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Abstract
Long-lived species of trees, especially conifers, often display weak patterns of reproductive isolation, but clear patterns of 
local adaptation and phenotypic divergence. Discovering the evolutionary history of these patterns is paramount to a gener-
alized understanding of speciation for long-lived plants. We focus on two closely related yet phenotypically divergent pine 
species, Pinus pungens and P. rigida, that co-exist along high elevation ridgelines of the southern Appalachian Mountains. 
In this study, we performed historical species distribution modeling (SDM) to form hypotheses related to population size 
change and gene flow to be tested in a demographic inference framework. We further sought to identify drivers of divergence 
by associating climate and geographic variables with genetic structure within and across species boundaries. Population 
structure within each species was absent based on genome-wide RADseq data. Signals of admixture were present range-
wide, however, and species-level genetic differences associated with precipitation seasonality and elevation. When com-
bined with information from contemporary and historical species distribution models, these patterns are consistent with a 
complex evolutionary history of speciation influenced by Quaternary climate. This was confirmed using inferences based on 
the multidimensional site frequency spectrum, where demographic modeling inferred recurring gene flow since divergence 
(2.74 million years ago) and population size reductions that occurred during the last glacial period (~ 35.2 thousand years 
ago). This suggests that phenotypic and genomic divergence, including the evolution of divergent phenological schedules 
leading to partial reproductive isolation, as previously documented for these two species, can happen rapidly, even between 
long-lived species of pines.

Keywords Conifer speciation · Pinus pungens · Pinus rigida · Reproductive isolation · Population genetics · Species 
distributions

Introduction

The process of speciation has been characterized as a con-
tinuum of divergence underpinned with the expectation 
that reproductive isolation strengthens over time leading to 

increased genomic conflict between species (Seehausen et al. 
2014). While the term continuum suggests linear direction-
ality, it is better thought of as a multivariate trajectory that 
is nonlinear, allowing stalls and even breakdown of repro-
ductive barriers in the overall progression toward complete 
reproductive isolation (Cannon and Petit 2020; Kulmuni 
et al. 2020). Indeed, speciation can occur with or without 
ongoing gene flow and demographic processes such as 
expansions, contractions, isolation, and introgression leave 
detectable genetic patterns within and among populations 
of species that affect the evolution of reproductive isola-
tion (Nosil 2012; e.g., Gao et al. 2012). Divergence histories 
with gene flow are an emerging pattern for species of forest 
trees with reproductive isolation often developing through 
prezygotic isolating mechanisms and reinforced by envi-
ronmental adaptation (Abbott 2017; Cavender-Bares 2019). 
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Together, these two processes can facilitate the development 
of genomic incompatibilities over time (Baack et al. 2015).

Climate and geography are well-established drivers of 
demographic processes and patterns (Hewitt 2001). For the 
past 2.6 million years, Quaternary climate has oscillated 
between glacial and interglacial periods causing changes in 
species distributions, but the significance of these changes 
and their influence on population differentiation has varied 
by region and taxon (Hewitt 2004; Lascoux et al. 2004). In 
North America, the effects of Quaternary climate on tree 
species distributions and patterns of genetic diversity have 
been profound but more drastic for species native to northern 
(i.e., previously glaciated) and eastern regions. For instance, 
the geographical distribution of white oak (Quercus alba 
L.), a native tree species to eastern North America, experi-
enced greater shifts since the last interglacial period (LIG), 
approximately 120 thousand years ago (kya), compared to 
the distributional shifts of valley oak (Quercus lobata Née) 
in California (Gugger et al. 2013). For the latter, distribu-
tional, and hence niche, stability was correlated with higher 
levels of genetic diversity.

Given the climate instability of eastern North America 
since the LIG, a host of phylogeographic studies have 
reported genetic diversity estimates for taxa of this region, 
as well as the genetic structuring of populations due to geo-
graphic barriers such as the Appalachian Mountains and 
Mississippi River (Soltis et al. 2006) and postglacial expan-
sion (e.g., Gougherty et al. 2020). The vast majority of tree 
taxa in these studies, however, were angiosperms, with the 
divergence history of only one closely related pair of conifer 
species native to this region, Picea mariana (Mill.) Brit-
ton, Sterns, and Poggenb. and P. rubens Sarg., being fully 
characterized (Perron et al. 2000; Lafontaine et al. 2015). 
The relative differences in geographical distributions and 
genetic diversities across P. mariana and P. rubens, as well 
as models of demographic inference, suggest a progenitor-
derivative species relationship that initiated approximately 
110 kya through population contractions and geographical 
isolation. Despite this history, these two species actively 
hybridize today. In general, speciation among conifer line-
ages remains an enigmatic process (Bolte and Eckert 2020), 
largely because there is a mismatch between species-level 
taxonomy and the existence of reproductive isolation, so that 
hybridization among species is common both naturally as 
well as artificially (Critchfield 1986). The ability to hybrid-
ize, moreover, is idiosyncratic, with examples ranging from 
well-developed incompatibilities among populations within 
species (e.g., P. muricata D. Don; Critchfield 1967) to the 
almost complete lack of incompatibilities among diverged 
and geographically distant species (P. wallichiana A. B. 
Jacks. from central Asia and P. monticola Douglas ex. D. 
Don from western North America; Wright 1959). Thus, the 
tempo and mode for the evolution of reproductive isolation 

for conifers remains largely unexplained despite decades 
of research into patterns of natural hybridization, crossing 
rates, and the mechanisms behind documented incompat-
ibilities (McWilliam 1959; Kriebel 1972; Hagman 1975; 
Critchfield 1986; Vasilyeva and Goroshkevich 2018).

The key to understanding the evolution of reproductive 
isolation, and hence a more developed explanation of the 
process of speciation for conifers, is the role of demography 
and gene flow during the divergence among lineages. Ana-
lytical approaches have been developed to infer past demo-
graphic processes from population genomic data, which can 
now easily be generated even for conifers (Parchman et al. 
2018). While many studies have used demographic inference 
to describe the phylogeographic history of a single species 
(e.g., Gugger et al. 2013; Li et al. 2013; Bagley et al. 2020; 
Ju et al. 2019; Park and Donoghue 2019; Capblancq et al. 
2020; Yang et al. 2020; Labiszak et al. 2021), some of these 
established methods have also been used to infer divergence 
histories between two or three species (e.g., Zou et al. 2013; 
Christe et al. 2017; Kim et al. 2018; Menon et al. 2018). 
Single species inferences have found that the last glacial 
maximum (LGM; ~ 21 kya) affected distributional shifts and 
intraspecific gene flow dynamics, while multispecies studies 
have focused almost solely on how these climatic oscilla-
tions drove periods of increased and decreased interspecific 
gene flow which contributed to the formation of environ-
mentally dependent hybrid zones, ancient and periodical 
introgression, or adaptive divergence in the development of 
reproductive isolation.

The number of potential divergence histories underlying 
even a modest number of species is vast. The preemptive 
formation of a hypothesis from historical species distribution 
modeling (SDM), however, can aid in defining a more real-
istic set of models from which to make inference, as well as 
to examine the impact of climate change on genetic diversity 
and demographic processes (Carstens and Richards, 2007). 
For example, Lima et al. (2017) modeled distributional 
changes for Eugenia dysenterica DC. between the LGM and 
today leading to a hypothesis that range stability was more 
likely than range expansion or contraction. Their SDM-
informed hypothesis was supported by range-wide genetic 
data. Likewise, SDMs across several time points allow for 
estimation of habitat suitability change (i.e., a proxy for con-
traction or expansion) and distributional overlap of multi-
ple species (i.e., potential gene flow). With these quantified 
changes, testable hypotheses can often emerge, leading to 
more focused investigations of speciation through justified 
parameter selection (Richards et al. 2007). Of course, there 
are inherent limitations associated with SDMs and inter-
preting historical distributions should be done cautiously 
but using SDMs to complement demographic inference is 
now common in the field of phylogeography (Hickerson 
et al. 2010; Gavin et al. 2014; Peterson and Anamza 2015). 



Tree Genetics & Genomes (2022) 18: 35 

1 3

Page 3 of 18 35

For example, where a species occurs is determined to some 
degree by its traits and thus at least partially its genetics, so 
that non-optimal inference can occur by ignoring putative 
adaptation within lineages during SDM formation and test-
ing. Indeed, Ikeda et al. (2017) found that SDM predictions 
under future climate scenarios improved with acknowledge-
ment of local adaptation in Populus fremontii S. Watson (i.e., 
three identified genetic clusters across the full species distri-
butional range were modeled independently).

Here, we focus on two closely related, yet phenotypically 
diverged, pine species, Table Mountain pine (Pinus pungens 
Lamb.) and pitch pine (Pinus rigida Mill.). Recent estimates 
from multiple, time-calibrated phylogenies across nuclear 
and plastid DNA have placed the time of divergence in the 
range of 1.5 to 17.4 million years ago (mya; Hernandez-
Leon et al. 2013; Saladin et al. 2017; Gernandt et al. 2018; 
Jin et al. 2021), with these studies either placing them as 
sister species (e.g., Hernandez-Leon et al. 2013; Saladin 
et al. 2017) or as part of a clade with P. serotina Michx. as 
sister to P. rigida (e.g., Gernandt et al. 2018; Jin et al. 2021). 
Changes in climate, fire regime, and geographic distributions 
have likely influenced species divergence (Keeley 2012). 
This is plausible given that P. pungens populations are 
restricted to high elevations of the Appalachian Mountains, 
while the much larger distribution of P. rigida ranges from 
Georgia into portions of eastern Canada. It is particularly 
interesting that these recently diverged species are found in 
sympatry, yet hybridization has rarely been observed in the 
field (Zobel 1969), although they can be reciprocally crossed 
to yield viable offspring (Critchfield 1963). An ecological 
study of three sympatric P. pungens and P. rigida popula-
tions indicated that the timing of pollen release was sepa-
rated by approximately 4 weeks, enough to sustain partial 
reproductive isolation at these sites (Zobel 1969), which is 
a common contributor to prezygotic isolation among conifer 
species (Dorman and Barber 1956; Critchfield 1963). It was 
also noted that while P. pungens was most densely populated 
on arid, rocky, steep southwestern slopes, P. rigida was less 
confined to these areas (Zobel 1969), thus suggesting envi-
ronmental adaptation through ecological character displace-
ment may also be important in the divergence of these two 
closely related species.

Considering the dynamic interplay of climate, topogra-
phy, and ecology potentially involved in the divergence of 
these two pine species, we asked three questions: (1) Which 
demographic processes were involved in the divergence of P. 
pungens and P. rigida? (2) Does the timing of demographic 
events align with shifts in climate? (3) To what extent are 
climatic and geographic variables associated with genetic 
differentiation? To answer these three questions, we hypoth-
esized that P. pungens and P. rigida experienced divergence 
with gene flow followed by population contraction and iso-
lation (i.e., different refugia) initiated during the LGM as 

an explanation for strongly diverged traits and phenologi-
cal schedules. From historical SDM predictions across four 
time points since the LIG, we formed additional hypotheses 
to be tested within a demographic inference framework. 
Three hypotheses corresponded to SDM predictions from 
specific general circulation models (GCMs) and were com-
pared to a fourth hypothesis formed from ensembled SDM 
predictions. We then used a multidimensional, folded site 
frequency spectrum from 2168 genome-wide, unlinked 
single-nucleotide polymorphisms (SNPs) across 300 trees 
to infer demographic processes and timing of divergence. 
Our best-fit demographic model inferred initial divergence 
at 2.74 mya, aligning with the start of the Quaternary period, 
and described divergence as occurring with ongoing gene 
flow and drastic population size reductions during the last 
glacial period (~ 35.2 kya). SDM hypotheses were partially 
supported, especially for ongoing gene flow and population 
size reductions during the LGM. We conclude that climatic 
oscillations, differential adaptation to seasonality, and gene 
flow influenced the divergence of P. pungens and P. rigida 
and present evidence from SDM, genetic association analy-
ses, and demographic inference as support.

Methods

Sampling

Range-wide samples of needle tissue were obtained from 
14 populations of Pinus pungens and 19 populations of P. 
rigida (Fig. 1). From each population, 4–12 trees were sam-
pled, with each sampled tree distanced by approximately 
50 m from the next to avoid potential kinship (Table 1). Nee-
dle tissue was dried using silica beads, then approximately 
10 mg of tissue was cut and lysed for DNA extraction.

DNA sequence data

Genomic DNA was extracted from all 300 sampled trees 
using DNeasy Plant Kits (Qiagen) following the manufac-
turer’s protocol. Four ddRADseq libraries (Peterson et al. 
2012), each containing up to 96 multiplexed samples, were 
prepared using the procedure from Parchman et al. (2012). 
EcoRI and MseI restriction enzymes were used to digest 
all four libraries before performing ligation of adaptors 
and barcodes. After PCR, agarose gel electrophoresis 
was used to separate then select DNA fragments between 
300 and 500 bp in length. The pooled DNA was isolated 
using a QIAquick Gel Extraction Kit (Qiagen). Single-end 
sequencing was conducted on Illumina HiSeq 4000 plat-
form by Novogene Corporation (Sacramento, CA). Raw 
fastq files were demultiplexed using GBSX (Herten et al. 
2015) version 1.2, allowing two mismatches (− mb 2). The 



 Tree Genetics & Genomes (2022) 18: 35

1 3

35 Page 4 of 18

dDocent bioinformatics pipeline (Puritz et al. 2014) was 
subsequently used to generate a reference assembly and 
call variants. The reference assembly was optimized using 
shell scripts and documentation within dDocent (cutoffs: 
individual = 6, coverage = 6; clustering similarity: − c 
0.92), utilizing cd-hit-est (Fu et al. 2012) for assembly. 
The initial variant calling produced 87,548 single-nucleo-
tide polymorphisms (SNPs) that were further filtered using 
vcftools (Danecek et al. 2011) version 0.1.15. We retained 
only biallelic SNPs with sequencing data for at least 50% 
of the samples, minor allele frequency (MAF) > 0.01, 
summed depth across samples > 100 and < 10,000, and 
alternate allele call quality ≥ 50. Additionally, stringent 
filtering steps were taken to minimize the potential mis-
assembly of paralogous genomic regions. Removing loci 
with excessive coverage and retaining only loci with two 
alleles present, as above, should ameliorate the influence 
of misassembled paralogous loci in our data (Hapke and 
Thiele 2016; McKinney et al. 2018). Lastly, we retained 
loci with FIS >  − 0.5, as misassembly to paralogous 
genomic regions can lead to abnormal levels of heterozy-
gosity (Hohenlohe et al. 2013; McKinney et al. 2017). 
To account for linkage disequilibrium among the 20,932 
SNPs that passed quality controls, which if not properly 
acknowledged can lead to erroneous inferences of demo-
graphic history (Gutenkunst et al. 2009), we thinned the 

dataset to one SNP per contig (− thin 100). The reduced 
2168 SNP dataset was used in all analyses.

Population structure and genetic diversity

Patterns of genetic diversity and structure within and 
between P. pungens and P. rigida were assessed using a suite 
of standard methods. Overall patterns of genetic structure 
were investigated using principal component analysis (PCA), 
as employed in the prcomp function of the stats version 
4.0.4 package, on centered and scaled genotypes following 
Patterson et al. (2006) in R version 3.6.2 (R Development 
Core Team, 2021). Genetic diversity within each species 
was examined using multilocus estimates of observed and 
expected heterozygosity (Ho and He) for each population 
using a custom R script (https:// doi. org/ 10. 5072/ zenodo. 
10912 66). Individual-based assignment was conducted using 
fastSTRU CTU RE (Raj et al. 2014), with cluster assignments 
ranging from K = 2 to K = 7. Ten replicate runs of each clus-
ter assignment were conducted. The cluster assignment with 
the highest log-likelihood value was determined to be the 
best fit. Individual admixture assignments were then aligned 
and averaged across the 10 runs using the pophelper ver-
sion 1.2.0 (Francis 2017) package in R. Third, multilocus, 
hierarchical fixation indices (F-statistics) were defined by 
nesting trees into populations and populations into species, 

Fig. 1  Known geographical distribution of focal species, a Pinus pungens and b P. rigida, (Little 1971) in relation to populations sampled (black 
dots) for genetic analysis; phenotypic characterization of each species was illustrated by Pierre-Joseph Redouté (Michaux 1819)

https://doi.org/10.5072/zenodo.1091266
https://doi.org/10.5072/zenodo.1091266
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with FCT describing differentiation between species and FSC 
describing population differentiation within species (Yang 
1998). F-statistics and associated confidence intervals (95% 
CIs) from bootstrap resampling across SNPs (n = 100 repli-
cates) were calculated in the hierfstat version 0.5–7 package 
(Goudet and Jombart 2020) in R.

To assess influences on within-species genetic struc-
ture, Mantel tests (Mantel 1967) were used to examine 
isolation-by-distance (IBD; Wright 1943) and isolation-
by-environment (IBE; Wang and Bradburd 2014). In these 
analyses, the Mantel correlation coefficient (r) was calcu-
lated between linearized pairwise FST, estimated with the 
method of Weir and Cockerham (1984) using the hierfstat 
package in R, and either geographical (IBD) or environ-
mental (IBE) distances. For geographical distances, lati-
tude and longitude records for each tree in a population 

were averaged to obtain one representative coordinate 
per population. Geographic distances among populations 
were then calculated using the Vincenty (ellipsoid) method 
within the geosphere version 1.5–10 package (Hijmans 
2019) in R. Environmental distances were calculated as 
Euclidean distances using extracted raster values associ-
ated with the mean population coordinates from 19 biocli-
matic variables, downloaded from WorldClim at 30-arc-
second resolution (version 2.1; Fick and Hijmans 2017). 
Values associated with the mean population coordinates 
for were extracted using the raster version 2.5–7 R pack-
age. Environmental data were centered and scaled prior 
to estimation of distances. Additionally, we used a Mantel 
test to assess correlation between population-based envi-
ronmental distances and population-based geographic 
distances.

Table 1  Location of sampled 
populations, number of trees 
(n) that were sampled, and 
the observed heterozygosity 
(Ho) versus the expected 
heterozygosity (He = 2pq) for 
Pinus pungens and P. rigida 
populations

Species Code Location Lat Long n Ho He

P. pungens PU_BB Briery Branch, VA 38.48  − 79.22 8 0.110 0.108
P. pungens PU_BN Buchanan State Forest, PA 39.77  − 78.43 6 0.141 0.121
P. pungens PU_BV Buena Vista, VA 37.76  − 79.29 11 0.124 0.120
P. pungens PU_DT Dragon's Tooth, VA 37.37  − 80.16 7 0.101 0.098
P. pungens PU_EG Edinburg Gap, VA 38.79  − 78.53 8 0.139 0.124
P. pungens PU_EK Elliott Knob, VA 38.17  − 79.30 10 0.131 0.123
P. pungens PU_GA Walnut Fork, GA 34.92  − 83.28 10 0.129 0.123
P. pungens PU_LG Looking Glass Rock, NC 35.30  − 82.79 8 0.130 0.119
P. pungens PU_NM North Mountain, VA 37.82  − 79.63 12 0.130 0.121
P. pungens PU_PM Poor Mountain, VA 37.23  − 80.09 11 0.130 0.125
P. pungens PU_SC Pine Mountain, VA 34.70  − 83.30 8 0.128 0.122
P. pungens PU_SH Shenandoah NP, VA 38.55  − 78.31 5 0.160 0.128
P. pungens PU_SV Stone Valley Forest, PA 40.66  − 77.95 9 0.110 0.110
P. pungens PU_TR Table Rock Mountain, NC 35.89  − 81.88 12 0.113 0.114
P. rigida RI_BR Bass River State Forest, NJ 39.80  − 74.41 9 0.101 0.105
P. rigida RI_CT Pachaug State Forest, CT 41.54  − 71.81 10 0.096 0.107
P. rigida RI_DT Dragon's Tooth, VA 37.37  − 80.16 10 0.109 0.106
P. rigida RI_GA Chattahoochee NF, GA 34.75  − 83.78 9 0.096 0.103
P. rigida RI_GW George Washington NF, VA 38.36  − 79.20 10 0.102 0.103
P. rigida RI_HH Hudson Highlands State Park, NY 41.44  − 73.97 7 0.102 0.101
P. rigida RI_JF Jefferson NF, VA 37.15  − 82.64 10 0.095 0.100
P. rigida RI_KY Daniel Boone NF, KY 37.84  − 83.62 9 0.113 0.110
P. rigida RI_ME Acadia NP, ME 44.36  − 68.19 10 0.107 0.106
P. rigida RI_MI Michaux State Forest, PA 39.98  − 77.44 10 0.123 0.114
P. rigida RI_NJ Wharton State Forest, NJ 39.68  − 74.53 9 0.098 0.101
P. rigida RI_NY Macomb State Park, NY 44.63  − 73.58 9 0.101 0.104
P. rigida RI_OH South Bloomingville, OH 39.45  − 82.59 8 0.093 0.096
P. rigida RI_RS Rome Sand Plains, NY 43.23  − 75.56 9 0.097 0.103
P. rigida RI_SH Shawnee State Park, OH 38.75  − 83.13 9 0.082 0.094
P. rigida RI_SP Sproul State Forest, PA 41.24  − 77.78 9 0.106 0.105
P. rigida RI_TN Great Smoky Mountains NP, TN 35.68  − 83.58 8 0.099 0.104
P. rigida RI_TR Table Rock Mountain, NC 35.89  − 81.89 10 0.113 0.112
P. rigida RI_VT Bellows Falls, VT 43.11  − 72.44 10 0.098 0.104
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Associations between genetic structure 
and environment

To further test the multivariate relationships among gen-
otype, climate, and geography within and across species, 
redundancy analysis (RDA) was conducted using the vegan 
version 2.5–7 package (Oksanen et al. 2020) in R version 
4.0.4 (R Core Development Team, 2021). Genotype data 
were coded as counts of the minor allele for each sample 
(i.e., 0,1, or 2 copies) and then standardized following Pat-
terson et al. (2006). Climate raster data (i.e., 19 bioclimatic 
variables at 30-arc-second resolutions), as well as elevational 
raster data from WorldClim, were extracted, as mentioned 
previously, from geographic coordinates for each sampled 
tree and then tested for correlation using Pearson’s correla-
tion coefficient (r). Five bioclimatic variables that are known 
to influence diversification in the genus Pinus (Jin et al. 
2021; Menon et al. 2018), but that were also not highly cor-
related (r <|0.75|), were retained for analysis: mean diurnal 
range (Bio2), maximum temperature of the warmest quarter 
(Bio10), and minimum temperature of the coldest quarter 
(Bio11), precipitation seasonality (Bio15), and precipita-
tion of the driest quarter (Bio17). The full explanatory data 
set included these five bioclimatic variables, latitude, lon-
gitude, and elevation. The multivariate relationship between 
genetic variation, climate, and geography was then evaluated 
through RDA. Statistical significance (α = 0.05) of the RDA 
model, as well as each axis within the model, was assessed 
using permutation-based analysis of variance (ANOVA) 
with 999 permutations (Legendre and Legendre 2012). The 
influence of predictor variables, as well as their confounded 
effects, in RDA were quantified using variance partitioning 
as employed in the varpart function of vegan package in R.

Species distribution modeling

To help formulate testable hypotheses during inference of 
demography from genomic data (see Richards et al. 2007), 
species distribution modeling (SDM) was performed for 
each species to identify areas of suitable habitat under cur-
rent climate conditions and across three historical time 
periods (HOL, ~ 6 kya, interglacial; LGM, ~ 21 kya, glacial; 
and LIG, ~ 120 kya, interglacial). These temporal infer-
ences were then used to help identify plausible demographic 
responses. For example, if overlap in modeled habitat suit-
ability changed over time, the hypothesis for demographic 
inference would include changes in gene flow parameters 
over time. If the amount of suitable habitat changed over 
time, the hypothesis would also include changes in effective 
population size to allow for potential expansions or contrac-
tions. This in effect helps to constrain the possible parameter 
space for exploration.

Occurrence records for P. pungens were downloaded from 
GBIF.org (18th December 2018; GBIF occurrence down-
load, https:// doi. org/ 10. 15468/ dl. urehu0) and combined with 
known occurrences published by Jetton et al. (2015). For P. 
rigida, all occurrence records were downloaded from GBIF.
org (December 29, 2015; GBIF occurrence download, http:// 
doi. org/ 10. 15468/ dl. ak0weh). Records were examined for 
presence within or close to the known geographical range 
of each species (Little 1971). Records far outside the known 
geographic range were pruned. The remaining locations 
were then thinned to one occurrence per 10 km to reduce 
the effects of sampling bias using the spThin version 0.1.0.1 
package (Aiello-Lammens et al. 2015) in R. The resulting 
occurrence dataset included 84 records for P. pungens and 
252 records for P. rigida (Online Resource 2). All subse-
quent analyses were performed in R version 3.6.2 (R Devel-
opment Core Team, 2021).

The same bioclimatic variables (Bio2, Bio10, Bio11, 
Bio15, Bio17) selected for RDA were used in species dis-
tribution modeling but were downloaded from WorldClim 
version 1.4 (Hijmans et al. 2005) at 2.5-arc-minute resolu-
tion. The change in resolution from above was necessary 
because paleoclimate data in 30-arc-second resolution 
were not available for the LGM. Paleoclimate raster data 
for the LGM (~ 21 kya) and Holocene (HOL, ~ 6 kya) were 
downloaded for three General Circulation Models (GCMs; 
CCSM4, MIROC-ESM, and MPI-ESM). Ensembles were 
built by averaging the habitat suitability predictions from the 
three GCMs for each time period (e.g., Menon et al. 2018). 
SDM predictions associated with each individual GCM, 
for both the HOL and LGM, were analyzed for incongru-
ences as recommended in Varela et al. (2015). Paleoclimate 
data for the LIG (~ 120 kya) were only available at 30-arc 
-second resolution and required downscaling to 2.5-arc-
minute resolution using the aggregate function (fact = 5) of 
the raster package. Only one GCM is available for the LIG 
from WorldClim (NCAR-CCSM; Otto-Bliesner et al. 2006); 
therefore, no ensemble was built.

Raster layers were cropped to the same extent using 
the raster package to include the most northern and east-
ern extent of P. rigida, and the most western and southern 
extent of P. pungens. Species distribution models (SDMs) 
were built using maxent version 3.4.1 (Phillips et al. 2017) 
and all possible features and parameter combinations were 
evaluated using the ENMeval version 2.0.0 R package (Kass 
et al. 2021). Metadata about model fitting and evaluation are 
available within Online Resource 2.

The selected features used in predictive modeling were 
those associated with the best-fit model as determined using 
AIC. Raw raster predictions were standardized to have the 
sum of all grid cells equal the value of one using the raster.
standardize function in the ENMTools version 1.0.5 (Warren 
et al. 2021) R package. Standardized predictions were then 

https://doi.org/10.15468/dl.urehu0
http://doi.org/10.15468/dl.ak0weh
http://doi.org/10.15468/dl.ak0weh
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transformed to a cumulative raster prediction with habitat 
suitability scaled from 0 to 1, allowing for quantitative SDM 
comparisons across species and time. Next, SDM cumula-
tive raster predictions were converted into coordinate points 
using the sf version 0.9–7 R package to calculate the number 
of points with habitat suitability values greater than 0.5 (i.e., 
moderate to high suitability areas). Population size expan-
sion or contraction was hypothesized if the number of points 
increased or decreased over time, respectively. Overlap (i.e., 
shared points across species) in SDM predictions for each 
time period was measured using the inner_join function in 
the dplyr version 1.0.5 R package. The extent of modeled 
species distributional overlap was also quantified using the 
raster.overlap function in ENMTools, thus providing meas-
ures for calculation of Schoener’s D (1968) and Warren’s I 
(Warren et al. 2008). Four testable hypotheses were formed 
from these quantifications. Three of which were formed 
from predictions associated with each GCM used in HOL 
and LGM SDMs. The fourth hypothesis was formed from 
ensembled SDM predictions for the HOL and LGM.

Demographic modeling

Demographic modeling was conducted using diffusion 
approximation for demographic inference ( �a�i v.2.0.5; 
Gutenkunst et al. 2009). A model of pure divergence (SI; 
strict isolation) was compared against twelve other demo-
graphic models representing different potential divergence 
scenarios with or without gene flow and effective population 
size changes (Online Resource 4, Fig. S1). Based on SDM 
predictions across four time points, we hypothesized that a 
model that allowed changes in effective population size and 
rate of gene flow before the LIG would best fit the genetic 
data. Ten replicate runs of each model were performed in 
�a�i with a 200 × 220 × 240 grid space and the nonlinear 
Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization 
routine. Model selection was conducted using Akaike infor-
mation criterion (AIC; Akaike 1974). The best replicate run 
(highest log composite likelihood) for each model was then 
used to calculate ΔAIC  (AICmodel i –  AICbest model) scores 
(Burnham and Anderson 2002). From the best-supported 
model, upper and lower 95% confidence intervals (CIs) for 
all parameters were obtained using the Fisher information 
matrix (FIM)-based uncertainty analysis. Unscaled param-
eter estimates and their 95% CIs were obtained using a per 
lineage substitution rate of 7.28 ×  1010 substitutions/site/year 
rate for Pinaceae (De La Torre et al. 2017) and a genera-
tion time of 25 years (Ma et al. 2006). The mutation rate 
from De La Torre et al. (2017) was placed on a scale of 
generations using the number of years per generation (i.e., 
mutation rate per year multiplied by the number of years per 
generation). Genome length (L) a requirement for determin-
ing Nref (= ϴ/4μL) from �a�i parameters, was calculated 

as the sum across contigs (i.e., RADtags) of the number of 
bp per SNP. This quantity was calculated for each contig 
by dividing 92 bp (i.e., the trimmed length of each contig) 
by the number of SNPs in the contig from the unthinned 
SNP dataset (n = 20,932 SNPs in total). This was neces-
sary because only a single SNP was retained per contig and 
counting all bp in a contig would upwardly bias the genome 
length (i.e., the SNPs were dropped but the bp they occupy 
would be counted).

Results

Population structure and genetic diversity

A clear separation at the species level was apparent along 
PC1, which explained 4.232% of the variation across the 
2168 SNP × 300 tree data set (Fig. 2a). Of the 2168 SNPs 
analyzed, 380 of them were fixed for the same allele across 
all samples of P. pungens, and 196 SNPs were fixed (i.e., 
not polymorphic) across samples of P. rigida. The major-
ity of biallelic SNPs fixed in one species were segregating 
the global minor allele at low frequency in the other spe-
cies. The remaining 1592 SNPs were polymorphic in both 
species. Lack of population clustering within each species 
was observed when the points in PCA space were labeled 
by population (Online Resource 4, Fig. S2). Using hierar-
chical F-statistics, the estimate of differentiation between 
species (FCT) was 0.117 (95% CI 0.099–0.136), which was 
similar to that among all sampled populations (FST = 0.123, 
95% CI 0.106–0.143), thus highlighting structure is largely 
due to differences between species. Differentiation among 
populations within species was consequently much lower 
(FSC = 0.007 (95% CI 0.0055–0.0088) whether analyzed 
jointly (FSC) or separately (see Table  2). In the analy-
sis of structure, K = 2 had the highest log-likelihood val-
ues (Fig. 2b). Admixture in small proportions (assigning 
to the other species by 2–10%) was observed in 41 out of 
the 300 samples (13.67% of samples) across both species. 
There were 16 trees with ancestry coefficients higher than 
10% assignment to the other species: four P. rigida samples 
(2.29% of sampled P. rigida) and 12 P. pungens samples 
(9.60% of sampled P. pungens). Admixture proportions were 
moderately correlated to latitude (Pearson’s r =  − 0.414), 
longitude (Pearson’s r =  − 0.291), and elevation (Pearson’s 
r = 0.445). All three correlative relationships were signifi-
cant (p < 0.001). Ancestry assignments for each tree at K = 3 
through K = 7 are available in Online Resource 4 (Online 
Resource 4, Fig. S3). All cluster assignments analyzed did 
not reveal intraspecific population structure. To be certain 
the signals of admixture were not artifacts of missing data, 
we plotted the relationship of missing data to the ancestral 
coefficient for each tree. For the samples with admixture 
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present, the assigned ancestral coefficients at K = 2 do not 
appear to be artifacts of missing data (Online Resource 4, 
Fig. S4). Admixture was present in trees with both low and 
moderate levels of missing data.

Pairwise FST estimates for P. pungens ranged from 0 
to 0.0457, while a similar but narrower range of values 
(0–0.0257) was noted for P. rigida. The highest pairwise FST 

value across both species was between two P. pungens popu-
lations located in Virginia, PU_DT and PU_BB (Table 1). 
Interestingly, PU_DT in general had higher pairwise FST 
values (0.0146–0.0457) compared to all the other sampled P. 
pungens populations (Online Resource 1). For P. rigida, the 
RI_SH population located in Ohio had higher pairwise FST 
values for 16 out of the 18 comparisons (0.0123–0.0257). 

Fig. 2  Measures of genetic differentiation and diversity among sam-
pled trees of P. pungens and P. rigida: a Principal components analy-
sis of 2168 genome-wide single-nucleotide polymorphisms (SNPs) 
for Pinus pungens (blue, left side of PC1) and P. rigida (orange, right 

side of PC1); b log-likelihood values across ten replicate runs in fast-
STRU CTU RE for K = 2 through K = 7; c results of averaged K = 2 
ancestry (Q) assignments for each sample arranged latitudinally in 
each species

Table 2  Summary statistics of genetic differentiation for the sampled populations of P. rigida and P. pungens. Expected (He) and observed het-
erozygosity (Ho) values are the averages across 2168 SNPs averaged across populations

Species FST
(95% CI)

IBD r
(p-value)

IBE r
(p-value)

He
(range)

Ho
(range)

P. pungens 0.0057
(0.0032–0.0084)

 − 0.0789
(0.638)

0.0131
(0.411)

0.118
(0.098–0.129)

0.127
(0.101–0.160)

P. rigida 0.0056
(0.0032–0.0082)

0.1758
(0.055)

 − 0.0669
(0.633)

0.104
(0.094–0.114)

0.102
(0.082–0.123)
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The two populations that had low pairwise FST values with 
RI_SH were geographically proximal: RI_OH located in 
Ohio (pairwise FST = 0, distance: 90.1 km) and RI_KY 
located in Kentucky (pairwise FST = 0.0089, distance: 
107.7 km). The highest pairwise FST value among P. rigida 
populations was between RI_SH and RI_HH, which are geo-
graphically distant from one another. From the Mantel tests 
for IBD and IBE, Pearson correlations were low (Table 2). 
The correlation with geographical distances was highest for 
P. rigida (Mantel r = 0.176, p = 0.055). From the Mantel 
test, the correlation between geographic distance and envi-
ronmental distance was high for both P. rigida (r = 0.611, 
p = 0.001) and P. pungens (r = 0.893, p = 0.001).

Heterozygosity estimates for each population are listed 
in Table 1 and were only moderately correlated with geog-
raphy and elevation. Observed heterozygosity of P. pungens 
(Ho = 0.127 ± 0.015 SD), averaged across SNPs and popula-
tions, was higher than the average expected heterozygosity 
(He = 0.118 ± 0.008 SD), both of which were higher than 
the almost equal values for P. rigida (Ho = 0.102 ± 0.009 
SD; He = 0.104 ± 0.005 SD; Table 2). Across both species, 
observed heterozygosity was mildly associated with geogra-
phy and elevation. For P. rigida, the highest correlation was 
with elevation (r = 0.300, p-value = 0.212), followed by cor-
relation with longitude (r = 0.113, p-value = 0.646). Observed 
heterozygosity in P. pungens had a negative correlative rela-
tionship with elevation (r =  − 0.105, p-value = 0.721) and 

positive correlative relationship with longitude (r = 0.175, 
p-values = 0.549). Correlations between latitude and hete-
rozygosity were low in both species (r =  − 0.008 for P. rigida; 
r = 0.08 for P. pungens; p-values > 0.785).

Associations between genetic structure 
and environment

The combined effects of climate and geography explained 
1.52% (adj. r2) to 4.16% (r2) of the genetic variance across 
2168 SNPs and 300 sampled trees. The first RDA axis 
accounted for the bulk of the explanatory variance (42.3%, 
Fig. 3) and was the only RDA axis with a p-value (p < 0.001) 
less than commonly accepted thresholds of significance 
(e.g., � = 0.05). The first RDA was dominated by effects 
of elevation and precipitation seasonality (Bio15). Average 
elevation associated with P. pungens samples was 724.68 m 
(± 224.17 SD), while average elevation across P. rigida sam-
ples was lower (399.69 m, ± 292.26 SD). The average for 
precipitation seasonality was 11.33 (± 1.83 SD) for P. pun-
gens, and higher for P. rigida (14.23 ± 3.97 SD). Considering 
the standard deviations around the mean, overlap in values 
for elevation and precipitation seasonality provide some con-
text to present-day overlap in species distributions along the 
southern Appalachian Mountains. Comparisons of predictor 
loadings across both RDA axes show latitude, longitude, 

Fig. 3  Redundancy analysis 
(RDA) of the multilocus geno-
types for each tree with climate 
and geographic predictor 
variables (full model). Direction 
and length of arrows on each 
RDA plot correspond to the 
loadings of each variable
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and mean temperature of the coldest quarter (Bio11) as also 
important to explaining the variance both within (RDA 2) 
and across species (RDA 1).

Partitioning the effects of each predictor set revealed 
that climate independently (i.e., conditioned on geography) 
accounted for 31.93% of the explanatory variance. Geogra-
phy independently (i.e., conditioned on climate) accounted 
for 34.10% of the explained variance. The confounded effect, 
due to the correlations inherent to the chosen geographic and 
climatic predictor variables, was 33.97%.

Species distribution modeling

Because population structure within each of the focal spe-
cies was not observed from our genetic data (i.e., no clear 
genetic clusters were identified), we produced SDMs using 
occurrence records across the full distributional range of 
each species. The best-fit SDM for P. pungens used a linear 
and quadratic feature class with a 1.0 regularization multi-
plier, while the SDM for P. rigida used a linear, quadratic, 
and hinge feature class with a regularization multiplier of 
3.0. The AUC associated with the training data of the P. 
pungens and P. rigida SDMs was 0.929 and 0.912, respec-
tively. Metadata, data inputs, outputs, and statistical results 
for model evaluation are available in Online Resource 2. The 
climatic variables with the highest permutation importance 
were mean temperature of the coldest quarter (Bio11) and 
precipitation seasonality (Bio15) which contributed 41.1% 
and 39.7% to the P. pungens SDM and 19.5% and 62.4% to 
the P. rigida SDM, respectively. Of the five climate variables 
included in the RDA, Bio15 and Bio11 had the highest load-
ings along RDA axis 1, helping to explain differences across 
species. The tandem reporting of Bio15 and Bio11 as impor-
tant to both genetic differentiation and species distributions 
is indicative that these climatic variables contributed to the 
divergence of these two species.

Distributional overlap was observed in all analyzed SDMs 
at each of the four time points; therefore, all four hypoth-
eses stated that gene flow occurred between the LIG and 
present day (Fig. 4). Current SDMs indicated a larger area 
of suitable habitat for P. rigida (11,128 grid cells had > 0.5 
habitat suitability) compared to P. pungens (6632 grid cells) 
with 14.1% overlap in distributional predictions (Fig. 4). 
According to the SDM predictions, the areas of high habitat 
suitability shifted substantially over time for both species, 
with overlapping areas of suitable habitat exhibiting some 
of these fluctuations, as well. SDM ensembled predictions 
for HOL indicated the highest overlap (21.2% of grid cells 
with > 0.5 habitat suitability), while LGM ensembled predic-
tions indicated the lowest overlap (9.1%). Likewise, calcula-
tions of overlap from full distributional predictions were the 
lowest (Schoener’s D = 0.217) for LGM followed by the LIG 
(Schoener’s D = 0.288). The highest distributional overlap 

was associated with the current SDM (Schoener’s D = 0.612; 
Fig. S5). Raster plots associated with the SDM predictions 
across the four time points (LGM and HOL ensemble pre-
dictions) and species are in Online Resource 4, Fig. S5.

LGM predictions across the three GCMs varied substan-
tially in terms of where and to what extent there was suitable 
habitat. We observed drastic reduction in suitable habitat for 
both species from predictions associated with the CCSM4 
GCM. MPI-ESM-associated predictions indicated reductions 
for P. rigida, while MIROC-associated predictions indicated 
habitat expansion for P. rigida since the LIG. As found in 
Varela et al. (2015), the use of mean diurnal range (Bio2) 
and precipitation seasonality (Bio15) in historical SDM mod-
eling for the LGM led to very different predictions across 
GCM types making averaged predictions (i.e., the ensemble 
approach) potentially misleading. We have provided model 
predictions associated with each LGM-GCM in Online 
Resource 4 (Fig. S6). Calculations of overlap from all LGM-
GCM predictions (range = 2.0–18.3%) were lower than over-
lap estimates from other time periods providing some indica-
tion of consistency and usefulness to the widely-implemented 
ensemble technique. For the HOL, predictions were more 
similar across GCMs with overlap varying between 13.1 and 
20.5% (Online Resource 4, Fig. S7). Hypotheses associated 
with each GCM and the ensemble are presented in Fig. 4.

The ensembled prediction for P. pungens and P. rigida 
during the LGM shows multiple potential refugial areas 
that overlap (Fig. S5). From the MIROC-ESM GCM-based 
model predictions, interspecific gene flow during the LGM 
may have been possible just south of the glacial extent, but 
CCSM4 and MPI-ESM GCM-based predictions (Fig. S6) 
indicate two, small overlapping refugial regions farther 
south than where either species currently occurs. Ensembled 
distributions for P. pungens and P. rigida during the HOL 
were proximal to each other, with high habitat suitability 
west of and along the Appalachian Mountains (Fig. S5). 
These distributions may have promoted both intraspecific 
and interspecific gene flow to occur ~ 6 kya.

Demographic modeling

The best replicate run (highest composite log-likelihood) for 
each of the 13 modeled divergence scenarios, their associ-
ated parameter outputs, and ΔAIC  (AICmodel i –  AICbest model) 
are summarized in Online Resource 3. A model that allowed 
changes in both effective population size and rate of sym-
metrical gene flow across two time periods (PSCMIGCs) 
best fit the 2168 SNP data set (Table 2) and had small, nor-
mally distributed residuals (Fig. S8). This model was 20.84 
AIC units better than the second best-fit model (PSCMIGs; 
Table 3), which inferred change in population size estimates 
across two time intervals but inferred only one, constant 
symmetrical gene flow parameter across time intervals.
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Initial divergence was estimated to be 2.74 mya (95% 
CI 2.25–3.24). The first time interval during divergence 
(T1) lasted 98.7% of the total divergence time with sym-
metrical gene flow (Mi) occurring at a rate of 48.6 (95% CI 
33.1–64.1) migrants per generation (Fig. 5). The effective 

size of the ancestral population (Nref) was 36,137 (95% CI 
31,367–40,908; Fig. 5) prior to divergence. For most of the 
divergence history, P. pungens had an effective population 
size of NP1 = 1,024,573 (95% CI: 140,601–1,908,546) while 
P. rigida had a relatively smaller, but still large, effective 

Fig. 4  Hypotheses associated with each SDM-GCM model predic-
tion versus the ensemble SDM prediction based on relative grid cell 
counts of high habitat suitability (> 0.5) for P. rigida, P. pungens, and 

overlap across four time periods (LIG, LGM, HOL, and PD). Bolded 
text were statements supported by the best-fit model of demographic 
inference
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size of NR1 = 758,920 (95% CI 214,423–1,303,417). The 
second time interval (T2) during divergence was estimated 
to have begun 35.2 kya (95% CI 32.9–37.4) when effective 
population sizes decreased instantaneously to 3448 (95% 
CI 3226–3669) for P. pungens (NP2) and 3,935 (95% CI 
3679–4191) for P. rigida (NR2). During this time interval, 
the relative rate of symmetrical gene flow dropped from 48.6 
to 38.4 (95% CI 35.7–41.1) migrants per generation.

Discussion

Using a multidisciplinary approach, we demonstrated that 
the divergence history of P. pungens and P. rigida involved 
a complex mixture of population size changes linked to 
changing climates, as well as changing rates of gene flow as 
quantified using the number of migrants per generation. We 
also demonstrated that consideration of each GCM-based 
SDM prediction is important to hypothesis formation for 
phylogeographic and demographic inference studies as the 
more widely employed method of ensembling historical 
SDM predictions can be misleading, especially when infer-
ences include population size change. All four of our SDM 
hypotheses were supported in terms of gene flow occurrence 
since the LIG, but only the SDM hypothesis for population 

Table 3  Results of model fitting for thirteen representative demo-
graphic models of divergence. Models are ranked by the number of 
parameters (k). Log-likelihood (logL) and Akaike information crite-
rion (AIC) are provided for each model. Model details are given in 
the footnote

SI, strict isolation; MIGs, symmetrical gene flow; MIGa, asymmetri-
cal gene flow; SCs, secondary contact with symmetrical gene flow; 
SCa, secondary contact with asymmetrical gene flow; SGFa, specia-
tion with asymmetrical gene flow SGFs, speciation with symmetri-
cal gene flow; PSC, population size change; MIGCs, change in rate 
of symmetrical gene flow; T3, for three time intervals. The best-fit 
model is in bold

Model k logL AIC

SI 3  − 2254.18 4514.37
MIGs 4  − 2201.51 4411.02
MIGa 5  − 2210.81 4431.62
SCs 5  − 2213.93 4437.86
SGFs 5  − 2229.65 4469.30
SCa 6  − 2238.03 4488.06
SGFa 6  − 2241.07 4494.14
PSC 6  − 2277.78 4567.56
PSCSCs 7  − 2178.16 4370.32
PSCMIGs 7  − 1866.42 3746.84
PSCMIGCs 8  − 1853.99 3726.00
PSCMIGa 10  − 2117.91 4251.82
PSCMIGCs_T3 12  − 1899.56 3823.12

Fig. 5  The best-fit model (PSC-
MIGCs) and unscaled parameter 
estimates from �a�i analysis. 
Time intervals (Ti) are repre-
sented in millions of years and 
associated with lineage popula-
tion sizes (Ni) and a specific rate 
of symmetrical gene flow (Mi)
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size change since the LIG (CCSM4, Hypothesis 1 in Fig. 4) 
was supported by genetic data. The best-fit demographic 
model using 2168 SNPs as summarized using the multidi-
mensional site frequency spectrum indicated initial diver-
gence to have occurred 2.74 mya, an estimate similar to the 
one inferred in Saladin et. al. (2017; 2.66 mya). Our best-fit 
model also indicated a large reduction in effective population 
size which coincided with a reduction in gene flow during 
the last glacial period (~ 10,000 years before the last glacial 
maxima). A three-epoch model to test SDM observations of 
expansion since the LGM was included, but model fit did not 
improve. This could be due to the more pronounced impact 
of a recent bottleneck to site frequency spectrum patterns or 
that our data simply did not capture expansion from inferred 
bottlenecks.

Climate drives divergence

The total divergence time inferred for P. pungens and P. rigida 
(2.74 mya) aligns with the onset of the Quaternary Period 
(~ 2.6 mya), a time period widely recognized as driving adap-
tations to seasonality for many temperate species (Dobzhan-
sky 1950; Savolainen et al. 2004; Jump and Penuelas 2005; 
Williams and Jackson 2007; Bonebrake and Mastrandea 
2010). For P. pungens and P. rigida, precipitation seasonality 
(Bio15) was important to genetic differentiation (RDA) and 
species distributions (SDMs) which strongly implies adapta-
tions to seasonality were drivers of divergence. While SDM 
predictions are often scrutinized, few features (e.g., linear and 
quadratic) were used in the predictions associated with our 
best-fit SDMs. This suggests high model accuracy and thus 
dependable identification of climatic variables (e.g., precipita-
tion seasonality) important to habitat suitability. Phenological 
traits have been linked to seasonal variation within various 
plant species of North America (Jump and Penuelas 2005), 
and differences in seasonality requirements for P. pungens and 
P. rigida (i.e., mean of 11.3 versus 14.2, respectively) likely 
explain the observed trait differences in seed size, reproduc-
tive age, timing of pollen release, and rates of seedling estab-
lishment across these two species (Zobel 1969; Della-Bianca 
1990; Ledig et al. 2015).

Using niche and trait data, the phylogenetic inference 
of Jin et al. (2021) also identified precipitation seasonal-
ity (Bio15) as a driver of diversification in eastern North 
American pines along with annual mean temperature (Bio1), 
mean temperature of the wettest quarter (Bio8), elevation, 
and soil silt content. Although three of these variables were 
not included in our RDA, the two that were included (i.e., 
precipitation seasonality and elevation) were most important 
to explaining species-level genetic differences. In terms of 
distributional differences between these two species, narrow 
niche requirements for precipitation seasonality and eleva-
tion help explain the patchy distribution of P. pungens along 

the southern Appalachian Mountains, while contrastingly, 
populations of P. rigida may have evolved a response to 
increased precipitation seasonality during the Quaternary 
period. In a study of pinyon pine diversification, Ortiz-
Medrano et al. (2016) suggested the response to seasonal-
ity as potentially linked to the evolution of plasticity. This 
could explain P. rigida’s less stringent niche requirements 
for precipitation seasonality and elevation, larger geographic 
distribution, greater trait variation, and proposed latitudinal 
expansion into northeastern North America (Ledig et al. 
2015).

The evolution of fire-related traits in pines has been 
linked to the mid-Miocene period, but fire intensity and fre-
quency in certain geographic regions have been cyclical in 
nature thus allowing the evolution of adaptive traits related 
to fire endurance, tolerance, or avoidance to be possible 
across multiple geologic time scales (e.g., He et al. 2012; 
Lafon et al. 2017; Jin et al. 2021). Fine-scale geographi-
cal distributions of our focal species are locally divergent 
across slope aspects in the Appalachian Mountains, with P. 
pungens primarily distributed on southwestern slopes and P. 
rigida primarily distributed on southeastern slopes (Zobel 
1969). Currently, there is higher fire frequency and inten-
sity on western slopes. The high levels of cone serotiny and 
fast seedling development associated with P. pungens are 
evolved strategies that confer population persistence in more 
active fire regimes (Zobel 1969). Although some northern 
P. rigida populations exhibit serotiny, the populations found 
along the southern Appalachian Mountains, and proximal to 
P. pungens, have nonserotinous cones and other traits con-
sistent with enduring fire (e.g., thick bark and epicormics; 
Zobel 1969) as opposed to relying on it (Jin et al. 2021). 
With these factors in mind and the correlative evidence 
between fire intensity and level of serotiny presented across 
populations of other pine species (P. halepensis and P. pin-
aster; Hernandez-Serrano et al. 2013), we suspect genomic 
regions involved in the complex, polygenic trait of serotiny 
(Parchman et al. 2012; Budde et al. 2014) may have also 
contributed to the rapid development of reproductive isola-
tion, likely postzygotically, between our focal species.

Reproductive isolation can evolve rapidly 
during speciation

While P. pungens and P. rigida can be found on the same 
mountain and even established within a few meters of each 
other, mountains are heterogeneous, complex landscapes 
offering opportunity for niche evolution along multiple 
axes of biotic and abiotic influence for parental species, 
and hybrids alike. The distances to disperse into novel envi-
ronments are relatively short in these heterogeneous land-
scapes thus suggesting diversification could be more rapid 
as environmental complexity increases (Bolte and Eckert 
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2020). Mountains have rain shadow regions characterized 
by drought, and thus more active fire regimes (Parisien and 
Moritz 2009). A host of adaptive traits in trees are associ-
ated with fire frequency and intensity (Pausas and Schwilk 
2012). Among those, the genetic basis of serotiny is char-
acterized as being polygenic with large effect loci in P. con-
torta Dougl. (Parchman et al. 2012) and in P. pinaster Aiton 
(Budde et al. 2014). Such genetic architectures, even in com-
plex demographic histories such as the one described here, 
can evolve relatively rapidly to produce adaptive responses 
to shifting optima (e.g., Stetter et al. 2018; reviewed for for-
est trees by Lind et al. 2018), so that it is not unreasonable to 
expect divergence in fitness-related traits such as serotiny to 
also contribute to niche divergence and reproductive isola-
tion. Considering large effect loci associated with serotiny 
were also associated with either water stress response, winter 
temperature, cell differentiation, or root, shoot, and flower 
development (Budde et al. 2014), serotiny may be a trait 
that contributes to widely distributed genomic islands of 
divergence, thus explaining the development of ecologi-
cally based reproductive isolation between P. pungens and 
P. rigida amid recurring gene flow (Nosil and Feder 2012). 
Given that our focal species are reciprocally crossable to 
yield viable offspring (Critchfield 1963), it is likely that 
postzygotic ecological processes, such as selection for diver-
gent fire-related and climatic niches, limits hybrid viabil-
ity in natural stands as a form of reinforcement layered on 
the aforementioned prezygotic divergence of phenological 
schedules. Indeed, hybrids are rarely identified in sympat-
ric stands (Zobel 1969; Brown 2021). Thus, it appears that 
niche divergence is associated with divergence in repro-
ductive phenologies during speciation for our focal taxa. 
Whether niche divergence reinforces reproductive isolation 
based on pollen release timing or divergent pollen release 
timing is an outcome of niche divergence itself, however, 
remains an open question.

The rate of gene flow in our best-fit demographic model 
was reduced by approximately 10 migrants per generation 
providing evidence that prezygotic reproductive isolation 
may have strengthened during the glacial period. This reduc-
tion reflects a scenario of reduced effective population sizes, 
reduced rates of gene flow (m), or both. The rate of gene 
flow associated with a given time interval should also not 
be interpreted as constant. For example, Sousa et al. (2011) 
found that posterior distributions for the timing of gene flow 
parameters in demographic inference were highly variable 
across the simulations they performed making pulses of gene 
flow (i.e., a gene flow event occurring within a time frame 
of no active gene flow), as probable as constant, ongoing 
gene flow. This likely explains the high levels of gene flow 
inferred using �a�i with the empirical lack of frequent and 
identifiable hybrids in extant samples of each species (Fig. 2; 
Brown 2021). While acknowledging this blurs interpretation 

of parameter estimates for gene flow, a history with recur-
ring gene flow events fits the narrative of prezygotic isola-
tion being labile especially when geographical distributions 
or reproductive phenology are the factors involved. Indeed, 
observations of hybridization occurring between once prezy-
gotically isolated species have been made and suggests 
phenological barriers such as timing of pollen release and 
flowering may not be permanently established and can shift 
towards synchrony in warming climates (Vallejo‐Marín and 
Hiscock 2016).

Climate instability reduces genetic diversity

Conifers typically have high levels of genetic diversity and 
low levels of population differentiation because of outcross-
ing, wind dispersion, and introgression (Petit and Hampe 
2006). Pinus pungens and P. rigida both have modest lev-
els of genetic diversity within and across the populations 
we sampled, and no detectable within-species population 
structure given our genome-wide data. Our best-fit model 
inferred a drastic effective population size reduction (P. 
pungens, ~ 99.7%; P. rigida, ~ 99.5%) to have occurred 35 
kya. Since then, climate has continued to oscillate between 
extreme warming and cooling events (Jackson & Overpeck 
2000) and for geologic time intervals too short for species 
with long generation times and low migratory potential to 
sufficiently track causing a mismatch between the breadth 
of a species’ climatic niche and where populations are 
established (Svenning et al. 2015). This dynamic affects 
population persistence, reduces genetic variation within 
populations due to excessive mortality, and thus to some 
degree limits the potential for local adaptation in climati-
cally unstable regions. The lack of IBD and IBE across the 
populations of our focal species can be explained in one of 
two ways, the mismatch described in Svenning et al. (2015) 
or the primarily nongenic regions investigated in our RAD-
seq data reflect little to no structure. Our SDM predictions 
showed substantial shifts in habitat suitability since the LIG, 
providing evidence of high climate instability in temperate 
eastern North America during the Quaternary period. We 
acknowledge though that niche conservatism is an underly-
ing assumption in historical SDMs, so our interpretations 
were done cautiously. Gene flow and local adaptation affect 
niche dynamics in various ways (Pearman et al. 2008), but 
neither of these processes were able to be accounted for in 
our SDMs, especially when intersecting them with knowl-
edge from our genetic data.

From a theoretical standpoint, we anticipated the patchy, 
mountain top distribution of P. pungens to be characterized 
by strong patterns of population differentiation. Lack of 
structure in P. pungens could be attributed to long distance 
dispersal or a recent move up in elevation with genomes still 
housing elements of historical panmixia. Indeed, suitable 
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habitat predictions during the HOL, just 6000 years ago, 
were rather contiguously distributed (Fig. S5 and Fig. S7) 
and may have allowed an increase in intraspecific gene flow. 
For P. rigida, some structure differentiating the northern 
populations from those along the southern Appalachian 
Mountains was expected from an empirical standpoint 
because previously reported trait values in a common gar-
den study led to identification of three latitudinally arranged 
genetic groupings (Ledig et al. 2015). Although structure 
analysis did not support groupings within P. rigida, our 
estimates for isolation-by-distance (IBD) yielded a correla-
tion of 0.177 (p = 0.055) which is suggestive of structure. 
While this shows some differentiation across its distribu-
tion, pairwise FST values were small and on average smaller 
than those between populations of P. pungens suggesting 
higher population connectivity in P. rigida. The three GCM-
based SDM predictions for both P. pungens and P. rigida 
differed substantially but did consistently show two or three 
disjunct refugia where gene flow dynamics intraspecifically 
and interspecifically may have been affected. Even though 
genetic differences may have accumulated in these separate 
refugia, the SDM predictions for the HOL were more com-
pact and contiguous for our focal taxa, providing greater 
potential for intraspecific gene flow across diverged popu-
lations and the reestablishment of interspecific gene flow 
under a warming climate.

Future work and conclusions

The divergence history of P. pungens and P. rigida involved 
a complex interplay of recurring interspecific gene flow and 
dramatic population size reductions associated with changes 
in climate. Future detailed examinations of hybridization 
between P. pungens and P. rigida are needed to elucidate 
the role hybridization plays in the maintenance of species 
boundaries. Ideally, future research involving these two 
species would use a method that sufficiently captures genic 
regions and thus the genomic islands of divergence that 
are often associated with ecological speciation (Nosil and 
Feder 2012). It may also be of interest to conduct population 
genetic analyses from chloroplast and mitochondrial DNA to 
obtain resolved inferences of gene flow directionality (i.e., 
asymmetry) and population connectivity.

While more time, effort, and genomic resources are 
needed for us to accurately predict gains and losses in 
biodiversity or describe the development of reproduc-
tive isolation in conifer speciation, we must recognize 
that some montane conifer species will be disproportion-
ately affected by future climate projections (Aitken et al. 
2008) and time is of the essence in terms of capturing 
and understanding current levels of biodiversity. High 
elevational species such as P. pungens may already be 

experiencing a tipping point, but because P. pungens is 
a charismatic Appalachian tree with populations already 
threatened by fire suppression practices over the last cen-
tury, conservation efforts have begun through seed banking 
(Jetton et al. 2015) and prescribed burning experiments of 
natural stands (Welch and Waldrop 2001). Our contribu-
tions to these conservation efforts include genome-wide 
population diversity estimates for P. pungens and P. rigida 
and a demographic inference scenario that involves a long 
history of interspecific gene flow. In conifer species of 
the family Pinaceae, there are multiple accounts of intro-
gression occurring through hybrid zones (De La Torre 
et al. 2014; Hamilton et al. 2015; Menon et al. 2018). The 
implications of introgression are far-reaching, as it leads 
to greater genetic diversity, and thus a greater capacity for 
adaptive evolution. Trees are often foundation species in 
many plant communities, so understanding a population’s 
potential to withstand environmental changes provides 
some insight into the future stability of the ecological 
communities dominated by these charismatic plant taxa.
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