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Abstract
Tree crops are explored for food sources and raw materials for industrial sectors. However, breeding tree species to meet 
current economic demands amid forecasts of agricultural resource scarcity and climate instability is a challenging task. This 
is especially true due to their long juvenile phase, often difficulties related to reproductive biology, and scarcity of genetic 
resources, which largely delays phenotyping and selection of segregating populations. On the other hand, genome sequence 
and transcriptomic data are becoming increasingly available for perennial crops, along with optimized protocols for genetic 
transformation and in vitro regeneration. Due to the development of these fields altogether and the advances in gene editing 
technologies, it is now possible to glimpse the design of tree crops with optimized traits for cultivation. We review the status 
of genome projects and the application of CRISPR-Cas-based systems in tree crops, alongside an exploration of gene edit-
ing technologies to develop perennial crop ideotypes. Herein, we seek to raise attention to the capabilities and potential of 
crop designing applied to tree species and to the opportunity that we have, as a society, to create stepwise strategies to tailor 
the breeding of perennial crops in the context of the current environmental challenges and increasing population demands.
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Introduction

The organization and persistence of human society depend 
essentially on crop cultivation, which is the basis of food 
supply as well as many raw materials for industrial uses. 

Among the crops we currently cultivate around the globe, 
many are arboreal plants used to obtain a diverse range of 
products, such as fruits, nuts, oils, syrup, rubber, and ligno-
cellulose-based products such as timber, fiber, charcoal, and 
cork. As perennial crops, their cultivation requires a long-
term commitment of resources by the farmer, which cannot 
be easily changed according to market fluctuations. Beyond 
the intrinsic difficulties related to tending to a plant to har-
vest its commercial products, many tree species have been 
domesticated only recently and still display many non-fixed 
traits, particularly clonally propagated species (Spengler, 
2019). For most tree crops, compared to annual crops, breed-
ing is still in its infancy due mostly to the time required to 
surpass the juvenile phase of a tree (some requiring several 
years and even decades) (Neale et al. 2017) and the deci-
sion of defining varieties as clonally propagated genotypes 
selected from segregating populations.

Our ability to cultivate crops to provide resources to meet 
human needs is fundamental for the continued development 
of agriculture. Increasing yields and quality of primary prod-
ucts have been, to a large extent, the result of scientifically 
informed breeding, which was a pillar of the first Green Rev-
olution. Since then, technological leaps have led to transfor-
mational improvements in our ability to modify plant traits 
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through genetic manipulation. The recent CRISPR-based 
gene-editing technology and the advancements in plant 
molecular genetics and genomics are leading us toward the 
fourth generation of crop improvement, marked by the pre-
cise and fast breeding of traits informed by gene function 
and an enhanced ability to quickly tailor crops to specific 
demands of farmers and consumers while maintaining the 
sustainability of agricultural systems (Fernie and Yan 2019).

At this point, gene editing has already been applied to 
some arboreal plants, e.g., poplar (Populus tomentosa) (Fan 
et al. 2015), coffee (Coffea canephora) (Breitler et al. 2018), 
apple (Malus domestica) (Charrier et al. 2019), and pomelo 
(Citrus maxima) (Jia and Wang 2020). However, the chal-
lenges of carrying out progeny studies, genome projects, or 
even manipulating plants in vitro can hamper the broader 
application of this technology to tree species. Still, in envi-
sioning the potential and expanding the capacity of CRISPR-
based genome editing, as demonstrated by recent advances 
in base editing (Grünewald et al. 2020) and the development 
of prime editing (Anzalone et al. 2019; Lin et al. 2020), 
many possibilities remain to be explored for refining pipe-
lines of tree genetic improvement, including the domesti-
cation of species that are not conventionally cultivated for 
commercial purposes.

When producers (in small farms or big companies) decide 
to cultivate tree crops, they expect the plants to commer-
cially produce for many years or even decades to offset the 
initial investment and opportunity costs. Therefore, tree 
breeding programs must consider limited farm inputs and 
climate resilience for sustainable production. The use of 
gene editing to either directly solve breeding constraints or 
identify the causal genes of important traits will assist in 
the establishment of feasible roadmaps for cultivar improve-
ment. Alongside the focus on elite varieties of established 
tree crops, a more diversified panel of species can now be 
achieved through modern domestication via gene editing of 
potential wild crops to innovate by increasing cultivation 
diversity and creating new commercial niches for primary 
products.

The examples are many and widespread across the globe 
of native species awaiting domestication or which are not 
explored at its fullest despite their great potential, such as 
pawpaw (Asimina triloba, Annonaceae) and black walnut 
(Juglans nigra, Juglandaceae) from the eastern USA; many 
Myrtaceae species native to South America, such as gabi-
roba and cambuci (Campomanesia spp.), savanna pear, 
uvaia, cagaita, and the Brazilian cherry or grumixama (all 
Eugenia spp.); red bush apple or bemburrtyak (Syzygium 
suborbiculare, Myrtaceae) from Australia; Malabar plum or 
jambolao (Syzygium cumini, Myrtaceae) and emblic (Phyl-
lanthus emblica, Phyllanthaceae) from the Indian subcon-
tinent; jackfruit (Artocarpus heterophyllus, Moraceae), star 
fruit (Averrhoa carambola, Oxalidaceae), the Sapindaceae 

rambutan (Nephelium lappaceum) and lychee (Litchi chinen-
sis) from Asia; marula (Sclerocarya birrea, Anacardiaceae) 
and mongongo nut (Schinziophyton rautanenii, Euphorbi-
aceae) from Africa, to name a few species of edible fruits. 
Even though some of these species are commercially pro-
duced, cultivation could be facilitated mainly by taming sev-
eral traits (e.g., plant size and architecture, removing toxic 
metabolites, fruit shape, uniform ripening, and improved 
post-harvest qualities).

Despite the initial hurdles of awaiting years for commer-
cial production to start atop breeding difficulties, tree crops 
fit perfectly into the perspective of investing in perennial 
plants to achieve agriculture sustainability because they do 
not require annual soil disturbances, need much less energy 
to cultivate than annual crops, have a much lower carbon 
footprint, and contributing to carbon sequestration and stor-
age (Crews et al. 2018; DeHaan et al. 2020). Therefore, 
investing in improving cultivated species and expanding tree 
crop diversity in agriculture is imperative to meet the current 
environmental needs while keeping up with the demands of 
an increasing population in the twenty-first century. Here 
we explore this scenario in light of plant genomics and gene 
editing technology capabilities.

The challenges of breeding of perennials: 
genomics and genetic modification of tree 
crops

Tree crops are defined mainly by three characteristics: an 
elongated, erect stem (often leading to a large plant) with 
a woody structure (lignified stem), and a perennial growth 
habit that produce food or industrial raw material (Neale 
et al. 2017). Humans cultivate a very long connection with 
trees by consuming their fruits and nuts already a signifi-
cant dietary portion of hominids and hunter-gatherers. Even 
though this relationship existed for many millennia, the 
process of tree domestication differed from that of annual 
crops, mainly because the selection of genetic variants was 
followed by clonal (asexual) propagation in many cases, ulti-
mately leading to the modern cultivated varieties without 
fixed mutations (Spengler 2019). This means that, due to 
the high level of heterozygosity in their genomes (often due 
to obligatory cross-pollination in allogamous species), the 
progeny from an ideotype tree may not exhibit desired phe-
notypes because the traits are segregating wildly.

Most commercial tree improvement programs seek to 
mine the natural genetic variation in wild populations for 
desirable traits. The main aim is to maximize genetic gain 
per time unit related to yield and sustainability with the 
highest economic efficiency. To this end, breeding programs 
go through a cyclical selection process from a genetic base 
(e.g., natural populations and germplasm banks) to establish 
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a breeding population. Often, breeders cast a wide net to 
establish their base population from a broad set of prov-
enances, such as landraces, hybrids, and exotic varieties. 
They continue to infuse their base population with diverse 
genotypes at each generation, aiming to introgress favorable 
or new traits and reduce inbreeding depression to select the 
“best” genotypes within a given cycle. The criteria for “best” 
genotypes are defined by the breeding goals and targeted 
hardiness zones (edaphoclimatic conditions).

Establishing the genetic merit (breeding value) of a given 
individual may take several years for tree species, given 
their lengthy sexual reproduction cycle and poor juvenile-
mature correlation for most traits of commercial importance. 
The breeding cycle length is determined by the duration of 
the plant’s juvenile phase, which corresponds to the time 
required for the first flowering to occur and can take from 
three years (e.g., stone fruit and citrus) to up to more than a 
decade (e.g., persimmon, avocado, and olive) when planted 
from seeds (Nocker and Gardiner 2014; Moreno-Alías et al. 
2010). This extended juvenile phase of arboreal plants com-
pared to annual crops also hampers the development of high-
resolution genetic maps, which are needed for establishing 
the position of markers on linkage groups or chromosomes.

Plenty of genomic resources for tree crops have been 
developed. The first tree to have its genome sequenced 
and assembled to the chromosome level was Populus 
trichocarpa (poplar, Tuskan et al. 2006), which was pub-
lished just 6 years after the publication of the first angio-
sperm genome (Arabidopsis thaliana, Kaul et al. 2000). We 
have summarized 46 arboreal genome publications since 
poplar, among which the most recurring genus is Citrus 
(Table 1), and some recent examples comprise the oil-tea 
tree (Camellia chekiangoleosa, Shen et al. 2022), the tropi-
cal fruit tree, lychee (Litchi chinensis, HU et al. 2022) and 
a wild, caffeine-free coffee species (Coffea humblotiana, 
Raharimalala et al. 2021).

Genomic information on tree crops allows for advances 
in understanding plant evolution (Wu et al. 2014; Rendón-
Anaya et al. 2019; Liu et al. 2020b), the dynamics of gene 
families (Pinto et al. 2019; Zhang et al. 2021b), genome-
wide exploration, association studies (Pinto et al. 2021; 
Fahrenkrog et al. 2017; Zhang et al. 2021a), and population 
genomics (Wang et al. 2020; Chhetri et al. 2019). Also, the 
sequencing and analysis of the genetic pools of crop rela-
tives, called pan-genomics (Gao et al. 2019; Alonge et al. 
2020; Jayakodi et al. 2020; Tao et al. 2021), is shedding new 
light on understanding the influence of structural variants 
on traits and advancing gene discovery. Among tree crops, 
such resource is available for poplar and apple (Pinosio et al. 
2016; Sun et al. 2020), and opportunities are wide open for 
other species.

Using genomic information with recombinant DNA 
technologies allied to tissue culture will pave the way to 

innovative genetic engineering in tree crops. Efficient 
in vitro regeneration and genetic transformation protocols 
are established for many tree crops with sequenced genomes. 
However, due to technical difficulties of the genetic trans-
formation and regeneration process, besides the nontech-
nical aspects related to regulatory agencies and consumer 
acceptance, trees make less than 3% of the total approved 
transgenic crops worldwide (ISAAA 2022). The recent tech-
nological expansion of genetic breeding provided by cheaper 
genome sequencing and efficient gene editing (Jinek et al. 
2012; Nadakuduti and Enciso-Rodríguez 2021) is helping to 
balance the cost–benefit for tree biotechnology and genetic 
research and leading scientists and companies to embrace 
gene editing to create new tree varieties. We propose that 
the road be open for de novo domestication of wild trees 
(Zsögön et al. 2018; Gasparini et al. 2021) with commercial 
potential or improve traits of semi-domesticated arboreal 
species (Petersen et al. 2012; Sganzerla et al. 2021).

A brief analysis of the expanding potential 
of CRISPR‑based gene editing for crop 
genetic improvement

The trajectory of crop improvement is divided into four 
generations: (i) crop domestication and breeding via phe-
notype-based selection performed by independent farmers 
(starting circa 10,000 BCE); (ii) scientific breeding by mat-
ing designs, hybrid breeding, statistical analyses, and the 
use of synthetic fertilizers and pesticides, marked by the 
high yielding dwarf plants that culminated in the first Green 
Revolution (1950–1960); (iii) biotechnology through tissue 
culture, transgenics (genetically-modified organisms, GMO), 
and marker-assisted breeding (second Green Revolution: 
1980–2000s) mainly focused on farming and retailer traits, 
such as the long shelf life products (e.g., Flavr Savr tomato), 
resistance to insects (Bt crops), the herbicide glyphosate 
(roundup ready crops), and the papaya ringspot virus (e.g., 
the rainbow hybrid), in addition to the high-beta-carotene 
rice (golden rice); (iv) which led to the current stage of plant 
breeding, with the advent and ample adoption of genomics, 
precision breeding (including molecular assisted-breeding), 
mining of big data, gene editing, and the rise of artificial 
intelligence (cf. Cheng et al. 2021), and often referred to as 
the third Green Revolution.

The current stage of crop improvement is marked by 
efforts to increase the sustainability of agricultural sys-
tems imposed by social and environmental pressures 
(Fernie and Yan 2019), facilitate farming and trading, 
as well as improve consumer-oriented traits such as food 
nutrition (e.g., high-lycopene and high-anthocyanin 
tomatoes, optimal lipid composition in canola), size and 
shape (watermelon and pepper), aspect (e.g., the frivolous 
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non-browning Arctic apple), and scent and aroma (e.g., 
tomatoes and ornamental roses). Often, traits of interest 
are genetically complex due to being multigenic, which 

require specific allelic sets to produce the desired pheno-
type—this is especially the case of drought, temperature 
and salt tolerances, and nutrient uptake and use efficiency.

Table 1  Cultivated tree species with sequenced genomes

*  Public data (fastq files) available in NCBI-SRA, accessed on May 24th, 2022

Tree crop species Common name Genome size # Protein-coding transcripts #Public RNA-
seq samples*

Reference genome publication

Actinidia chinensis Kiwifruit 653 Mb 40.464 322 Huang et al. 2013 (draft); Pilkington et al. 
2018; Wu et al. 2019

Actinidia eriantha Kiwifruit 690.4 Mb 42.988 25 Tang et al. 2019
Annona muricata Soursop 639.6 Mb 23.375 19 Strijk et al. 2021
Azadirachta indica Neem tree N/A N/A 26 Krishnan et al. 2016
Camellia chekiangoleosa Oil-tea tree 2.73 Gb 64.608 56 Shen et al. 2022
Camellia sinensis Tea plant 3.02 Gb 36.951 2496 Xia et al. 2017
Carica papaya Papaya 135 Mb 27.793 229 Ming et al. 2008 (draft)
Cinnamomum kanehirae Stout camphor tree 730.7 Mb 27.899 8 Chaw et al. 2019
Citrus clementina Clementine 301.4 Mb 33.929 59 Wu et al. 2014
Citrus grandis Pomelo 380 Mb 42.886 323 Wang et al. 2017
Citrus ichangensis Ichand papeda 391 Mb 43.103 6 Wang et al. 2017 (draft)
Citrus medica Citron 407 Mb 47.506 33 Wang et al. 2017 (draft)
Citrus reticulata Mandarin orange 370 Mb 42.653 166 Wang et al. 2018a, b (draft)
Citrus sinensis Sweet orange 319 Mb 46.147 836 Xu et al. 2013 (draft); Wu et al. 2014
Coffea canephora Robusta coffee 580 Mb 25.574 287 Denoeud et al. 2014
Coffea humblotiana Wild coffee 420.72 Mb 32.874 4 Raharimalala et al. 2021
Corymbia citriodora Eucalypt 408 Mb 35.632 5 Healey et al. 2021
Elaeis guineensis Oil palm 1.8 Gb 26.059 485 Singh et al. 2013
Eucalyptus grandis Eucalyptus 691 Mb 46.28 255 Myburg et al. 2014
Ficus carica Common fig 248 Mb 36.138 121 Mori et al. 2017
Ficus erecta Wild fig 331.6 Mb 51.806 0 Shirasawa et al. 2020
Handroanthus guayacan Guayacan 339.77 Mb 70,146 (contigs) 0 Burley et al. 2021
Hevea brasiliensis Rubber tree 1.46 Gb 43.792 390 Tang et al. 2016
Jacaranda copaia Parapará 616.19 Mb 53,041 (contigs) 0 Burley et al. 2021
Jacaranda mimosifolia Jacaranda 707.32 Mb 30.507 4 Wang et al. 2021
Juglans regia Walnut 606 Mb 32.496 351 Martinez-García et al. 2016
Litchi chinensis Lychee 470 Mb 31.896 344 Hu et al. 2022
Lycium barbarum Wolfberry 1.67 Gb 33.581 75 Cao et al. 2021
Malus domestica Apple tree 688 Mb 45.166 2055 Velasco et al. 2010; Daccord et al. 2017
Mangifera indica Mango tree 392.9 Mb 41.251 222 Wang et al. 2020
Melaleuca alternifolia Tea tree 326 Mb 37.266 18 Voelker et al. 2021 (draft)
Morus alba Mulberry 346.4 Mb N/A 287 Jiao et al. 2020
Olea europaea Olive tree 1.14 Gb 50.684 460 Cruz et al. 2016
Persea americana Avocado N/A 24.616 181 Rendón-Anaya et al. 2019
Pinus taeda Pine 22 Gb N/A 207 Zimin et al. 2014; Zimin et al. 2017
Populus trichocarpa Poplar 392.2 Mb 52.400 1637 Tuskan et al. 2006
Prunus avium Sweet cherry 272.4 Mb 43.349 393 Shirasawa et al. 2017
Prunus persica Peach 227.4 Mb 47.089 1267 Verde et al. 2013
Psidium guajava Guava 443.8 Mb 25.601 51 Feng et al. 2021
Punica granatum Pomegranate 274 Mb 30.903 243 Qin et al. 2017; Yuan et al. 2018
Pyrus betuleafolia Wild pear 532.7 Mb 59.552 30 Dong et al. 2020
Pyrus bretschneideri Pear 512 Mb 42.812 269 Wu et al. 2013
Pyrus communis European pear 577 Mb 43.419 222 Chagné et al. 2014
Tectona grandis Teak 338 Mb 46.826 15 Zhao et al. 2019
Theobroma cacao Cocoa tree 346 Mb 39.991 196 Argout et al. 2011
Vitis vinifera Grapevine 487 Mb 55.564 6352 Jaillon et al. 2007
Ziziphus jujuba Jujube 437.65 Mb 32.808 304 Liu et al. 2014
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The advent of the CRISPR-based gene editing technol-
ogy occurred after a demonstration that the bacteria immu-
nity system could be harnessed as a molecular tool to per-
form programmed genetic changes in higher organisms less 
than a decade ago (Jinek et al. 2012—for a comprehensive 
historical review, cf. Lander 2016). Since its adaptation as a 
molecular tool, the key ability of the CRISPR system to be 
explored and used is the programmable DNA double-strand 
break (DSB), which is catalyzed by the nuclease Cas9 [and 
other type-2 Cas nucleases, such as Cpf1 (Zetsche et al. 
2015, 2017)], guided by a programmable single-stranded 
guide RNA (sgRNA or just guide RNA), designed to be 
complementary to a targeted genome sequence (Jinek et al. 
2012). DSB is repaired by the innate DNA repair machin-
ery of the cell through two different pathways, the non-
homologous end joining (NHEJ) and homology-directed 
repair (HDR) (Jiang and Doudna 2017). The error-prone 
NHEJ is the most used option in somatic plant cells (Rozov 
et al. 2019). Due to the repeated action of the Cas nuclease 

on the targeted site, the region tends to be misrepaired, 
leading to a permanent mutation.

The disruption in the genetic code caused by the DSB 
misrepair can be targeted to virtually any segment of an 
organism’s genome by designing a complementary sgRNA. 
When targeting an open reading frame (ORF) of a gene, it 
can potentially disrupt the protein function; in the case of 
a UTR-ORF (uORF), it may affect the translation of a gene 
downstream (principal ORF), and when the mutation is pro-
grammed to a promoter region, it can influence its transcrip-
tional activity (Fig. 1). Despite being less common, somatic 
plant cells can also use the HDR pathway in response to 
DSB. Incorporating a selected DNA fragment into a desired 
genomic position is possible by delivering a donor DNA 
template and the CRISPR-Cas reagents (i.e., Cas enzyme 
and sgRNA). Although this approach is technically chal-
lenging, significant progress has been made in developing 
this knock-in strategy in plants (e.g., rice: Lu et al. 2020; 
Dong et al. 2020).

Mutation

Homology-directed

repair

Fragment insertion

or knock-in

+ donor template

Mutation

Base editing

PROMOTER: Transcriptional regulation

uORF: Translational regulation

ORF: Knock-out (DSB) or Knock-down (Binding)

PROMOTER: Transcriptional regulation

uORF: Translational regulation

ORF: Knock-out (DSB) or Knock-down (Binding)

Cas (active nuclease sites)
 + sgRNA

Mutated RuVC AND
HNH domains

+ citidine and/or
adenine deaminase

+ activator
or repressor+ methyl-

transferase

+ reporter

Epigenetic

modification

Transcriptional

regulation

DNA fragment

localization

Prime editing

+ pegRNA and
reverse transcriptase

+ Spo11

Influence on meiotic
recombination frequency

Mutated RuVC OR
HNH domains

Fig. 1  The versatility of CRISPR systems. Cas proteins complexed 
with sgRNAs promote DSB, which can either generate mutations 
through the endogenous nonhomologous end joining (NHEJ) path-
way or induce gene insertions through the homology-directed repair 
(HDR) pathway when a template is available. An enzymatically dead 
protein (dCas9) can be harnessed to assist with varied functions via 
protein fusions, such as transcriptional regulation, epigenetic modi-

fication, DNA fragment localization, and enhanced meiotic recom-
bination. A Cas9 in which only one DNase domain is inactivated 
functions as a nickase (nCas9) by catalyzing one-strand DNA breaks 
and is used for base editing and prime editing. Mutations targeted to 
promoter regions, open reading frames (ORFs), or untranslated ORFs 
(uORFs) can induce transcriptional changes, knock out or knockdown 
of gene functions, and translational rates, respectively
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Beyond the outstanding breeding potential of the original 
DSB-inducing CRISPR-Cas system, manipulating the cata-
lytic Cas9 DNase domains (RuvC and HNH) made it pos-
sible to induce single-strand breaks (nicking) on the DNA 
by deactivating either of the domains (nickase: nCas9) or 
turning the nuclease into a programmable binding protein 
by eliminating both DNase activities (dead-Cas9: dCas9) (Qi 
et al. 2013; Ran et al. 2013) (Fig. 1). Fusions of nCas9 and 
dCas9 with other proteins, such as transcriptional activator 
or repressors, cytidine or adenine deaminases, methyltrans-
ferases, reporter proteins, and meiosis-specific endonucle-
ases (e.g., Spo11), creates powerful tools to manipulate tran-
scription, induce specific single-base substitutions (C → T 
and A → G), epigenetic modifications (DNA methylation 
and histone modifications), visualize DNA fragments on the 
chromosome context, and alter recombination rates during 
meiosis (Larson et al. 2013; Paixão et al. 2019; Qin et al. 
2020; Hilton et al. 2015; Dreissig et al. 2017; Sarno et al. 
2017) (Fig. 1). Moreover, different versions of Cas proteins 
can be exploited for the versatility of PAM sites (the DNA 
recognition motif for the Cas protein, such as 5′-NGG for 
Cas9 or 5′TTTV for Cpf1/Cas12a) and substrate affinity 
(e.g., the RNA editing capability of Cas13), making the 
CRISPR system a very versatile molecular tool for genetic 
engineering (Manghwar et al. 2019).

Recent breakthroughs revolving around the CRISPR-Cas 
system include a method to induce small programmable 
insertions on specific genomic locations, named prime edit-
ing (Anzalone et al. 2019), which has already been tested on 
wheat and rice (Lin et al. 2020). Prime editing is based on a 
nickase (nCas9) fused to a reverse transcriptase (RT) guided 
by a prime editing-gRNA (pegRNA) that guides the complex 
to the targeted genomic region and contains the sequence of 
interest to be incorporated into the DNA by the RT action 
after nCas9 performs the nicking. Furthermore, recent devel-
opments extend the toolkit of gene editing in plants, such 
as the C:G to G:C editing system (Chen et al. 2021), the 
compact CRISPR-Casɸ system (Pausch et al. 2020), and 
the development of near-PAMless CRISPR-based genome 
editors (Walton et al. 2020). In addition to the examples 
mentioned above of CRISPR-Cas gene editing approaches 
applied to crops, we refer the reader to recent reviews to 
deepen the comprehension of this technology (Wada et al. 
2020; McCarty et al. 2020; Mishra et al. 2020; Moradpour 
and Abdulah 2020; Anzalone et al. 2020).

CRISPR technology is constantly being adapted and 
generating new tools, reflecting its remarkable adapt-
ability and potential for molecular biology and plant 
breeding. Noteworthy systems include CRISPR-associ-
ated transposases (CAST), which could be harnessed on 
eukaryotes to drive DNA insertions guided by long RNAs 
efficiently, thus surpassing an existing bottleneck on 
genome editing, i.e., the controlled insertion of specific 

sequences to a specific location of the genome (Klompe 
et al. 2019; Strecker et al. 2019; Saito et al. 2021). The 
application of the CRISPR technology in plants is a multi-
disciplinary effort that requires advances in tissue culture 
(e.g., in vitro regeneration rates in recalcitrant species, 
especially trees; and the efficient protoplast manipula-
tion protocols for allogamous or polyploid species), 
genetic transformation, genome sequencing technologies 
and bioinformatics, and vector manipulation based on 
efficient cloning techniques, such as Gibson assembly, 
type-II restriction enzyme-based cloning (golden gate and 
modular cloning), BP/LR recombination (gateway), liga-
tion-independent cloning (LIC), or gene synthesis (e.g., 
Čermák et al. 2017; Hahn et al. 2020).

The expanding capacity of gene editing makes crop 
designing possible and will facilitate the domestication and 
breeding of arboreal species. Figure 2 shows some gene-edit-
ing approaches for performing targeted genetic modifications 
that could be applied to the molecular breeding of trees.

CRISPR‑based approaches applied to tree 
crops

Even though the technology is relatively recent, gene editing 
has already become feasible in tree crops (Table 2; Suppl. 
Table S1). The first CRISPR-edited arboreal plant was the 
Chinese white poplar (Populus tomentosa, Salicaceae), which 
genome was manipulated to knock out the PtoPDS gene, 
resulting in photobleached, albino-like plants as a proof-of-
concept for gene editing (Fan et al. 2015). The same strat-
egy was later applied to other trees for protocol develop-
ment: citrus (Citrus trifoliate × C. sinensis, Rutaceae), apple 
tree (Malus × domestica and Malus prunifolia × M. pumila, 
Rosaceae), grapevine (Vitis vinifera, Vitaceae), coffee (Cof-
fea canephora, Rubiaceae), kiwifruit (Actinidia spp. Actinidi-
aceae), and banana (Musa spp.) (Zhang et al. 2017; Charrier 
et al. 2019; Osakabe et al. 2018; Nakajima et al. 2017; Breitler 
et al. 2018; Wang et al. 2018a, 2018b; Ntui et al. 2020).

Fig. 2  CRISPR applicability for generating stable gene-edited tree 
crops. A Editing of genes already functionally characterized in tree 
species. B Orthologs genes identified in tree genomes and gene edit-
ing. C Genes or QTLs associated with traits of agricultural impor-
tance with potential for gene editing. D Editing anti-crossover fac-
tor genes to increase meiotic recombination. The resulting decrease 
in linkage drag can lead to increased genetic diversity in popula-
tion studies. E Editing domestication traits in wild species to create 
novel, resilient crops through de novo domestication. F Generating 
transgene-free edited plants via the introduction of pre-assembled 
Cas9 and sgRNA into protoplasts. G Genome editing protocols that 
do not rely on tissue culture have been proposed by using RNA virus-
based vectors with mobile sgRNAs or manipulating genes that regu-
late plant meristem identity maintenance via infecting growing plants 
ex vitro
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Table 2  Tree species with genomes manipulated via gene editing

Tree crop species Target Regeneration pathway Mutant phenotype References

Actinidia spp AcPDS shoot organogenesis albino-like shoots Wang et al. 2018a, b
Citrus maxima LOB1 promoter shoot organogenesis canker-resistant citrus 

plants
Jia et al. 2020

Citrus maxima LOB1 promoter shoot organogenesis canker resistant mutants Jia et al. 2022
Citrus paradisi CsLOB1 shoot organogenesis canker-resistant citrus 

plants
Jia et al. 2017

Citrus paradisi CsLOB1 promoter shoot organogenesis canker infection alleviation Jia et al. 2019
Citrus sinensis CsLOB1 promoter shoot organogenesis alleviate symptoms against 

XccΔpthA4:dCsLOB1.3 
(artificial dTALE for 
CsLOB activation)

Jia et al. 2016

Citrus sinensis CsLOB1 promoter shoot organogenesis enhanced canker resistance 
on plants

Peng et al. 2017

Citrus sinensis CsWRKY22 shoot organogenesis decreased susceptibility to 
citrus canker

Wang et al. 2019

Citrus sinensis × Poncirus 
trifoliata

CsTI1/CsTI2 shoot organogenesis Increased shoot branching 
by conversion from thorns

Zhang et al. 2020

Citrus sinensis × Poncirus 
trifoliata

CsCEN shoot organogenesis Modified shoot architec-
ture—axillary meristems 
converted to thorns

Zhang et al. 2021a, b

Citrus trifoliata × C. 
sinensis

CsPDS shoot organogenesis albino-like plants Zhang et al. 2017

Coffea canephora CcPDS indirect somatic embryo-
genesis

Chlorosis and lanceolate 
leaves

Breitler et al. 2018

Eucalyptus grandis × E. 
urophyla

ELFY shoot organogenesis dysregulation on flowering-
related gene's expression; 
underdeveloped or absent 
floral organs

Elorriaga et al. 2021

Fortunell hindsii FhCCD4/FhPDS shoot organogenesis albino-like plants Zhu et al. 2019
M. prunifolia × M. pumila PDS Shoot organogenesis Albino-like plantlets Nishitami et al. 2016
Malus prunifolia × M. 

pumila
PDS Shoot organogenesis Albino-like shoots Osakabe et al. 2018

Malus sieversi mdm-miR171i/MsPDS Shoot organogenesis Increased drought tolerance/
albino-like plantlets

Wang et al. 2020

Malus × domestica MdDIPM4 Shoot organogenesis Reduced susceptibility Pompili et al. 2020
Malus × domestica MdPDS/MdTFL1 Shoot organogenesis Albino-like plantlets Charrier et al. 2019
Musa spp. MaPDS Indirect somatic embryo-

genesis
Albino-like plantlets Ntui et al. 2020

P. × canescens TAC1 Shoot organogenesis Plants with upright oriented 
leaves

Fladung 2021

Parasponia andersonii PanHK4/PanEIN2/
PanNSP1/PanNSP2

Indirect shoot organogen-
esis

Effects on non-symbiotic 
hormonal aspects; 
Absence of nodule forma-
tion; Impaired nodule 
formation

Zeijl et al. 2018

Parasponia andersonii PanNIN/PanNF-YA1 Indirect shoot organogen-
esis

Absence of root nodule 
formation

Bu et al. 2020

Populus alba PalWRKY77 Indirect shoot organogen-
esis

Enhanced salt stress toler-
ance

Jiang et al. 2021

Populus alba × P. glandu-
losa

PdNF-YB21 Shoot organogenesis reduced root growth and 
drought resistance

Zhou et al. 2020

Populus alba × P. glandu-
losa

CSE1/2 Indirect shoot organogen-
esis

Plants with reduced lignin 
content and increased sac-
charification efficiency

Jang et al. 2021
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Table 2  (continued)

Tree crop species Target Regeneration pathway Mutant phenotype References

Populus alba × P. glandu-
losa

PagPDS Indirect shoot organogen-
esis

Albino-like mutants (high 
editing rate—75%)

An et al. 2021

Populus tomentosa PtoPDS Indirect shoot organogen-
esis

Albino-like shoots Fan et al. 2015

Populus tomentosa PtSGT1/2 Shoot organogenesis Mutants with altered sugars 
profile and xylem cellular 
structure

Xue et al. 2021

Populus tremula × P. alba 4CLI/PII Indirect shoot organogen-
esis

Decreased lignin accrual 
and altered monolignol 
composition of biallelic 
mutants

Li et al. 2021

Populus tremula × P. alba CSE1/2 Shoot organogenesis cse1cse2 double mutant 
plants with reduced 
lignin content and growth 
penalty

de Vries et al. 2021

Populus tremula × P. tremu-
loides

PLFY/PAG Shoot organogenesis No phenotype evaluated Elorriaga et al. 2018

Populus tremula × tremu-
loides and Populus 
tremula × alba

PopSAP Not mentioned Sterile mutants with poten-
tial growth penalties

Azeez and Busov 2021

Populus trichocarpa PtrCesAs Shoot organogenesis Mutants with impaired 
cellulose synthesis and 
specific fibers content

Xu et al. 2021

Populus trichocarpa PtrAREB1-2/PtrADA2b-3/
PtrGCN5-1

Indirect shoot organogen-
esis

High drought sensitiveness Li et al. 2019

Populus trichocarpa PtrLBD39 Shoot organogenesis Plants with decreased 
tension wood formation 
and cellulose content; 
increased lignin content

Yu et al. 2022

Populus × canescens BRANCHED-1/2 Shoot organogenesis Enhanced bud outgrowth Muhr et al. 2018
Populus nigra × (P. del-

toides × P. nigra)
PdGNC Indirect shoot organogen-

esis
Severe retarded growth 

and enhanced secondary 
xylem development

An et al. 2020

Pyrus communis PcPDS/PcALS Shoot organogenesis Chlorsulfuron resistant 
lines/albino-like plants

Malabarba et al. 2020

Pyrus communis PcTFL1 Shoot organogenesis vegetative growth cessation Charrier et al. 2019
V. vinifera cv. Chasse-

las × V. berlandieri
UFGT/CBF4 Indirect embryogenesis Mutants with higher expres-

sion of the target genes
Ren et al. 2022

Vitis vinifera idNDH Indirect somatic embryo-
genesis

Not detected Ren et al. 2016

Vitis vinifera VvWRKY52 Indirect somatic embryo-
genesis

Increased resistance to 
Botrytis cinerea

Wang et al. 2018a, b

Vitis vinifera VvPDS Indirect somatic embryo-
genesis

Albino-like plantlets Nakajima et al. 2017

Vitis vinifera TAS4/MybA7 Indirect somatic embryo-
genesis

Not detected Sunitha and Rock 2020

Vitis vinifera TMT1/2/PDS Indirect somatic embryo-
genesis

Albino-like plantlets/
reduced sugar levels

Ren et al. 2021

Vitis vinifera VvCCD7/VvCCD8 Indirect somatic embryo-
genesis

Increased shoot branching Ren et al. 2020

Vitis vinifera VvPR4b Indirect somatic embryo-
genesis

Increased susceptibility to 
P. viticola

Li et al. 2020

Vitis vinifera idNDH Indirect somatic embryo-
genesis

Not mentioned Osakabe et al. 2018

Vitis vinifera VviPLATZ1 Indirect somatic embryo-
genesis

Flowers with reflex stamens Iocco-Corena et al. 2021
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Aiming to optimize gene editing capabilities in plants, 
studies are being conducted to explore the influence of tech-
nical aspects related to the CRISPR system. In V. vinifera, 
VvU3 and VvU6 promoters (native from V. vinifera) proved 
to be worth integrating a CRISPR-based editing strategy, as 
an increase of more than threefold sgRNA expression was 
achieved when regulated by these promoters compared to 
AtU6 (from A. thaliana and commonly applied for many 
crops gene editing strategies). The higher sgRNA expression 
resulted in a higher mutation rate (e.g., 23.53% for the AtU6-
based vector versus 43.24% for VvU6.2) (Ren et al. 2021). 
Similarly, the effect of using different promoters was tested 
in poplar, in which expression of Cas9 driven by the MAS 
promoter (from Mannopine synthase) led to higher muta-
tion rates compared to the conventional double CaMV35S 
promoter (75% for MAS against 67.5% for 2xCaMV35S: 
An et al. 2021).

Base editing enables the exploration of already character-
ized single nucleotide variations to directly modify traits of a 
variety without the need for time-consuming crossing cycles. 
This is especially interesting and was already applied to 
tree crops, such as pear (Pyrus communis, Malabarba et al. 
2020), apple (Malus domestica, Malabarba et al. 2020), and 
poplar (Populus alba × P. glandulosa, Li et al. 2021). For 
pear and apple, researchers explored the cytidine deaminase 
fused to a nickase (SpnCas9-PmCDA1-UGI) to induce base 
edits on the PDS and ALS genes as a proof-of-concept of 
the system feasibility, and they successfully obtained edited 
lines for both targets. Similarly, a broad study was performed 
to optimize the base editing strategy in P. alba × P. glan-
dulosa, in which two cytosine base editor complexes were 
compared (PmCDA1-BE3 and A3A/Y130F-BE3) was tested 
alongside an adenine base editor (ABEmax_V1/V2). High 
rates (> 90%) of base editing were obtained for all tested sys-
tems in at least one of the targets of the study, even though 
the activity window varied significantly between the two 
cytosine editors.

Although some of its potentials has been well demon-
strated, gene editing is still a relatively new technology 
that has yet to reveal its full potential in tree crops. Genetic 
transformation and in vitro regeneration processes remain 
challenging and time-consuming for many species. As a 
result, only a few reports have been published demonstrat-
ing the feasibility of gene editing in trees, in contrast to the 
many publications applying CRISPR systems to modify 
agricultural traits in annual crops. Still, an expanding num-
ber of papers describing mutations induced by CRISPR 
aim to rationally modify traits of interest in trees. One such 
example comprises efforts to cope with canker disease in 
citrus by mutating the coding region and the promoter of 
CsLOB1, which led to the development of resistant plants 
(Jia et al. 2017; Jia and Wang 2020; Jia et al. 2022). Also 
related to pathogen resistance, a WRKY transcription factor 

(VvWRKY52) was targeted in grape (V. vinifera). Its knock-
out resulted in a cv. Thompson seedless mutant lines with 
the reduced spreading of lesions caused by the inoculation 
of Botrytis cinerea (Wang et al. 2018a).

Recent works also demonstrate the capacity to tackle 
morphological traits in tree crops. In citrus (Citrus sinen-
sis × Poncirus trifoliata), scientists identified the molecular 
basis of thorn development regulation and manipulated plant 
architecture by converting thorns into branches through the 
disruption of TI1 and TI2 transcription factors (Zhang et al. 
2020). Moreover, the simultaneous knockout in the poplar of 
two paralogs orthologous to the rice TAC1 (Tiller Angle Con-
trol 1) led to the development of plants with upright-oriented 
leaves. This novel phenotype can be harnessed for commer-
cial plantations to increase the density of individuals planted 
per area, increasing the overall yield (Fladung 2021). Since 
poplar is cultivated for wood and has potential for biofuel 
production, initial studies are also being conducted to investi-
gate the genetic basis of lignin formation and the possibilities 
of manipulating its content, with recent examples of gene 
editing aimed to alter cell wall composition for increased 
saccharification efficiency (Jiang et al. 2021; Li et al. 2021).

Although not considered a crop due to lack of commer-
cial exploration, it is worth highlighting gene-editing work 
conducted on the tropical tree Parasponia andersonii (also 
called Trema andersonii, Cannabaceae). This is a non-legu-
minous, nitrogen-fixing species with a recently developed 
genetic transformation protocol that is relatively fast and 
efficient for the application of CRISPR strategies (Zeijl et al. 
2018). The main studies published so far regards the investi-
gation of the genetic basis of nodule formation for symbiotic 
nitrogen fixation, which has been poorly explored in trees 
(Zeijl et al. 2018; Bu et al. 2020).

Potential gene targets in arboreal species 
for improving cultivation and sustainability

Traits of interest for tree crop cultivation are, in many 
cases, like annual crops (e.g., fruit size, root depth, and 
leaf shape), and the genetic basis governing these aspects 
are also most often conserved in different species. Thus, 
one approach to identifying genes for manipulating trees 
for a given trait is to use the knowledge gained from model 
species and annual crops. For that, in addition to sequence 
similarity, synteny and gene expression profiles should be 
added to improve the process of identifying functional 
orthologs.

For many fruit trees, larger fruit is a desirable trait. Sci-
entists may be able to take advantage of studies in tomato 
(Solanum lycopersicum, Solanaceae), which is a model for 
fresh fruit (berry) development. For example, the AP2/ERF 
transcription factor excessive number of floral organs (ENO) 
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directly inhibits the expression of WUSCHEL (WUS, a con-
troller of meristem size) in the floral meristem, and its loss-of-
function resulted in the development of a larger fruit (Yuste-
Lisbona et al. 2020). If this gene is functionally conserved and 
its loss of function leads to little pleiotropic effects, it could 
be a good target for gene editing in fruit trees, including semi-
domesticated species. Likewise, a well-conserved regulator 
of shoot apical meristem (SAM) development is the peptide 
signal CLV3, which mutations in either its coding region or 
promoter have been shown to lead to fruit increase in tomatoes 
(Zsögön et al. 2018; Li et al. 2018).

Another critical aspect in many crop species is photo-
period sensitivity, which is related to meristem determina-
tion and often dictates cultivation latitudes. In tomatoes, 
loss-of-function of the flowering repressor SELF PRUNING 
5G (SP5G) gene, a member of the CETS family, promotes 
early, photoperiod-independent flowering and, consequently, 
an earlier harvest (Soyk et al. 2017; Zsögön et al. 2018; Li 
et al. 2018). Functional studies of the CETS family may lead 
to the regulation of flowering induction in arboreal plants by 
revealing a roadmap to manipulating juvenile phase length, 
thus accelerating breeding and speeding up commercial pro-
duction. The simultaneous mutations in SP5G, SP (another 
CETS gene), and SlER (a leucine-rich receptor kinase) led 
to a very compact tomato plant (Kwon et al. 2020), which is 
another highly desired trait for many tree crops.

Growing tall is a common trait of trees and encompasses 
a significant advantage in the race for light. However, in an 
agricultural setting, crops can be neatly arranged and man-
aged to minimize competition for light. Therefore, growing 
too tall can often lower profits due to the challenges of 
harvesting the commercial product. A strategy exploring 
dwarfism-inducer mutations could be interesting when 
height is a logistical problem. Fortunately, there are some 
examples of using CRISPR-based gene editing to achieve 
this goal in plants. In rice, directed mutations on the gene 
SD1 (Semi-Dwarf1) led to shorter plants (at least 30% of 
height reduction, depending on nitrogen supply) without 
significantly affecting yield in elite landraces (Hu et al. 
2019). Similarly, targeting ERECTA  homologs in cucur-
bits (Cucumis melo: melon; Cucurbita moschata: squash; 
and Cucumis sativus: cucumber) efficiently decreased stem 
length (Xin et al. 2022).

Although fruit weight and yield are critical, agricultural 
systems must also prepare for increased resource limitations 
(energy, fertilizers, and freshwater) and climatic instabilities 
(heat, rainfall patterns, and wind). Critical traits for this sce-
nario include increased tolerance to drought, heat, and salin-
ity, improved phosphate and nitrogen uptake and use, and 
increased resistance to pests and diseases. To support gene 
editing strategies focused on such traits, we compiled a list 
of target genes whose losses of function led to increased fit-
ness in agricultural systems under environmental pressures 

(Suppl. Table S2). We also refer the reader to recent reviews 
on annual crops (Gonçalves et al. 2020; Janni et al. 2020; 
Huisman and Geurts 2020).

A recent report describes the influence of a B-type cyc-
lin (NtCycB2) on glandular trichome formation of tobacco 
(Wang et al. 2022). Its knock-out by gene editing enhanced 
trichome formation and more compound exudation, result-
ing in stronger aphid resistance, a compelling achievement 
for pest management. Thus, potential functional orthologs 
of this gene could be targets for pest resistance in tree 
crops (Therezan et al. 2021).

Works describing induced mutations affecting abiotic 
stress tolerance have been recently published. The loss 
of function of Aluminium-activated Malate Transporter 
(ALMT and SlALMT15), which affects stomatal density 
in tomato leaves, enhanced tolerance to drought without 
penalties to the net photosynthetic rate in tomatoes (Ye 
et al. 2021). By the same token, the OsTT2 loss of function 
led to greater wax retention and increased heat tolerance 
(Kan et al. 2022). Moreover, two recent pieces explor-
ing nutrient uptake using CRISPR-induced mutations 
led to increased uptake of iron (AtERF96 knockout) and 
phosphate (SlHA8 knockout) in Arabidopsis and tomato, 
respectively (Liu et al. 2020a; Yao et al. 2022).

Genome editing strategies for tree breeding 
to take off

Even though gene editing applied to tree species is chal-
lenging, partly because of the lack of knowledge on the 
genetic basis of many traits, some promising innovations 
involving CRISPR systems can facilitate the pipeline, 
such as the high-throughput mutagenesis recently applied 
to maize (Zea mays, Poaceae) (Liu 2020). This approach 
involved the application of multiplexed CRISPR-Cas9 on 
a batch pipeline with pooled transformation and barcoded 
deep sequencing, resulting in 118 mutated genes (412 dif-
ferent mutations) in the population. The same strategy 
could be applied to trees with sequenced genomes and 
efficient genetic transformation protocols (e.g., citrus and 
poplar) to identify causal genes for traits of interest with-
out time-costly crossing (as in conventional functional 
genetics studies) or random mutation experiments.

Indeed, even though the candidate gene approach is 
interesting for unveiling causal genes coordinating traits of 
interest, it does not replace population segregation analy-
ses. Such studies can reveal the genetic bases of novel 
traits without any previous knowledge of the genomic 
location of the variant. Fortunately for tree geneticists, 
some recent results demonstrate the capability of targeted 
mutagenesis for accelerated breeding. The analysis of an 
EMS-derived mutant collection showed that a disruption 

◂
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on helicases RECQ4 and FANCM, which are anti-cross-
over factors, resulted in over two-fold increase of meio-
sis recombination in three distantly related species: rice 
(Oryza sativa, Poaceae), tomato (Solanum lycopersicum, 
Solanaceae), and pea (Pisum sativum, Fabaceae) (Mieulet 
et al. 2018). The manipulation of crossover factors can 
increase recombination frequencies and faster develop 
high-definition genetic maps. In addition to accelerating 
the construction of genetic maps, the controlled recombi-
nation with directed nucleases promises a paradigm shift 
for breeding by increasing population diversity, fine-tuning 
introgressions during pre-breeding, and obtaining favora-
ble haplotypes for breeding (Taagen et al. 2020).

The increase of genetic recombination frequencies is 
interesting for breeding strategies involving introgressions 
from related species to elite genotypes since higher recom-
bination rates increase the chances of isolating the desired 
gene from nearby genetic elements, thus decreasing the 
linkage drag that could affect genetic gains. Indeed, the 
use of CRISPR-Cas9 to disrupt RECQ4 was successfully 
applied to tomatoes for this purpose. Interspecific tomato 
hybrids (S. lycopersicum × S. pimpinellifolium) with the 
loss-of-function for recq4 showed higher recombination 
frequencies than the wild type (Maagd et al. 2020). This 
approach paves the way for applications in the breeding of 
arboreal species, in which performing successive crossing 
cycles to attenuate linkage drag is difficult, costly, and 
time-consuming.

It is helpful to bear in mind that, while gene editing can 
be useful to create novel, improved genotypes, the presence 
of transgenic CRISPR cassettes can affect marketability, for 
example, by GMO labeling in some countries or refusal by 
a significant portion of consumers. Nonetheless, while gene-
edited crop regulation is politically fluid and highly variable 
from country to country, the resulting variety does not nec-
essarily contain a transgene—thus, technically being not a 
GMO (Metje-Sprink et al. 2020).

Segregating the transgene out of a genome requires at 
least one backcrossing cycle, representing many years for a 
tree. It can also be impractical for elite varieties that are not 
inbred lines, as with most tree crops. A promising alternative 
for such cases is the transgene-free strategy uses ribonu-
cleoprotein (RNP) complexes. It requires the purified nucle-
ase to be pre-assembled in vitro with a designed sgRNA. 
Both Cas9 and Cas12a (Cpf1) were successfully tested for 
this strategy. The Cas-sgRNA complex can be delivered 
into protoplasts via PEG-mediated osmotic shock (Woo 
et al. 2015; Kim et al. 2017; Brandt et al. 2020) or directly 
into explant somatic cells via shotgun (Liang et al. 2018; 
Dong et al. 2021). This method has been reported for apple, 
grapevine, and rubber tree (Hevea brasiliensis, Euphorbi-
aceae) (Malnoy et al. 2016; Osakabe et al. 2018; Fan et al. 
2020). Delivery of plasmids containing Cas9 and sgRNAs 

directly to protoplasts by inducing the transient expression 
and selecting transgene-free events is also a possibility (Lin 
et al. 2018), albeit not reported on arboreal species yet.

The most considerable caveat of these transgene-free 
delivery methods is the need for efficient tissue culture and 
in vitro regeneration protocols, which have not been opti-
mized for most tree species. Therefore, the ideal scenario 
for the broad application of CRISPR technology on tree 
species is a transgene- and tissue-culture-free gene-editing 
method. Two recent reports show that gene-edited plants 
can be obtained without tissue culture (Ellison et al. 2020; 
Maher et al. 2020). One approach infects ex vitro a trans-
genic plant (Nicotiana tabacum, Solanaceae) expressing 
the Cas9 protein with a tobacco rattle virus (TRV)-based 
vector containing sgRNAs cleverly fused with a transloca-
ble mRNA (FT gene product). This in planta transforma-
tion resulted in 60 to 100% of edited progeny when a single 
genomic site was targeted and up to 30% of edited progeny 
when three sites were targeted (Ellison et al. 2020). The 
second approach induced de novo development of plant mer-
istems in Cas9-expressing plants by concomitantly express-
ing developmental regulators related to meristem identity 
maintenance (WUS2, IPT, STM, and BBM) and gene-editing 
reagents (sgRNAs targeting the PDS gene). Shoots regener-
ated from the de novo-induced meristems with fixed muta-
tions, and some of them were transgene-free (Maher et al. 
2020). These approaches highlight the potential of enabling 
gene editing tree species by circumventing transformation 
and in vitro regeneration.

In addition to editing the genome of elite varieties of cul-
tivated species, we should also better explore the existing 
genetic diversity of plants by using non-domesticated spe-
cies. By studying domestication traits and uncovering their 
genetic bases, we will be able to convert wild plants into 
novel domesticated crops by tackling those domestication 
traits yet preserving critical adaptive traits, such as strong 
levels of resistance to abiotic and biotic stresses. This con-
cept has been proposed as de novo domestication (Zsögön 
et al. 2017; Gasparini et al. 2021; Curtin et al. 2022; Zsögön 
et al. 2022) and has been shown to be feasible for wild toma-
toes (Zsögön et al. 2018; Li et al. 2018), as well as the semi-
domesticated groundcherry (Physalis pruinosa, Solanaceae) 
(Lemmon et al. 2018). As the genetic bases of domestication 
traits become more understood and biotechnological tools 
are developed for perennial species, domesticating new plant 
species for agricultural purposes will become increasingly 
feasible, including arboreal species.

Alongside the technology development and the concep-
tualization of disruptive projects and perspectives on gene 
editing in tree species, improvements in legislation aspects 
around the globe must be performed to update the laws in 
the face of these new techniques. Some regulatory agencies 
(i.e., the Forest Stewardship Council (FSC), which certifies 
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cellulosic products from responsibly grown forest crops 
around the globe) struggle to incorporate the new paradigm 
that arises with the advancement of genome editing technol-
ogies, like the fact that a crop can bear editions in its DNA 
at a specified target site without carrying any transgenes. 
Members of the scientific community are participating in 
the discussion regarding these matters (Strauss et al. 2019; 
Harfouche et al. 2021), and this is primordial to avoid mis-
conceptions regarding genetic manipulation of crops and 
demonstrate the consequent possibilities of advancing sci-
entific knowledge and increase the sustainability of modern 
agriculture responsibly.

Concluding remarks

The cultivation of arboreal species is challenging due to 
the long juvenile phase and the time required until har-
vest. New breeding strategies are being developed to cope 
with these drawbacks, and substantial advancements in the 
molecular design of tree crops are underway. The applica-
tion of CRISPR-based gene editing technologies expands 
the horizon of genetic improvement programs and, given 
its versatility, along with the development of new cloning 
techniques, DNA sequencing technology, plant transforma-
tion platforms, molecular biology, and plant genetics, will 
enable advancing agriculture to the point of tailoring crops 
and domesticate de novo wild species to meet society needs. 
This is urgent, albeit particularly challenging, for the tree 
species we cultivate as crops since these plantations must 
be resilient to all agricultural threats that are forecast for 
the near future. Ergo, now is the time to plan for the coming 
decades, and the potential of gene editing for tree breeding 
awaits to be fully explored.
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