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Abstract
Genomic selection methods are particularly useful for traits that are difficult or expensive to measure. We investigated the 
impact of using predictor growth traits and/or genomic information to increase the breeding value (BV) predictive accuracies 
for target scarcely recorded wood quality traits in an open-pollinated Eucalyptus grandis population. The performance of 
single- and multiple-trait single-step genomic best linear unbiased prediction and conventional pedigree-based models were 
compared in terms of the predictive accuracies (PA) of estimated BV for the target traits. We also derived the contributions 
of the BV for candidate trees to better understand our results. The inclusion of predictor traits in both, the training and the 
validation sets, together with genomic information, improved the PA (up to 17.7%) for pulp yield and cellulose. However, 
significant improvements in PA were not observed when predictor traits were recorded only in the training set or when the 
impact of genomic information alone was assessed. Changes in the PA were explained by the variations in the maternal 
contributions, contribution/s from all the predictor/s trait/s, and from genotyped trees. We conclude that there is not a “uni-
versal” rule regarding the use of genomic information and records on predictor traits. However, assessing the contributions 
to the BV of validation trees may help to better design how to benefit from predictor traits in forest tree breeding.

Keywords Multiple-trait individual-tree model · Single-step GBLUP · Accuracy · Bias · Scarcely recorded traits

Introduction

The availability of high throughput genotyping of single 
nucleotide polymorphism (SNP) made it possible to gener-
ate genomic-enable predictions of breeding values (BVs) by 
means of the genomic selection (GS) approach (Meuwissen 
et al. 2001). The GS employs genotyped and phenotyped 
individuals in a training (or reference) population to predict 
BVs of selection candidates in a test population that are also 
genotyped but not necessary phenotyped. Therefore, the GS 
methodology is particularly relevant for traits that are difficult 
or expensive to measure (e.g., Calus and Veerkamp 2011).

The efficiency of GS depends on the accuracy of pre-
dicted genomic BVs (Pszczola et al. 2013). Among other 
factors, such as the number of markers employed, the relat-
edness between the training and validation populations, and 
the genetic architecture of the target trait, the size of the 
training population significantly impacts on the accuracy 
of genomic predictions (Hayes et al. 2009). For instance, in 
a Picea abies population, Chen et al. (2018) observed that 
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the predictive accuracy rapidly increased with increasing 
sizes of the training set for growth and wood quality traits. 
However, obtaining large training sets is unfeasible for many 
important traits in forest tree breeding, where cost considera-
tions or operational problems result in a limited amount of 
records available. This is particularly true for wood quality 
traits (Apiolaza et al. 1999; Schimleck et al. 2019), branch 
architecture traits (Shepherd et al. 2002), novel traits related 
to climate-change, such as drought resistance indices (Zas 
et al. 2020) and water use efficiency (Baltunis et al. 2008), 
and chemical traits related to pest and pathogens resistance 
(Erbilgin 2019). For instance, in their review of non-destruc-
tive evaluation technologies for wood properties, Schimleck 
et al. (2019) emphasize the difficulty and time-consuming 
nature of measuring various wood quality traits, particularly 
those relevant to the economics of the pulp and paper indus-
try, such as pulp yield.

One strategy to improve the prediction accuracies of BVs 
for these scarcely recorded traits has been the use of one or 
more predictor traits in the context of so-called multiple-trait 
(MT) models (Henderson and Quaas 1976; Schaeffer 1984; 
Mrode 2005). To be useful, predictor traits need to be eas-
ily recordable, inexpensive to measure, heritable, and most 
importantly, genetically correlated with the target scarcely 
recorded trait/s (Pszczola et al. 2013). The use of predictor 
trait/s in MT models opens up the possibility to assemble 
larger training sets (Arojju et al. 2020). Simulation studies 
have shown that MT genomic best linear unbiased predic-
tion (GBLUP) models, a GS method that combines a MT 
model with data from marker panels (VanRaden 2008), can 
produce more accurate breeding value estimates for scarcely 
recorded traits when a predictor trait is included (Calus and 
Veerkamp 2011; Guo et al. 2014). These benefits have also 
been empirically assessed in farm animals (Pszczola et al. 
2013) and several crop species (Schulthess et al. 2016; Fer-
nandes et al. 2017; Sun et al. 2017), and trees (Lenz et al. 
2020). Lenz et al. (2020) showed in Norway spruce (Picea 
abies (L.) Karst.) that incorporating the height-to-diameter 
ratio as predictor trait in the MT-GBLUP model resulted in 
increased accuracy for the prediction of weevil attacks, a 
trait that is both difficult and costly to measure.

Despite these promising results, the large size of forest 
tree breeding populations, which typically have thousands 
of progenies from multiple tested parents, hinders the imple-
mentation of the GBLUP approach on a large scale due to 
logistical issues and high genotyping costs (Isik 2014). 
Therefore, the main limitation of the MT-GBLUP method 
is that only records from genotyped trees can be included in 
the evaluation, resulting in a waste of phenotypic records of 
trees that has not been genotyped. In these situations, the 
single-step GBLUP method (ssGBLUP) has been proposed 
as an alternative and more practical approach (Legarra et al. 
2009; Misztal et al. 2009; Aguilar et al. 2010; Christensen 

and Lund 2010). This approach fits data from both non-
genotyped and genotyped individuals in a single round of 
the genetic evaluation and thus, has the benefit of including 
historical phenotypic data without the concerns of the avail-
ability of DNA samples. The ssGBLUP method has been 
employed in forest tree breeding in both single-trait (ST) 
(Cappa et al. 2017; Klápště et al. 2018; Thavamanikumar 
et al. 2020; Ukrainetz and Mansfield 2020; Quezada et al. 
2022; Thumma et al. 2022) and MT (Ratcliffe et al. 2017; 
Cappa et al. 2018; Jurcic et al. 2021; Mphahlele et al. 2021; 
Callister et al. 2021) genetic evaluations.

In this study, we investigated the impact of using easily-
recorded predictor traits as an inexpensive way to improve 
the accuracy of BVs of scarcely recorded traits in a forest tree 
breeding context. In particular, we assayed improvements in 
the predictive accuracy of BVs for scarcely recorded wood 
quality traits when adding phenotypic records on predic-
tor growth traits. To investigate the impact of the addition 
of genomic information on the accuracy of BVs, we fitted 
both ssGBLUP models and the conventional pedigree-
based ABLUP model. Data comes from a first-generation 
open-pollinated progeny trial of Eucalyptus grandis (Hill ex 
Maiden). Timely, we also developed and present theoretical 
results regarding the contributions to the BVs of candidate 
trees that allowed a better understanding of our results.

Materials and methods

Plant materials and phenotypic measurements

Data for this study was obtained from a progeny trial of 
Eucalyptus grandis (Hill ex Maiden) as part of the breed-
ing program of the company Forestal Oriental S.A. This 
trial was planted following a randomized incomplete block 
design with eight replications and 10 incomplete blocks 
within replications and four trees per plot in November of 
2012 in Sánchez Grande, Río Negro Department, Uruguay 
(32° 48' 49" S 57° 39' 40" W). This population consisted of 
125 open-pollinated (OP) families, where 85 families were 
from a third generation of breeding cycle, ten from a second 
generation of breeding cycle and the remaining 30 families 
were introductions from the E. grandis breeding program 
of the Instituto Nacional de Investigación Agropecuaria 
(INIA, Uruguay). All living trees (3159) were measured at 
four years old for the following growth traits: diameter at 
breast height (1.3 m, DBH, [cm]) and total tree height (HT, 
[m]). In order to measure wood chemical and physical traits 
(i.e., wood quality traits), near-infrared (NIR) spectroscopy 
was employed on 1214 trees from 92 of the 125 OP families 
at age five. This represents the range of variation in growth 
traits (DBH and HT), with an average of 13.2 trees per fam-
ily (ranging from 7 to 28). The wood quality traits were 
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pulp yield (PY, [%]), cellulose (CEL, [%]), extractive (EXT, 
[%]), and wood density (WD, [kg.m-3]). A calibration model 
that included samples of E. grandis and E. dunnii between 
7 and 11 years old for wood chemical traits (PY, CEL and 
EXT), and only E. grandis between 3 and 6 years old for 
the wood physical WD trait, was developed using a partial 
least-squares algorithm in the R-package “pls” (Mevik and 
Wehrens 2007). This method has been used as a fast method 
for the estimation of many wood properties using NIR spec-
tra collected from milled wood chips (e.g., Raymond and 
Schimleck 2011). Prior to the analyses, all trait values were 
standardized (mean = zero and variance = 1). The number 
of phenotyped trees and summary statistics in their original 
scale for each studied trait are summarized in the Online 
Resource 1.

Molecular markers

Genomic DNA was extracted from lyophilized young leaves 
using the standard CTAB method (Doyle and Doyle, 1987), 
and quality and quantity were confirmed by agarose (1%) gel 
electrophoresis and spectrometry using Nanodrop equipment 
(Thermo Fisher Scientific, Waltham, MA, USA). The DNA 
samples were genotyped at Genexa - ADN Evolutivo, Inc. 
(Montevideo, Uruguay), with a recommended concentration 
of 15 ng, using the  AxiomTM Eucalyptus Genotyping Array 
(Axiom Euc72K, https:// www. therm ofish er. com/ order/ catal 
og/ produ ct/ 551134; accessed on 28 April 2023). Notably, 
this array has an average reproducibility rate of 99.8%. A 
total sample of 548 trees originated from 40 families, with a 
range of 7 to 27 trees per family, were genotyped. The final 
marker data included 37,229 (37K) SNP markers filtered by 
minor allele frequency (MAF) ≥ 0.05 and Call Rate (CR) 
≥ 90%. All the 548 genotyped trees were assessed for wood 
quality traits (i.e., PY, CEL, EXT, and WD). The total num-
ber of phenotyped trees with at least one genotyped half-sib 
was 1,048 (out of 3,159) (i.e., 33.2%) (see Online Resource 
2 for a summary). The distribution of DBH, HT, PY, CEL, 
EXT, and WD traits for genotyped and non-genotyped trees 
is presented in Online Resource 3. Genotyped trees showed 
the same trait distribution as non-genotyped trees for all 
traits.

Pedigree validation

Pedigree errors were corrected using the available 37K SNP 
markers for the 548 sampled trees from the 40 OP families, 
as described by Muñoz et al. (2014). Specifically, pedigree 
validation involved comparing the expected (pedigree) and 
realized (molecular) genetic relationship coefficients. The 
G-matrix calculated using the first method proposed by 
VanRaden (2008) was used to obtain the realized relation-
ships. Trees that showed relationships close to 0 with their 

half-siblings were identified using a customized R-script. 
These trees were reassigned to the maternal family in which 
they showed relationships close to 0.25 with all the mem-
bers of the family, resulting in the reassignment of ten trees 
to the appropriate maternal family. In one case, the correct 
maternal family could not be assigned, so the mother was 
assigned a value of 0. In addition, eight duplicate trees were 
identified and removed. The Online Resource 4 shows the 
distribution of the realized pairwise relationship coefficients 
using the corrected pedigrees.

Statistical analysis

The following individual-tree mixed models were fitted:

(1) Single-trait mixed model (ST) (only for target wood 
quality trait):

where y is the vector of original individual-tree records, β 
is the vector of fixed effects for genetic groups formed 
according to the degree of improvement (levels: third and 
second generations of breeding cycle, or introductions); 
r is the vector of random replicate effects distributed as 
r ∼ N

(
0, I�2

r

)
 , where I is the identity matrix and �2

r
 is the 

replicate variance; b is the vector of random incomplete 
block effects distributed as b ∼ N

(
0, I�2

b

)
 , where �2

b
 is the 

incomplete block within replication variance; u is a vector 
of random effects that represents the additive genetic effects 
(or breeding values) distributed as u ∼ N

(
0,A�2

u

)
 where A 

is the average numerator relationship matrix derived from 
the pedigree (Henderson 1984) and containing the additive 
genetic relationships among all trees: 125 mothers without 
records plus 3159 offspring, and �2

a
 is the additive genetic 

variance. Finally, e is the vector of random errors distributed 
as e ∼ N

(
0, I�2

e

)
 where �2

e
 is the error variance. The X, Zr, Zb 

and Zu are all incidence matrices for their respective effects.

(B) Two-trait mixed model (BT) (one predictor growth trait 
and one target wood quality trait):

where yi and yj are the vectors of individual tree phenotypes 
for trait i (i = DBH or TH) and trait j (j = PY, CEL, EXT, or 
WD); �� =

[
��
i
, ��

j

]
 is the vector of fixed effect of genetic 

groups for traits i and j; the random vector of replicate 
effects in r� =

[
r�
i
, r�

j

]
 is distributed as r~N(0, Σr ⨂ I), where 

(1)y = X� + Zrr + Zbb + Zau + e

(2)
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]
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Xi 0
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� i

� j
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+

[
Zbi

0
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0
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+
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]

https://www.thermofisher.com/order/catalog/product/551134;
https://www.thermofisher.com/order/catalog/product/551134;
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Σr is the (co) variance matrix of replicate effects for the two 
traits with dimension 2 × 2; the random vector of incomplete 
block effects in b� =

[
b�
i
, b�

j

]
 is distributed as b~N(0, Σb ⨂ I), 

where Σb is the (co) variance matrix of incomplete block 
effects with dimension 2 × 2; the random vector of additive 
genetic effects in u� =

[
u�
i
, u�

j

]
 is distr ibuted as 

u~N(0, Σu ⨂ A), where Σu is the (co) variance matrix of 
genetic effects of order 2 × 2 and A as defined above. Finally, 
e
� =

[
e
�

i
, e�

j

]
 is the vector of random errors distributed as 

e~N(0, R0 ⨂ I) where R0 is the error (co) variance matrix for 
the two traits with dimension 2 × 2. We assumed an unstruc-
tured (co) variance matrix for the replicate (Σr), incomplete 
block (Σb), genetic (Σu) and error (R0) effects. The matrices 
Xi and Xj, Zri

 , and Zrj
 , Zbi

 and Zrj
 , and Zui

 , and Zuj
 , relate the 

phenotype to the means of the genetic group effects in β, 
replicate effects in r, incomplete block effects in b, and the 
additive genetic effects in u. The apostrophe indicates the 
transpose operation.

(C) Three-trait mixed model (TT) (both predictor growth 
traits and one target wood quality trait):

where yDBH, yHT and yj are the vectors of individual tree phe-
notypes for the growth traits DBH and HT and the jth target 
wood quality trait (j  = PY, CEL, EXT, or WD); 
�� =

[
��
DBH

, ��
HT
, ��

j

]
 is the vector of fixed effects genetic 

groups for the growth trait DBH and HT, and the wood quality 
trait j; the random vector of replicate effects in 
r� =

[
r�
DBH

, r�
HT
, r�

j

]
 is distributed as r~N(0, Σr ⨂ I), where Σr 

is the (co) variance matrix of replicate effects for the three 
traits with dimension 3 × 3; the random vector of incomplete 
block effects in b� =

[
b�
DBH

, b�
HT
, b�

j

]
 is distributed as 

b~N(0, Σb ⨂ I), where Σb is the (co) variance matrix of incom-
plete block effects with dimension 3 × 3; the random vector of 
additive genetic effects in u� =

[
u�
DBH

, u�
HT
, u�

j

]
 is distributed 

as u~N(0, Σu ⨂ A), where Σu is the (co) variance matrix of 

(3)

⎡
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� j

⎤⎥⎥⎥⎦

+
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genetic effects of order 3 × 3 and A as defined above. Finally, 
e� =

[
e�
DBH

, e�
HT
, e�

j

]
 is the vector of random errors distributed 

as e~N(0, R0 ⨂ I) where R0 is the error (co) variance matrix for 
the three traits with dimension 3 × 3. We assumed an unstruc-
tured (co) variance matrix for the replicate (Σr), incomplete 
block (Σb), genetic (Σu) and error (R0) effects. The matrices 
XDBH, XHT and Xj, ZrDBH

 , ZrHT
 and Zrj

 , ZbDBH
 , ZbHT

 and Zrj
 , and 

ZuDBH
 , ZuHT

 and Zuj
 , relate the observation to the means of the 

genetic group effects in β, replicate effects in r, incomplete 
block effects in b, and the additive genetic effects in u.

In order to fit the ssGBLUP models, the pedigree-based 
relationship A-matrix of ST models [1], and MT models [2] 
and [3] were replaced by the combined pedigree- and marker-
based relationship H-matrix, of the same dimension as the 
A-matrix. Actually, only the inverse of H is needed to fit the 
ssGBLUP models. Therefore, the inverse of the H-matrix 
(H−1) was obtained as follows (Legarra et al. 2009; Misztal 
et al. 2009; Aguilar et al. 2010; Christensen and Lund 2010):

where λ scales the differences between genomic and pedi-
gree-based information, G−1 is the inverse of the genomic 
relationship matrix, and A−1

22
 is the inverse of the pedigree-

based relationship matrix for the genotyped individuals. In 
all our analyses, the scale parameter was set to λ = 0.95. 
Based on the recent work of Jurcic et al. (2021), an iden-
tity by descent (IBD) measure was used to calculate the 
G-matrix (Han and Abney 2013) implemented in the IBDLD 
v3.14 software (Han and Abney 2011), using the “GIBDLD” 
option (see details in Jurcic et al. (2021)). G-matrix was 
scaled to have the same diagonal and off-diagonal averages 
as the corresponding A-matrix, as previously described 
Christensen et al. (2012) (eq. (4)).

The narrow-sense heritability ĥ2 for each trait was esti-
mated as:

where �̂�2

ui
 is the estimated additive genetic variance for the trait i, 

and �̂�2

ei
 the estimated error variance for the trait i from the three-

trait ssGBLUP models (eq. (3)). The genetic 
(
r̂Aij

)
 and residual (

r̂Rij

)
 correlations between traits i and j were estimated as:

r̂Aij
=

�̂�uij√
�̂�uii

×�̂�ujj

 ; r̂Rij
=

�̂�eij√
�̂�eii

×�̂�ejj

where �̂�aij and �̂�eij are the estimated additive genetic and 
residual covariance between trait i and j respectively.

Variance components and their functions (heritabilities 
and correlations) for the ABLUP and the ssGBLUP three-
trait models (eq. (3)) were estimated in R (www.r- proje ct. 

H−1
= A−1

+

[
0 0

0 �
(
G−1

− A−1

22

)
]

ĥ2
i
=

�̂�2

ui

�̂�2
ui
+ �̂�2

ei

http://www.r-project.org
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org) with the function remlf90 from the package ‘breedR’ 
(Muñoz and Sanchez 2020), that uses the Expectation-
Maximization (EM) algorithm followed by one round of an 
Average Information (AI) algorithm to compute the stand-
ard errors (Chateigner et al. 2020). The remlf90 function in 
the R-package ‘breedR’ is based on the REMLF90 (for the 
EM algorithm) and AIREMLF90 (for the AI algorithm) of 
the BLUPF90 family (Misztal et al. 2018). The program 
preGSf90, also from the BLUPF90 family (Misztal et al. 
2018), was used to build-up the inverse of the H-matrix.

Predictive accuracy and bias of estimated breeding 
values

The performance of the different statistical models was evalu-
ated by means of a 10-fold cross-validation study. This analysis 
involved the partition of the dataset in ten folds, where one ran-
domly chosen subsample at a time was used as the validation set 
and the remaining nine as the training set (Hastie et al. 2009). 
In each round, the validation set comprised approximately 120 
trees selected at random from the 1240 phenotyped for the wood 
quality traits studied. These selected trees came from almost 
the same number of mothers. In addition, each fold had similar 
number of genotyped individuals. The wood quality pheno-
types of these selected trees of the validation set were hidden in 
each round to fit the models, and the prediction target was the 
estimated BVs of these trees for the wood quality traits under 
different scenarios regarding the availability of records (see 
next section). The measure of performance was the predictive 
accuracy (PA), calculated in each round as the Pearson correla-
tion between the prediction target and the corresponding (and 
hidden) adjusted phenotypes, scaled by the square root of the 
narrow-sense heritability. Adjusted phenotypes were obtained 
for each tree and trait by subtracting the estimated replicate and 
incomplete block effects from the original phenotype. For the 
cross-validation analysis, the variance components were fixed 
across all the folds to the variance components obtained with 
all the available trees with phenotypic data from the respective 
three-trait ssGBLUP model.

In addition to the PA, the prediction bias (PB) was also 
calculated in each fold as the slope of the regression of the 
estimated BVs of trees in the validation set on their respec-
tive adjusted phenotype. A slope equal to one is consistent 
with no bias, whereas a value greater or smaller than one 
indicates inflated or deflated predictions, respectively.

For each trait and model, PA and PB measures were 
averaged over all the folds. However, as the means of each 
fold are highly correlated (> 0.75 for PA) across the mod-
els assayed, paired t-tests (p-value < 0.05) were used to 
statistically assess differences in their PA and PB (Schrauf 
et al. 2021). BLUPF90 family software (Misztal et al. 2018) 
were used for fitting the models. A customized R-script 
was written to automate the cross-validation analyses, and 

is available from the corresponding author on reasonable 
request.

Scenarios analyzed

Several scenarios were assayed in this study. These scenarios 
were generally defined in terms of phenotypic data available 
on predictor and target traits in the training and validation 
sets of the cross-validation analyses, following the method-
ology outlined by Pszczola et al. (2013) closely.

Training sets were defined based on the availability of phe-
notypic records on the wood quality traits and predictor traits. 
Specifically, we defined four different training sets: (1) records 
on only one wood quality trait (WQi, i = PY, CEL, EXT, WD) 
were available; (2) records on one wood quality trait and DBH 
as a predictor trait were available; (3) records on one wood 
quality trait and HT as a predictor trait were available; and (4) 
records on one wood quality trait and both DBH and HT as 
predictor traits (i.e., DBH and HT) were available.

Combined with these training sets, four validation sets 
were defined based on the availability of phenotypic records 
on predictor traits from the trees to be validated. These vali-
dation sets included: (1) records on predictor traits were not 
available (NA); (2) only records on DBH were available; (3) 
only records on HT were available; and (4) records on both 
DBH and HT predictor traits were available.

The combination of these four training and four validation 
sets gives a total of 16 scenarios. However, as in Pszczola 
et al. (2013), the nine most practical were analyzed in this 
study (Table 1 and Online Resource 5). First, we selected all 
those scenarios where all the phenotypic records were avail-
able in the training set irrespective of whether or not records 
on predictor traits were available for the validation sets. Sec-
ond, we analyzed all the scenarios where the predictor traits 
were not available for the trees in the validation set. Finally, 
we excluded those scenarios where records on the predictor 
growth traits were available only for the trees in the valida-
tion set but not in the training set (refer to Table 1 and Online 
Resource 5 for details). For each of these nine scenarios, 
either an ABLUP or ssGBLUP model was fitted and used to 
estimate the breeding values of the trees in the validation set.

These nine scenarios allowed us to assess changes in pre-
dictive accuracies and bias of the estimated breeding values 
for the different target traits resulting from the data addition 
of (1) genomic information; (2) records on predictor traits 
from the trees in the training set; (3) records on predictor 
traits from trees in both, the training and the validation sets; 
(4) records on predictor traits from the trees in the valida-
tion set, and (5) genomic information and records on the two 
predictor traits in both, the training and the validation sets. 
Please note that in cases where additional records for the pre-
dictor growth trait/s (DBH and/or HT) were included (items 
2, 3, and 5), the training sets had a larger numbers of trees.

http://www.r-project.org
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Contributions to the breeding values of validation 
trees

To better understand the changes in the predictive accu-
racy across the different scenarios, we derived the formulas 
regarding the contributions to estimated breeding values of 

validation trees without records on the target wood qual-
ity traits. This approach has been used in animal breeding 
to decompose the breeding value of individuals in single-
trait ABLUP (VanRaden and Wiggans 1991) and ssGBLUP 
(Aguilar et al. 2010; Lourenco et al. 2015; Abdollahi-Arpan-
ahi et al. 2021) models, as well as in two-trait ABLUP mod-
els (Schaeffer 1984).

Working out the mixed model equations, VanRaden 
and Wiggans (1991) showed that the estimated breeding 
value of individual i ( ̂ui ) under a ST-ABLUP model can 
be written as:

ûi = w1 PAv + w2 YD + w3 PC

where PAv is the parent average, YD is the yield deviation 
(phenotypes adjusted for all the effects other than additive 
genetic effects), and PC is the progeny contribution. In 
turn, w1, w2 and w3 are coefficients that sum to one and 
weight the amount of information available. For example, 
the estimated breeding value of an individual that has nei-
ther been recorded for the trait nor has been progeny tested 
relies entirely on its parent average. Conversely, the prog-
eny contribution is the determinant source of information 
for progeny tested individuals. Extensions of the formulae 
for MT models and ssGBLUP models can be consulted in 
Mrode (2005) and Lourenco et al. (2015), respectively.

Following the same approach, in the Appendix, we 
derived the contributions to the breeding value of a tree 
with only one known parent (open-pollinated tree), that 
has not been recorded for the target trait and that has 
not been progeny tested under single- and multiple-trait 
ABLUP and ssGBLUP models. According to the spe-
cific model, the estimated breeding value comprised the 
maternal contribution, the contributions of predictor traits 
(Schaeffer 1984), and the contributions from other geno-
typed trees. Explicitly, the equations for the breeding value 
of tree i without a record on the target wood quality trait 
s (s = PY, CEL, EXT, WD), ûis , under either ST- or MT- 
(i.e., including the predictor growth trait/s p = DBH and/
or HT) ABLUP or ssGBLUP models, are as follows:

ûis =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2
ûms

;ST − ABLUP (Eq.(5))

−
hmi

hii
ûms

− GISTs ;ST − ssGBLUP (Eq.(6))

1

2
ûms

− 𝛽BTps

�
ûip −

1

2
ûmp

�
;BT − ABLUP (Eq.(10))

−
hmi

hii
ûms

− 𝛽BTps

�
ûip +

hmi

hii
ûmp

�
− GIBTps

;BT − ssGBLUP (Eq.(11))

1

2
ûms

− 𝛽TTDBHs

�
ûiDBH −

1

2
ûmDBH

�
− 𝛽TTHTs

�
ûiHT −

1

2
ûmHT

�
;TT − ABLUP (Eq.(10))

−
hmi

hii
ûms

− 𝛽TTDBHs

�
ûiDBH +

hmi

hii
ûmDBH

�
− 𝛽TTHTs

�
ûiHT −

hmi

hii
ûmHT

�
− GITTps

;TT − ssGBLUP (Eq.(11))

Table 1  Description of the scenarios analyzed in terms of the pheno-
typic records from the predictor growth traits (DBH and HT) and the 
target wood quality  (WQi) trait i (i = PY, CEL, EXT, or WD) avail-
able in the training and/or validation sets. See the text for a complete 
description of traits

*Phenotypic records on predictor traits were not available on trees 
from the validation set
(1) ST: single-trait model
(2) BT_DBH_T: two-trait model with DBH recorded only on trees 
from the training set
(3) BT_HT_T: two-trait model with HT recorded only on trees from 
the training set
(4) TT_DBH_HT_T: three-trait model with DBH and HT recorded 
only on trees from the training set
(5) BT_DBH_TV: two-trait model with DBH recorded on trees from 
the training and validation sets
(6) BT_HT_TV: two-trait model with HT recorded on trees from the 
training and validation sets
(7) TT_DBH_TV: three-trait model with DBH recorded on trees from 
the training and validation sets and HT recorded only on trees from 
the training set
(8) TT_HT_TV: three-trait model with HT recorded on trees from the 
training and validation sets and DBH recorded only on trees from the 
training set
(9) TT_DBH_HT_TV: three-trait model with DBH and HT recorded 
on trees from the training and validation sets

Predictor traits recorded on trees from the 
validation set

Traits recorded on the 
training set

NA* DBH HT DBH & HT

WQi ✓(1)

WQi & DBH ✓(2) ✓(5)

WQi & HT ✓(3) ✓(6)

WQi, DBH & HT ✓(4) ✓(7) ✓(8) ✓(9)
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where ST, BT, and TT stand for single-, two-, and three-
trait models, respectively, ûmp

 is the breeding value of the 
mother of individual i for the predictor trait p, and �BTps

and 
�TTps

 are the partial regression coefficients of the target trait 
s on the predictor growth traits p for the BT- and TT- trait 
ABLUP and ssGBLUP models (Eq. (9) in the 
Appendix).

The partial regression coefficients were further derived 
following Wermuth (1992, Chapter 2) as:

where �p−s
u  indicate the off-diagonal entries between the pre-

dictor trait p and wood quality trait s in the inverse of the 
additive genetic covariance matrix 

(
�−1

u

)
 and �ss

u
 are the 

diagonal entries corresponding to the wood quality trait s. 
In turn, �up−s or p

 indicate the covariance between the breeding 
values of predictor trait p and the wood quality trait s, and 
�2

up
 is the variance of the predictor trait p from the covariance 

matrix for additive genetic random effects (Σu). Notice that 

�BTDBHs
=

�DBH−s
u

�ss
u

= −
�uDBH−s

�2
uDBH

�BTHTs
=

�HT−s
u

�ss
u

= −
�uHT−s

�2
uHT

�TTDBHs
=

�DBH−s
u

�ss
u

= −

�uDBH−s
− �uDBH−HT

(
�2

uHT

)−1

�uHT−s

�2
uDBH

− �uDBH−HT

(
�2
uHT

)−1

�uDBH−HT

�TTHTs
=

�HT−s
u

�ss
u

= −

�uHT−s − �uDBH−HT

(
�2

uDBH

)−1

�uDBH−s

�2
uHT

− �uDBH−HT

(
�2
uDBH

)−1

�uDBH−HT

while the partial regression coefficients of the BT models 
are directly proportional to the additive genetic correlations 
between the predictor and the target trait, this may no longer 
be the case for the TT models. Here, partial regression coef-
ficients depend on all the genetic (co) variance components 
of the predictor and target traits.

For the ssGBLUP models, the contribution to the breed-
ing value of the tree i in the validation set from other geno-
typed trees (j) under either ST (Eq. (6) in the Appendix) or 
MT (Eq. (12) in the Appendix) models are the following:

where hij are the off-diagonal entries of the H−1 matrix 
between the tree i and the remaining genotyped individuals 
j, and hii are the diagonal elements of the H−1 matrix cor-
responding to the tree i.

Results

Functions of the variance component estimates 
(heritability, genetic correlations, and partial 
regression coefficients)

Table 2 displays the estimates of narrow-sense heritability 
for each studied trait, the genetic and residual correlations 
between growth traits (DBH and HT) and wood quality 

GISTs
=

∑
j,j≠i h

ijûjs

hii

GIBTps
=

∑
j,j≠i h

ijûjs

hii
+ 𝛽BTps

∑
j,j≠i h

ijûjp

hii

GITTps
=

∑
j,j≠i h

ijûjs

hii
+ 𝛽TTDBHs

∑
j,j≠i h

ijûjDBH

hii
+ 𝛽TTHTs

∑
j,j≠i h

ijûjHT

hii

Table 2  Heritability estimates 
(
ĥ
2
)
 (and approximate standard  errorsa) 

for the analyzed growth (DBH and HT) and wood quality (PY, CEL, 
EXT, and WD) traits, and genetic ( ̂r

A
 ) and residual ( ̂r

R
 ) correlations 

(and approximate standard errors), and partial regression coefficients 

(β) of wood quality traits on growth traits for the two- (BT) and three-
trait (TT) models for the analyzed wood quality traits from the com-
bined pedigree-genomic (ssGBLUP) multiple-trait (three-trait) model. 
See the text for a complete description of traits and models used

a Standard errors were estimated using the ‘remlf90’ function from the ‘breedR’ package in R, which employs the EM algorithm followed by one 
round of AI algorithm to compute the standard errors
b Heritability estimates for DBH and HT traits are the average of the corresponding estimates from the four ssGBLUP three-trait models in which 
the different wood quality trait participates

Trait
ĥ

2
r̂
A
DBH

r̂
R
DBH

r̂
A
HT

r̂
R
HT

�BT
DBH

�BT
HT

�TT
DBH

�TT
HT

DBH 0.089 (0.030) b - - - - - - - -
HT 0.079 (0.029) b - - - - - - - -
PY 0.379 (0.079) -0.344 (0.287) 0.185 (0.060) 0.038 (0.255) 0.435 (0.054) 0.715 -0.092 0.881 -0.500
CEL 0.364 (0.084) -0.034 (0.254) -0.090 (0.060) 0.282 (0.259) 0.182 (0.060) 0.069 -0.661 0.332 -0.807
EXT 0.252 (0.067) -0.100 (0.305) 0.393 (0.048) -0.273 (0.303) 0.079 (0.054) 0.159 0.504 -0.008 0.508
WD 0.277 (0.069) -0.426 (0.389) 0.704 (0.044) -0.073 (0.311) 0.508 (0.046) 0.749 0.149 0.807 -0.188
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traits (PY, CEL, EXT, and WD), and the partial regres-
sion coefficients obtained from the MT (three-trait) ssG-
BLUP model. Overall, there were clear differences in the 
heritability estimates between the growth traits (average 
0.084) and wood quality traits (average 0.318). Predictor 
traits were sensibly less heritable.

Genetic correlation estimates between growth traits 
(DBH and HT) and wood quality traits varied from low 
to moderate (absolute values < 0.426) and were generally 
negative (average across traits −0.116; range −0.426 to 
0.282), except for PY and CEL (0.038 and 0.282, respec-
tively). PY and WD showed higher correlation with DBH 
than with HT (PY −0.344 vs. 0.038, respectively for DBH 
and HT; WD −0.426 vs. −0.073, respectively for DBH 
and HT), whereas CEL and EXT showed higher correla-
tion with HT than with DBH (CEL 0.282 vs. −0.034, 
respectively for HT and DBH; EXT −0.273 vs. −0.100 
for HT and DBH, respectively).

On average, partial regression coefficients increased 
(in absolute value) when switching from a two- to a three-
trait model for PY and CEL traits, but these coefficients 
showed smaller changes for EXT and WD. This indicates 
that there is generally a greater increase in the magnitude 
of contributions from the predictor growth traits for PY 
and CEL traits compared to EXT and WD traits. Moreo-
ver, we observed changes in the sign of some of these par-
tial regression coefficients when switching from a two- to 

a three-trait model for the EXT and WD traits, suggesting 
that these contributions of the predictor traits may also 
change the direction.

Predictive accuracy and bias of estimated breeding 
values

Predictive accuracies (PA) of estimated breeding values 
under the different scenarios studied from the pedigree-based 
(ABLUP) and combined pedigree-genomic (ssGBLUP) 
evaluation models are shown in Online Resource 6. Overall, 
averaging across traits and single- (ST) and multiple-trait 
(MT) models, ssGBLUP models showed slightly higher PA 
than ABLUP (0.455 vs. 0.447, respectively). These differ-
ences between ABLUP and ssGBLUP models in PA were 
different across all the nine scenarios and traits studied, with 
variations between −1.36 and 7.66% (Fig. 1). Dissecting the 
results across the different wood quality traits, PY showed 
a slightly higher relative increment in PA (average across 
scenarios 4.86%) when fitting the ssGBLUP model over the 
estimates obtained under the classical ABLUP model than 
the other three traits (average across scenarios: CEL 0.12%, 
EXT 1.58%, and WD 1.54%).

When records on one or two predictor traits were added 
only to the training set, the PA generally decreased with 
respect to the scenario that did not include those predictor 
trait/s, although in most cases non-significantly (p-values 
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Fig. 1  Relative performance (in percent) in predictive accuracy from 
the combined pedigree-genomic ssGBLUP model over the classical 
pedigree-based ABLUP model of trees in the validation sets under 

the nine different scenarios studied. Abbreviations used for the sce-
narios and traits are described, respectively, in the Table 1 and text. 
All these differences were not statistically significant (p-value > 0.05)
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> 0.05), either under the ABLUP or the ssGBLUP model 
(Fig. 2 and Online Resource 6). These results varied across 
the wood quality traits: while EXT and WD showed the larg-
est significant decrease (from −0.40 to −11.34%, Fig. 2), PY 
and CEL showed no significant change in PA (from 0.24 to 
4.74%, Fig. 2). These decreases in PA varied also depending 
on whether DBH, HT, or both predictor traits were added to 
the training sets. For instance, for CEL and EXT, the highest 
decrease in PA was observed when the two predictor growth 
traits available were included jointly in the training sets. In 
contrast, for WD and PY, decreases in PA were largest when 
either DBH or HT, respectively, was included in the training 
sets (Fig. 2).

When records from predictor traits from the trees in 
the validation sets were also included, statistically signifi-
cant increments were observed (Figs. 3 and 4 and Online 
Resource 6) under both ABLUP and ssGBLUP models 
for PY (up to 16.71%) and CEL (up to 19.23%) traits. 
However, non-significant differences were observed for 
EXT (up to 5.82%), and a significant decrease in PA was 
observed for WD. These results can be revealed by com-
paring the performance of MT against ST models, on the 
one hand. On the other hand, the results can be revealed 
by comparing the PA when predictor traits records are 
added on the validation sets over datasets that included 
the same predictor traits only in the training population, 
i.e., within MT models. When ST and MT models were 

compared to assess the impact of adding records on pre-
dictor traits in both training and validation sets, the latter 
showed greater PA for PY and CEL but not for EXT and 
WD (Fig. 3, and Online Resource 6). For instance, the 
maximum increment were for the CEL trait, being from 
0.409 to 0.465 (13.69%, Fig. 3). When the comparison 
was made to assess the addition of predictor traits records 
on the validation sets, PA was higher for PY and CEL, 
showed no difference for EXT, and again decreased for 
WD (Fig. 4 and Online Resource 6). The maximum incre-
ment was also for the CEL trait, being for PA from 0.390 
to 0.465 (19.23%, Fig. 4).

These increments or reductions on PA also varied across 
wood quality traits depending on whether one or both pre-
dictor traits were added to the training and validation sets 
(Fig. 3 and Fig. 4). Highest predictive accuracies for PY and 
CEL traits were observed when both predictor traits were 
added to the training and validation sets, and this was also 
the case for EXT when we added predictor traits on the vali-
dation sets (Fig. 4). For instance, for the trait PY under the 
ssGBLUP model, adding records of DBH increased the PA 
from 0.464 to 0.474 (2.16%, Online Resource 6 and Fig. 3), 
while adding records of both DBH and HT increased the PA 
from 0.464 to 0.521 (12.28%, Fig. 3).

Finally, we compared the three-trait ssGBLUP models to 
the single-trait ABLUP, i.e., when records on the predictor 
growth traits were added in both the training and validation 
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Fig. 2  Relative performance (in percent) in predictive accuracy over 
the single-trait model of trees in the validation sets from the two- and 
three-trait ABLUP and ssGBLUP models when predictor traits were 
added only to the training sets. Abbreviations used for the scenarios 

and traits are described, respectively, in the Table 1 and text. Signifi-
cance are noted as not statistically significant (ns; p-value > 0.05), 
*statistically significant 0.01 < p-value < 0.05, **statistically highly 
significant (p-value <0.01)
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Fig. 3  Relative performance (in percent) in predictive accuracy over 
the single-trait model of trees in the validation sets from the two- and 
three-trait ABLUP and ssGBLUP models when predictor traits were 
added in trees from both the training and the validation sets. Abbre-

viations used for the scenarios and traits are described, respectively, 
in the Table 1 and text. Significance are noted as not statistically sig-
nificant (ns; p-value > 0.05), *statistically significant 0.01 < p-value 
< 0.05, **statistically highly significant (p-value <0.01)
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Fig. 4  Relative performance (in percent) in predictive accuracy 
over the respective (two-trait or three-trait) model with recorded 
growth predictor traits only in the training set of trees in the valida-
tion sets from the two- and three-trait ABLUP and ssGBLUP mod-
els when predictor traits were added in trees from the training and 

the validation sets. Abbreviations used for the scenarios and traits 
are described, respectively, in the Table 1 and text. Significance are 
noted as not statistically significant (ns; p-value > 0.05), *statistically 
significant 0.01 < p-value < 0.05, **statistically highly significant 
(p-value <0.01)
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sets along with genomic information. The results showed 
that the predictive accuracies significantly increased for PY 
(17.77%) and CEL (12.49%) traits. In contrast, no significant 
differences were found for EXT, and a strong and signifi-
cant decrease (−42.56%) was observed for WD (Fig. 5 and 
Online Resource 6).

Regarding prediction bias (PB), the regression coeffi-
cients across the nine scenarios and four target traits studied 
ranged from 0.744 to 1.445 (average absolute deviation from 
1 was equal to 0.135) for the traditional ABLUP model, and 
from 0.751 to 1.419 (average absolute deviation from 1 was 
equal to 0.107) for the ssGBLUP model (Online Resource 
7), showing slightly lower bias in the ssGBLUP models as 
compared to ABLUP. However, these differences between 
both models in the PB values were not statistically signifi-
cant. When one and/or two predictor traits were added to the 
training set but not to the validation set, both ABLUP and 
ssGBLUP generally showed significantly smaller biases for 
all traits, with a more stringent reduction when the genomic 
information was available (ssGBLUP). However, when both 
predictor traits were added to the training and validation sets, 
smaller bias were obtained for PY (no significant, p-values > 
0.05), EXT, and WD but not for CEL, where bias generally 

increased (only significant, p-values < 0.05, when we com-
pared the ST model with the TT model) in both ABLUP and 
ssGBLUP models.

Discussion

The increment of the productivity and adaptability of future 
forest breeding populations will require recurrent selection 
on a great number of traits that are expensive, difficult, and/
or time-demanding to record. These traits will be certainly 
scarcely recorded. In this context, genomic selection and 
multiple-trait models are becoming important tools in forest 
tree breeding. In this study, we investigated how the addition 
of predictor traits data impacts the predictive accuracy of 
breeding values for scarcely recorded traits. Data from an E. 
grandis breeding population with 548 genotyped trees and 
3159 trees phenotyped for two growth traits was used to test 
improvements on the predictive accuracy of the estimated 
breeding values of four scarcely recorded wood quality traits 
under different scenarios. Our main findings indicated that 
improvements in accuracy and a reduction in bias can be 
generally obtained by adding records on predictor traits 

Fig. 5  Relative performance (in 
percent) in predictive accuracy 
over the classical pedigree-
based ABLUP single-trait 
model of trees in the validation 
sets when both recorded predic-
tor growth traits are added in 
both training and validation 
sets and genomic information 
are used together. Significance 
are noted as not statistically 
significant (ns; p-value > 0.05), 
*statistically significant 0.01 
< p-value < 0.05, **statisti-
cally highly significant (p-value 
<0.01)
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from candidate trees, but not always. However, the addi-
tion of genomic information did not improve the predictive 
accuracy significantly compared to the standard ABLUP 
models. To the best of our knowledge, the impact of utiliz-
ing predictor growth traits along with genomic information 
to enhance the accuracy of estimated breeding values for 
scarcely recorded wood quality traits have not been previ-
ously studied in forest tree species

Heritability and correlations

Heritability and correlation estimates for the growth and 
wood quality traits studied in our E. grandis population 
(Table 2) are in the line with those reported previously for 
E. grandis (Mphahlele et al. 2020) and other Eucalyptus 
species (Hamilton et al. 2009; Stackpole et al. 2011; Mak-
ouanzi et al. 2018). However, Harrand et al. (2009) previ-
ously reported higher heritability estimates in an E. grandis 
population at age 4.5, varying from 0.08 to 0.34 for diameter 
and from 0.09 to 0.37 for height. Additive genetic corre-
lations for the wood quality traits studied had a relatively 
high standard error, likely associated with the low number 
of assessed trees for these wood quality traits (Table 2).

The literature suggests that beneficial scenarios for 
including predictor traits under multiple-trait models involve 
a relatively low heritable target trait that is complemented 
with records on an intensively recorded and genetically 
correlated predictor trait, which exhibits a large heritability 
(Schulthess et al. 2016; Sun et al. 2017). This ideal scenario 
was not generally met in the data used in this study, where 
the two predictor growth traits showed lower heritability 
than the target wood quality traits, and where genetic cor-
relations ranged from low to moderate (Table 2). However, 
the addition of more than one predictor trait may have helped 
to counteract this setting in some traits. In fact, we observed 
an improvement in the predictive accuracy of the estimated 
breeding values of the target traits PY and CEL traits when 
we added records on both predictor traits (DBH and HT) in 
the datasets.

ssGBLUP vs. ABLUP

Both ABLUP and ssGBLUP models were fitted in the 
nine scenarios studied (Table 1 and Online Resource 5). In 
theory, a better predictive performance would be expected 
when adding genomic information (ssGBLUP models). This 
improved performance would be attributed to the ability of 
genomic models to account for, and predict, differences 
in the Mendelian sampling deviation among full- or half-
sib family members (Ashraf et al. 2016), and depends on 
the connectedness between the training and validation sets 
(Pszczola et al. 2012). However, in our study, the ssGB-
LUP models did not outperformed (at least with statistical 

significance) the ABLUP models in terms of the predictive 
accuracy (PA) of the estimated breeding values (Online 
Resource 6 and Fig. 1). This was likely due to the relative 
simple half-sib family structure of the genotyped trees. 
Indeed, the studied population includes a large proportion of 
unrelated trees among the genotyped ones, resulting in small 
coefficients of genomic relationship between individuals in 
the training and validation sets.

The genotyping effort seems to be a critical factor in 
determining the superior performance of ssGBLUP over 
ABLUP, as shown in Eucalyptus (Cappa et al. 2014) and 
conifers (Ratcliffe et al. 2017; Ukrainetz and Mansfield 
2020). In our study, even though 45.14% of the individuals 
analyzed for the target wood quality traits were genotyped 
(Online Resource 2), a relatively low proportion of trees 
with genomic information over the total number of trees 
(17.30%) was analyzed. Ukrainetz and Mansfield (2020) 
did not observe differences in predictive accuracy between 
ABLUP and ssGBLUP when the genotyping effort was 20% 
in growth and wood quality traits of a half-sib and full-sib 
Pinus contorta Dougl. ex. Loud. population. To overcome 
this problem, Bartholomé et al. (2016) in Pinus pinaster, 
suggested that the inclusion of genotypes and phenotypes 
of the parental population in the training set of prediction 
models is an important factor for improving the accuracy of 
the progenies and outperform the ABLUP results.

Scarcely recorded traits, such as wood quality traits and 
disease-related traits, have been focus of research studies 
in Eucalyptus species and conifers populations. However, 
there is considerable disagreement on whether the accuracy 
of breeding values from genomic models (i.e., ssGBLUP 
and GBLUP) increases (Tan et al. 2017; Mphahlele et al. 
2020; Paludeto et al. 2021; Quezada et al. 2022), decreases 
(Resende et al. 2017; Cappa et al. 2019), or does no change 
at all (Ratcliffe et al. 2017; Lenz et al. 2020; Klápště et al. 
2020; Thumma et al. 2022), compared to the accuracy val-
ues obtained from the pedigree-based ABLUP model. In a 
nutshell, the increase, decrease, or no change in the accu-
racy of breeding values from ssGBLUP and ABLUP models 
reported in these previous works could be due to several 
factors. These include (1) different forest species (Eucalypts 
vs. conifers) with different genome size (larger in conifers) 
and genetic structures (half-sib, full-sib), genotyped with 
different effort (Ratcliffe et al. 2017; Ukrainetz and Mans-
field 2020) including or not genotyped parents (Bartholomé 
et al. 2016), and different effective population size (Resende 
et al. 2012); and (2) different analyzed traits (wood quality- 
and disease-related traits) with different genetic architectures 
(Grattapaglia and Resende 2011) and accuracy of pheno-
typic measurements. Moreover, the use of different valida-
tion methods used to compare the accuracy from genomic 
approaches to classical pedigree-based could also be a factor 
(Putz et al. 2018).
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As discussed by Putz et al. (2018), the accuracy valida-
tion methods play a critical role in comparing alternative 
genetic model evaluations. In this study, the accuracies were 
calculated from the correlation between the estimated breed-
ing values for target traits in the validated trees and their 
respective adjusted phenotypes divided by the square root 
of heritability. In any case, as stated by Misztal (2016), the 
properties of each particular validation method can be clari-
fied analyzing the contributions to the estimated breeding 
values for validation trees as we did in this study.

Inclusion of predictor trait/s in the training set

In this study, we observed equal or lower performance in 
the predictive accuracy (PA) of breeding values of the target 
scarcely recorded wood quality traits when fitting the multiple-
trait (MT) models (two- or three-trait) compared to the single-
trait (ST) models, in the scenarios where records on predictor 
traits were only available in the training sets (Fig. 2). When 
connecting these results to the contributions to the breeding 
value of a target validation tree, it is important to note that 
when the phenotypic records of the predictor growth trait/s 
in the MT (two- and three-trait) models are not available for a 
validation tree, the factor/s that multiplies the partial regression 
coefficient becomes zero. For instance, in the ABLUP models, 
this means that the equation of the estimated breeding value 
of a given tree for a target wood quality trait ( ̂uis ) is equal, in 
both the ST- and MT-ABLUP models, to the contribution of 
its mother ( 1

2
ûms

 ) (maternal contribution). As a consequence, 
differences observed in PA between the ST and MT models 
are only due to the different maternal contributions that arise 
from the MT models. For the ssGBLUP models, in addition 
to the maternal contribution, we have the contribution of the 
genomic information from the predictor growth traits of geno-
typed trees. However, our empirical dataset showed that these 
contributions from the genotyped trees were of low magni-
tude, as evidenced by the lack of differences in PA between the 
ABLUP and ssGBLUP models (see discussion above).

Inclusion of predictor trait/s in both, the training 
and validation sets

When predictor growth traits were recorded on trees of both, 
the training and validation sets, the performance of the MT-
ABLUP and -ssGBLUP models over the ST models, in terms 
of PA, varied depending on the inclusion of either one or two 
predictor traits (Fig. 3). The inclusion of a single predictor 
trait in the models did not increase PA for the target wood 
quality traits studied, except for the target trait CEL and the 
growth predictor trait HT (significant increments 5.87% and 
4.38% for ABLUP and ssGBLUP, respectively). Further-
more, significant decreases in the PA for the two-trait models 
were observed for the EXT trait with DBH and WD with 

DBH and with HT. These results can be attributed to the low 
genetic correlations between these predictor and target traits 
(e.g., Jia and Jannink 2012) (absolute values < 0.426, 
Table 2), which are proportional to the partial regression 
coefficients in the two-trait models ( �BTps ) (see equations 
above). In other words, in the two-trait models, the covari-
ance (i.e., the off-diagonal elements of the (co) variance 
matrix of genetic effects, Σu) between the predictor and tar-
get traits is the same in the numerator of the estimated 
genetic correlations ( ̂rAij

 ) and in the partial regression coef-
ficients ( �BTps ), and thus, both are proportional. Rambolari-
manana et al. (2018) also reported a similar predictive ability 
between the ST approach and the two-trait approach in 
Eucalyptus robusta. Specifically, these authors showed that 
the cross-validation predictive ability of wood chemical 
traits (total lignin and holo-cellulose) from a two-trait mod-
els with one growth trait as predictor (volume), did not differ 
significantly from that achieved by the ST model. The 
authors explained these results by the weak genetic correla-
tion between the growth and wood quality traits studied.

When the two predictor growth traits were jointly included 
in the model, significant gains in PA were observed for the 
target traits PY and CEL compared to the ST models, while 
there were no changes at all for EXT and there was a signifi-
cant loss for WD (Fig. 3). The different performance of these 
three-trait models can be related to the change in the value of 
the partial regression coefficients when switching from a two-
trait to a three-trait model. The magnitude of �TTps , which is 
not proportional to the genetic correlation in the case of the 
three-trait model, increased considerably for the target traits 
PY and CEL (Table 2). However, for the EXT trait, the �TTps 
decreased for DBH (from �BTDBH

 = 0.159, to �TTDBH
 = -0.008, 

Table 2), while remained unchanged for HT (from �BTHT
 = 

0.504, to �TTHT
 = 0.508, Table 2). For the WD trait, there 

were small changes in the magnitude of �TTps , but this partial 
regression coefficient changed sign for HT (from �BTHT

 = 
0.149 to �TTHT

 = -0.188, as shown in Table 2). This change in 
sign could have contributed to the observed decrease in PA 
compared to the other scenarios analyzed (Fig. 3). These 
results highlight that even if the genetic covariance (or cor-
relation) between a predictor trait and a target trait is low the 
inclusion of another predictor trait may change the PA.

Previous studies have already reported a lack of improve-
ment in the predictive accuracy of the target trait breeding val-
ues when information from the predictor traits was added only 
to the training set. On the contrary, they reported an increased 
predictive accuracy when predictor growth traits were recorded 
on both, training and validation sets. This has been reported in 
animal breeding, specifically in beef (Pszczola et al. 2013) and 
dairy cattle (Manzanilla-Pech et al. 2020), as well as in plant 
breeding for crops such as sorghum (Fernandes et al. 2017; 
Velazco et al. 2019), barley (Bhatta et al. 2020), perennial 
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ryegrass (Arojju et al. 2020), and wheat (Rutkoski et al. 2016; 
Sun et al. 2017; Lado et al. 2018; Gaire et al. 2022).

In the scenarios where predictor growth traits were 
included in trees from both the training and validation sets, 
different results were obtained from those previous works 
regarding the superiority of two-trait (BT) models or three-
trait (TT) models over single-trait models. The TT models 
have been found superior to the BT models in comparison 
to the ST, as reported in previous studies on animal breeding 
(Manzanilla-Pech et al. 2020) and plant breeding (e.g., Gaire 
et al. 2022). However, other works concluded that if the aim 
is to improve the predictive accuracy of one target scarcely 
recorded trait, a model with just one predictor trait will be 
more accurate than those that incorporate more than one pre-
dictor trait (e.g., Lenz et al. 2020). Our results suggest a gain 
in accuracy of a particular target trait due to the inclusion of 
a second predictor trait in training and validation sets.

The patterns observed when comparing performance of 
the MT models with records on predictor traits in the training 
and validation sets to that of the MT models with records on 
predictor traits only in the training set (Fig. 4) were simi-
lar to those observed when comparing the performance of 
the MT models over the ST models (Fig. 3). These results 
are expected because when the validation trees do not have 
records for predictor trait/s, the contributions to the breeding 
values of the target traits is the same as in the ST models. 
However, generally the PA gains from the MT models with 
records of growth traits in the training and validation sets were 
higher when those values were compared with the MT models 
(Fig. 4) compared to those from the ST model (Fig. 3). This 
could be due to the fact that in the comparisons depicted in 
Fig. 4, the maternal contribution is the same for both, the trees 
with records on predictor traits in the training and validation 
sets and for the trees with records on predictor traits only in 
the training set, whereas in the comparisons depicted in Fig. 3, 
the maternal contributions are different for the ST and MT 
models. In addition, our results showed that these additional 
PA gains varied between traits (Fig. 4). We observed higher 
PA gains for the PY and CEL traits and no differences for 
EXT. Meanwhile for WD, the negative effect on PA due to 
the inclusion of growth traits, especially DBH, was confirmed.

Inclusion of both genomic and predictor traits 
in training and validation sets

To study the impact on the predictive accuracies and bias of the 
estimated breeding values of the different target traits when both 
genomic information and recorded predictor traits were added 
on both, the training and validation sets, results of the MT-ssG-
BLUP model were compared to those of the ST-ABLUP model 
(Fig. 5 and Online Resource 6, and Online Resource 7). Our 
results showed a large and significant increment in PA for PY 
(17.77%) and CEL (12.49%). As expected, these increments on 

the PA of these target wood quality traits were slightly higher 
than when considering separately the inclusion of genomic infor-
mation through the ssGBLUP models (Fig. 1) or the addition of 
predictor growth traits in the training and validation sets (Fig. 3). 
In this study, the addition of predictor growth traits in the training 
and validation sets had a greater impact on the PA of the esti-
mated breeding values of the target wood quality traits than the 
inclusion of genomic information through the ssGBLUP models. 
As we discussed before, to improve the contribution of genomic 
information, we think it is necessary to increase the number of 
genotyped trees (i.e., greater genotyping effort) and/or to include 
genotyped and phenotyped parents in the training set.

While our study provides promising results for the use of 
genomic information and predictor traits on both the training 
and validation sets for the PY and CEL wood quality traits in 
this particular population of E. grandis, no gains in PA were 
observed for EXT, and there were even losses for WD. There-
fore, there are some limitations to consider when applying these 
findings to other tree species and traits. For example, as pre-
viously discussed, the effectiveness of the gain in PA in this 
context may depend on the relatedness between the training 
and validation populations, the amount of genotypes available, 
and the genetic (co) variance components of the predictor and 
target traits. Moreover, difficulties may arise in applying our 
approach in real-world breeding programs, including the insta-
bility of genetic correlations over time due to varying levels 
of emphasis placed on different traits in the selection index. 
However, we believe that there are opportunities to build on 
our findings in future research. For instance, as high-throughput 
field phenotyping (HTFP) platforms become widely adopted in 
forest genetic trials (Ludovisi et al. 2017; Solvin et al. 2020), 
traits collected from these HTFP platforms and genetically cor-
related with the scarcely recorded target trait could be consid-
ered as predictor traits to improve rates of genetic gain for the 
target traits in GS (Sun et al. 2017). Future research could also 
explore the use of other modeling approaches, such as structural 
equation models, to enhance the accuracy of predicted breeding 
values for target scarcely traits in forest tree species.

Conclusion

Our study using the E. grandis population showed that adding 
records on predictor growth traits in trees of both, training and 
validation sets, together with genomic information, improves 
the predictive accuracy of estimated breeding values of scarcely 
recorded PY and CEL traits. However, when records on predictor 
traits were recorded only in the training set, the accuracy showed 
no increase for the target wood quality traits. For this dataset, the 
inclusion of genomic information did not significantly increase 
the predictive accuracy of the studied wood quality traits. These 
changes in the predictive accuracies were explained by the varia-
tions in three components: maternal contributions, contribution/s 
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from all the predictors traits, and contributions from genotyped 
trees. The relative weights of these contributions depend on the 
estimated (co) variance components. We conclude then that there 
is not a “universal” rule regarding the use of genomic informa-
tion and records on predictor traits. Success depends on the 
relatedness between the training and validation populations, the 
amount of genotypes available, and all the genetic (co) variance 
components of the predictor and target traits.

Appendix

Contributions to the predicted breeding values of trees with-
out records on a target trait from related trees under the 
single-trait and multiple-trait ABLUP and ssGBLUP models

This section describes the derivation of the equations cor-
responding to the contributions to the predicted breeding values 
of open-pollinated trees without phenotype on a target trait from 
related trees under the single-trait and multiple-trait pedigree-
based ABLUP and combined pedigree-genomic ssGBLUP 
models.

Single‑trait model

Let the mixed model equations (MME) for the single-trait 
pedigree-based ABLUP model for a single target trait (Eq. (1) 
in the manuscript) be:

All vectors of fixed and random effects and incidence matri-
ces of Eq. (4) were described in the manuscript (Eq. (1)).

The equations for the tree´s predicted breeding values ( ̂u ) 
from the fourth block of MME (4) are:

Operating we find out that,

For a row corresponding to a tree (i) without records on 
a target trait within this block, the corresponding row on the 
matrix Z′

u
 is null, whereas the A−1 matrix has non-zero off-

diagonals only for the individual’s mother (m) (Mrode 2005; 
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û

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

X�R−1y

Z�

r
R−1y

Z�

b
R−1y

Z�

u
R−1y

⎤⎥⎥⎥⎥⎦

Z�

u
R−1X�̂ + Z�

u
R−1Z

r
r̂ + Z�

u
R−1Z

b
b̂ +

[
Z�

u
R−1Z

u
+ A−1

(
1

𝜎2
u

)]
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û

= Z�

u
R−1y −

(
Z�

u
R−1X�̂ + Z�

u
R−1Z

r
r̂ + Z�

u
R−1Z

b
b̂
)

page 46). Then, the breeding value solution for a tree i with-
out records for any target scarcely recorded trait s ( ̂uis ) is:

where ami are the off-diagonal elements of the A−1 matrix cor-
responding to the tree i and its mother m, and aii is the diagonal 
element of the A−1 matrix corresponding to the tree i. Given 
that, the open-pollinated trees have only one known parent 
(the mother) and have no progeny, ami is equal to −2

/
3 and aii 

is equal to 4
/
3 (Henderson 1976). Therefore,

For the single-trait ssGBLUP model, the inverse of A-matrix 
in the MME (4) (A−1) is replaced by the inverse of H-matrix 
(H−1) and the solutions for the predicted breeding values are:

 
   For a row corresponding to genotyped tree i without 
records, the H−1 matrix has non-zero off-diagonals for the 
individual’s mother (m) and the remaining genotyped indi-
viduals (j). Therefore, the breeding value solution for a geno-
typed tree i without records for any target scarcely recorded 
trait s ( ̂uis ) may be written:
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ûms

(5)ûis =
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where hmi are the off-diagonal element of the H−1 matrix 
corresponding to the tree i and its mother m, and hii are the 
diagonal element of the H−1 matrix corresponding to the tree 
i. Since there are no genotyped mothers, the element hmi is 
equal to ami for all trees 

(
hmi = ami = − 2

/
3

)
 , and the con-

tribution of genomic information for the single-trait model 
[1], GISTs

 , is:

Finally, the equation for the predicted breeding values 
of non-genotyped trees is equal to that obtained by ABLUP 
(Eq. (5)).

Multiple‑trait models

Let the MME for the multiple-trait ABLUP model for one 
target trait (s) and one or more predictor (p) traits be:

We use the subscript l for all traits: l = 1, 2, … , t and 
the subscript p for the predictor trait/s: p = 1, 2, …, t-1. 
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R−1 is the inverse of the error covariance matrix defined 
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ance matrices of the replicate, incomplete block and addi-
tive genetic random effects, respectively, of order t x t. The 
symbols ⊕, ⊗and ′ indicate the direct sum of matrices 
notation, Kronecker product and the transpose operation, 
respectively.

The equations for the tree´s predicted breeding values 
( ̂u ), taken from the fourth block of MME (8), are:
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ûms

−

∑
j,j≠i h

ijûjs
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For a row corresponding to tree i without records on the 
target trait s, each column of Zu has all elements equal to 
0 except for 1´s in the row belonging the individual i with 
phenotype for the p predictor trait/s. In turn, the A−1 matrix 
has non-zero off-diagonals only for the individual’s mother 
(m) (Mrode 2005; page 46). Then, the breeding value solu-
tion for a tree i without records for the target trait s ( ̂uis ) is:

rearranging,

clearing ûis,

or, more succinctly,
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aiiûip1

+ amiûmp1
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Let us write, now the partial regression coefficients of target 
trait s on predictor trait/s p ( �ps) as:

Then, the equation for the breeding value solution of a 
tree i without records on the target trait s from a multiple-trait 
ABLUP model is:

For the multiple-trait ssGBLUP model, the inverse of 
A-matrix in the MME (8) (A−1) is replaced by the inverse of 
H-matrix (H−1) and the solutions for the breeding values are:

Specifically, the breeding value solution for a genotyped 
tree i without records on the target trait s ( ̂uis ) is equal to:

or, more succinctly, is:

where the contribution of the genomic information under 
the multiple-trait ssGBLUP model, GIMT, is:

Again, the equation for the predicted breeding values of 
non-genotyped trees is equal to that obtained by ABLUP 
(Eq. (10)).
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