532,903 25, have been
considered for treating acute myocardial infarction [80]. One
of the first actions discovered for A3AR agonists administered
in vivo was cerebroprotection. Also noted were paradoxical
effects in which nM concentrations of A3AR agonists
prevented apoptosis and high μM concentrations induced
apoptosis. The relative lack of cardiovascular side effects of
A3AR agonists in comparison to other AR agonists is consid-
ered an advantage in application to ischemia. The orally active
A3AR agonist CF101 (IB-MECA) 23 is in clinical trials for
rheumatoid arthritis, psoriasis, keratoconjunctivitis sicca (dry
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eye syndrome), and glaucoma [80]. The closely related CF102
(Cl-IB-MECA) 24 is in clinical trials for advanced hepatocel-
lular carcinoma and for patients with chronic hepatitis C
genotype 1.

P2YR ligands as clinical candidates and approved drugs

Although the ARs are a mature field of medicinal chemistry,
the P2YRs generally lag behind in the development of

Table 4 Ligands of ARs or P2Y receptors currently in clinical use or trials (previous clinical trials with selective adenosine and P2Y receptor
ligands are listed in refs. [1, 2, 57, 70])

Ligand Subtype action Route Application Phase Company

Adenosine 1 (Adenocard) A1 agonist iv Paroxysmal supraventricular
tachycardia

Approved Astellas

INO-8875 A1 agonist Topical Glaucoma I–II Inotek

Capadenoson 15, Bay68-4986 A1 agonist Oral Atrial fibrillation II Bayer-Schering

Adenosine 1 (Adenoscan) A2A agonist iv Myocardial perfusion imaging Approved Astellas

Apadenoson 18, ATL146e
(Stedivaze)

A2A agonist iv Myocardial perfusion imaging III Forest Laboratories

Regadenoson 20, CV-3146 (Lexiscan) A2A agonist iv Myocardial perfusion imaging Approved Astellas/Gilead

Regadenoson 20, CV-3146 (Lexiscan) A2A agonist iv Sickle cell disease I Dana-Farber Cancer Institute

IB-MECA 23, CF101 A3 agonist Oral Rheumatoid arthritis, psoriasis,
dry eye, glaucoma

II/III Can-Fite

Cl-IB-MECA 24, CF102 A3 agonist Oral Hepatocellular carcinoma,
chronic hepatitis C
(genotype 1)

II Can-Fite

Caffeine 30 AR antagonist iv or oral Sleep apnea, cancer pain, PD II/III Univ. of Texas, McMaster
Univ., Nobelpharma, Korea
Research, McGill University

Theophylline 29 AR antagonist Oral Asthma, COPD Approved –

Istradefylline 42, KW-6002 A2A antagonist Oral PD III Kyowa Hakko

KW-6356 A2A antagonist PD Kyowa Hakko (in Asia),
Lundbeck (non-Asia)

Preladenant 46, SCH-420814 A2A antagonist Oral PD III Schering

Tozadenant 45, SYN-115 A2A antagonist Oral PD, cocaine dependence IIB Biotie, NIDA (Synosia
Therapeutics)

ST-1535 51 A2A antagonist Oral PD I Sigma-Tau

V81444 A2A antagonist Oral PD I Vernalisa

DT1133 A2A antagonist Oral PD Pre-clinical Domain Therapeutics

[11C]-SCH442416 47 A2A antagonist iv PET imaging of PD I Institute for Neurodegenerative
Disorders

[123I]MNI-420 49c A2A antagonist iv SPECT imaging of PD,
Huntington’s disease

I Institute for Neurodegenerative
Disorders

CVT-6883 55, GS 6201 A2B antagonist Oral Chronic pulmonary and
inflammatory diseasesd

I Gilead

Diquafosol 92 (Diquas) P2Y2 agonist Local Dry eye disease Approved
(Japan)

Santen (Inspire)

Clopidogrel 113 (Plavix) P2Y12 antagonist Oral Acute coronary syndrome,
atherosclerosis

Approved BMS/Sanofi

Prasugrel 114 (Effient) P2Y12 antagonist Oral Acute coronary syndrome,
angioplasty

Approved Lilly/Daiichi Sankyo

Ticagrelor 99, AZD6140 (Brilinta) P2Y12 antagonist Oral Acute coronary syndrome Approved AstraZeneca

Cangrelor 98,
AR-C69931MX

P2Y12 antagonist iv Coronary artery bypassb III The Medicines Co.

Elinogrel 115, PRT-060128 P2Y12 antagonist Oral or iv Acute coronary syndrome II Portola/Novartis

PD Parkinson’s disease
a Clinical trials of another A2AAR antagonist, vipadenant (V2006/BIIB014), for PD were recently halted by Vernalis and partner Biogen Idec
b Effective at maintaining platelet inhibition in patients on thienopyridines who required bypass surgery
c Reference [110]
d Clinical trials discontinued or unsuccessful (see also references [1, 2, 57, 70])
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selective ligands, radioligands and other affinity probes,
imaging agents, and clinical candidates. The most success-
ful application in that area is the use of P2Y12R antagonists
as antithrombotics, but other disease areas are potentially
amenable to treatment using selective P2YR agonists or
antagonists [70]. Since some P2Y subtypes have a wide-
spread distribution, there might be substantial side effects,
such as those noted to occur in bone [4].

Nucleotides, such as ATP 71 and UTP 79, are readily
released from intracellular sources under conditions of injury
and organ stress, such as hypoxia, ischemia, or mechanical
stress, and through channels and vesicular release. One of the
consequences of this release is a proinflammatory effect [2],
for example from ATP that accummulates in asthmatic air-
ways. Consistently, antagonists and other ligands of the P2YRs
could serve as therapeutic targets for a variety of conditions,
including cardiovascular diseases and inflammatory diseases
such as asthma and neurodegeneration [70, 93]. It has been
suggested that antagonists of P2Y2R, P2Y6R, or P2Y11R
might be beneficial in asthma and inflammatory bowel disease
[70]. Beneficial effects of P2 receptor antagonists have been
observed in a stroke model [94]. The effects of various P2YR
ligands on apoptosis in cell culture and in the central nervous
system have been explored [95–98], suggesting application to
a variety of diseases, from cancer to diabetes to ischemia.

P2YRs are widespread in hematopoietic cells, and there-
fore the effects of extracellular nucleotides and their antago-
nists are being studied in the immune/inflammatory system.
The platelet expresses two P2YRs, i.e., P2Y1R and P2Y12R,
both of which have to be activated in order for ADP to have a
prothrombotic effect [23]. Therefore, blocking either of these
receptors produces an antithrombotic effect. P2Y12R antago-
nists, three of which are already approved as agents for acute
coronary syndrome and for prevention of secondary throm-
botic events, have been described above. The antithrombotic
action of MRS 2500 95 by selectively blocking the P2Y1R is
evident in vivo in the mouse and other species, suggesting this
receptor subtype as a clinical target. Furthermore, genetic
deletion of the P2Y1R is associated with fewer atherosclerotic
lesions in ApoE−/− mice. Bone marrow reconstitution has
demonstrated the involvement of non-hematopoietic-derived
cells, probably the endothelial cells [99].

Several agonists of the P2Y2R have been in clinical trials
for cystic fibrosis and other pulmonary conditions. Activa-
tion of the P2Y2R on epithelial cells in the airways and the
eye promotes chloride secretion, independently of the
genetically defective transporter in cystic fibrosis. However,
the P2Y2R agonist Up4-2′-deoxyC (Denufosol) was denied
approval for the treatment of cystic fibrosis due to the failure
to reproduce the positive results of the TIGER-1 study in the
longer duration TIGER-2 trial. A P2Y2R agonist of low
selectivity, Up4U 92 (Diquafosol), has been approved in
Japan but not the U.S. for the treatment of dry eye disease

[100]. P2Y2R activation has also been shown to protect rat
fetal cardiomyocytes against ischemia [101]. P2Y4R activa-
tion by UTP promotes chloride and water secretion by
intestinal epithelial cells, suggesting the use of agonists of
this subtype in treating chronic constipation [102].

Pancreatic islets express both the P2Y1R and P2Y6R, both
of which are coupled to Gq and promote insulin release. The
use of P2Y1R agonists in diabetes has been proposed, and
relatively stable nucleotide analogues that activate this
subtype have been applied in vivo [69]. Furthermore, agonists
of the P2Y6R have been shown to have beneficial antiapop-
totic effects on pancreatic islets cells in culture, suggesting
their possible application to diabetes [95] Endogenous UDP
activating the P2Y6R is involved in the autocrine potentiation
of insulin secretion [103]. However, there are significant side
effects of activation of the P2Y6R, such as a proinflammatory
effect, atherosclerotic plaques, cardiac fibrosis and possibly a
loss of bone mass [4, 70, 104].

P2Y11R activation mediates ATP-induced semi-maturation
of human monocyte-derived dendritic cells and increases the
release of interleukin-8 from human monocyte-derived
dendritic cells, suggesting use of ligands of this subtype in
immune modulation [72, 105]. Semi-maturation of dendritic
cells is characterized by an increased expression of co-
stimulatory molecules with no stimulation of interleukin-12
secretion, leading to a Th2 response or tolerance.

The activation and migration of microglia in the brain are
modulated by P2YRs [106, 107]. ADP activating the micro-
glial P2Y12R induces a “find-me” signal (to induce migra-
tion), and UDP activating the microglial P2Y6R induces an
“eat-me” signal (to induce phagocytosis). These findings
suggest application of P2Y12R or P2Y6R ligands to neuro-
pathic pain and neurodegenerative diseases. Indeed, intra-
thecal administration of P2Y12R antagonist AR-C69931MX
98 prevented the development of tactile allodynia [106].

Activation of the P2Y13R by ADP promotes reverse cho-
lesterol transport in hepatocytes with the endocytosis of HDL
particles [108]. Thus, activation of P2Y13R might be a new
target for treatment of dyslipidemia and atherosclerosis.

Modulation of the P2Y14R has potential for the treatment
of immune and inflammatory disorders, pain, asthma, gastric
disorders, central nervous system diseases, and glaucoma.
Non-nucleotide antagonists of the P2Y14R, e.g., 116, and
prodrug derivatives to increase their bioavailability have been
proposed [64]. Intracellular UDP sugars, many of which
would activate the cell-surface P2Y14R, are substrates for
protein glycosylation, and are released as the proteins are
trafficked to the surface [71], where they may fulfill a cell
signaling role. The role of P2Y receptors in stem cell differ-
entiation has been explored; P2Y4 and P2Y14Rs appear to
regulate the onset of mesenchymal differentiation, and the
downregulation of P2Y1 and P2Y2Rs are markers for early
osteogenic differentiation [109].
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Conclusions

There have been significant recent advances in the structural
biology of purine receptors and in the medicinal chemistry
of selective ligands and their pharmacology. Potent purine
and pyrimidine analogues have aided in the characterization
of regulation of many physiological and pathophysiological
processes. It is apparent that this ubiquitous cell signaling
system has implications for understanding and treating
many diseases. Thus, this field has provided fertile ground
for pharmaceutical development.
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