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Abstract
The unique adaptation ofEucalyptus benthamii to low temperatures coupled to fast growth and versatile wood quality has made it
a valued plantation species in frost-prone areas worldwide, but little is known on its quantitative genetic parameters for key
industrial traits.We usedGBLUP additive (GA), additive-dominant (GAD), single-step (HBLUP), and pedigree-based predictive
models to estimate lignin, extractives, carbohydrates, and wood density at age 4 and tree volume at age 6. By capturing hidden
relatedness and correcting pedigree errors, SNP data disentangled non-additive from additive variance providing more realistic
estimates of narrow-sense heritability than pedigrees, and more accurate predictions of trait values. Predictive abilities (PAs)
ranged from 0.12 for volume (pedigree-based model) to 0.44 for wood density (models H, GA, and GAD). Considerable
dominance variance was seen for all traits, growth was the trait most influenced by it, resulting in PAs 48.9% higher when this
effect is considered, a result with important consequences both for clonal propagation and overall selection efficiency (Seff). Using
a HBLUP model, phenotypes of non-genotyped trees increased PAs by increasing sample size and provided realized relation-
ships with reduced genotyping cost. In a recurrent selection program, the preclusion of progeny testing provides an increase in Seff
between 232% and 299%. In a clonal selection program, the elimination of both progeny and initial clonal trial may increase Seff
between 134% and 277%. Increasing selection intensity by genomic prediction resulted in an additional impact on Seff. This study
provides groundwork to implement genomic selection in E. benthamii breeding.

Keywords Genome-wide selection . Dominance effect . Single-stepGBLUP . Predictive ability . Selection efficiency . Breeding
cycle reduction

Introduction

The genus Eucalyptus native to Australia, Indonesia, and
nearby islands includes the most widely planted hardwood
tree species in the tropical and subtropical world. Due to the
outstanding natural plasticity found across species, plantations
can be established in various edaphoclimatic zones. Currently,
a set of “big nine” Eucalyptus species (E. camaldulensis,
E. grandis, E. tereticornis, E. globulus, E. nitens,
E. urophylla, E. saligna, E. dunnii, and E. pellita) are exten-
sively planted due to their high productivity, rapid growth,
production of commercially important wood for various uses,
and great adaptive ability (Harwood 2011).

Eucalyptus benthamii Maiden et Cambage, commonly
known as “CamdenWhite Gum,” is a subtropical species with
restricted distribution between latitudes 33° S and 34° S in the
coastal region of the Australian state of New South Wales, at
an altitude between 50 and 800 m. Its climatic requirements
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include an average annual temperature between 13 °C and
17 °C and annual precipitation between 900 and 1.400 mm.
E. benthamii is a species with low to moderate natural regen-
eration ability, now considered vulnerable to extinction (Kjaer
et al. 2004; Butcher et al. 2005; Han et al. 2020). Its genetic
base has been drastically reduced due to anthropic actions,
such as the introduction of other species, increased agricultur-
al activities, urban expansion, flooding, and fires (Hall and
Brooker 1973; Kjaer et al. 2004; Butcher et al. 2005). The
main interest in the species is due to its unique ability to
withstand frosts growing in subtropical regions with an aver-
age annual temperature of up to 14.5 °C and withstand abso-
lute minimum temperatures between −6 °C and −10 °C
(Swain 1996; Lin et al. 2003; Paludzyszyn Filho et al.
2006). This unique adaptation has made E. benthamii a highly
valued species to expand eucalypt plantations, as it combines
rapid growth, with the possibility of growing in frost-prone
areas in subtropical high-altitude areas worldwide.

Breeding efforts of E. benthamii are recent when compared
to other mainstream species of the genus. To exploit its high
potential for frost tolerance, breeding programs are currently
ongoing in subtropical regions, such as southern Brazil, south-
eastern USA, Uruguay, Argentina, Chile, and China, using
both E. benthamii as a pure species or combined with other
species, such as E. dunni, with the objective of introgressing
frost tolerance in hybrid combinations (Butcher et al. 2005;
Resende and Assis 2008; Fonseca et al. 2010; Brondani et al.
2011; Arnold et al. 2015; Yu and Gallagher 2015). The long
breeding time required to obtain superior genotypes is, how-
ever, a significant hurdle (Kageyama and Vencovsky 1983;
Pereira et al. 1997; De Gonçalves et al. 1998; Grattapaglia
et al. 2018) that justifies the high expectations toward the
application of genomic selection (GS) in breeding programs
of perennial forest and fruit trees. This approach has many
advantages over traditional breeding and selection methods,
mainly due to the possibility of considerable time savings,
increased selection intensity, and equal or possibly higher se-
lection accuracy at much earlier ages (Resende et al. 2012;
Grattapaglia 2014).

Generally, ABLUP, or pedigree-BLUP, is the standard
methodology in predicting genetic values from an expected
relationship between individuals (Crossa et al. 2010). The
method was first suggested by Fisher (1918) and consists of
using the pedigree to calculate the expected relatedness matrix
(A) to predict genetic values based on the infinitesimal addi-
tive model. However, the expected relatedness, especially in
open-pollinated progenies of species with mixed mating, not
only incorporates a high level of uncertainty regarding the
effective number of pollen parents involved, but also does
not account for the relatedness already existing in the popula-
tion, generally referred to as “cryptic or hidden relatedness”.
The hidden relatedness can affect the accuracy of estimated
genetic parameters, genotypic values, and predictive abilities

and inflate the additive variance (Squillace 1974; Namkoong
et al. 1988; Tambarussi et al. 2018; Klápště et al. 2018).

With the advent of accessible genome-wide genotyping
technologies, the GBLUP method is materialized, providing
a more precise approach to estimating relatedness among in-
dividuals (Grattapaglia et al. 2018). Differently from the
ABLUP that uses a numerator-based relationship matrix A,
GBLUP makes use of a relationship matrix estimated from
genotypes collected for large numbers of genome-wide
markers. This matrix is often called G matrix or GRM for
Genomic Relationship Matrix and represents the marker-
inferred proportion of the genome that two individuals share,
frequently called the effectively realized relatedness
(VanRaden 2008). The use of genomic relationships can im-
prove the prediction accuracy, as shown in several studies
with forest species (Muñoz et al. 2014; Gamal El-Dien et al.
2015, 2018; Cappa et al. 2017; Resende et al. 2017; Tan et al.
2018).

Besides capturing the realized additive relationships, mo-
lecular marker data also allow the inclusion of non-additive
effects in genomic predictions. The inclusion of the domi-
nance effect in genomic prediction models has been suggested
and used in previous studies (Vitezica et al. 2013; Muñoz et al.
2014; Aliloo et al. 2016; Xiang et al. 2016; Tan et al. 2017).
The presence of significant dominance variance for a trait has
shown that the inclusion of this effect tends to improve the
accuracy of heritability and predictive ability when compared
to genomic models containing only the additive effect, with
important consequences on the correct estimation of genetic
gain (Denis and Bouvet 2011; Wellmann and Bennewitz
2012; Zeng et al. 2013; Muñoz et al. 2014; Nishio and Satoh
2014; Duenk et al. 2017; De Almeida Filho et al. 2019).
Furthermore, the single-step GBLUP (HBLUP), originally
proposed in animal breeding (Legarra et al. 2009; Misztal
et al. 2009; Aguilar et al. 2010; Christensen and Lund
2010), has provided a powerful additional approach for tree
breeding (Cappa et al. 2017, 2019; Ratcliffe et al. 2017;
Klápště et al. 2018). This method entails genotyping only part
of the individuals in a trial but making inferences about all
individuals tested. This has become an exciting approach be-
cause genotyping still involves a significant investment not
accessible to all tree breeding programs, despite the consider-
able cost reductions that took place in recent years (Ratcliffe
et al. 2017; Klápště et al. 2018).

We were interested in assessing the prospects of including
the use of genomic data to accelerate E. benthamii breeding
currently carried out by open-pollinated population advance-
ment. To that end, we set out to compare the relative perfor-
mances of pedigree-based, additive, additive-dominant, and
single-step models for volume growth and a suite of industri-
ally relevant wood quality traits in an open-pollinated progeny
trial of E. benthamii. Genomic relationships were estimated
using high-quality genome-wide SNP data generated with the
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fixed content SNP chip EuCHIP60K. Additionally, we used
the estimates of genomic prediction ability obtained with the
different models to evaluate the relative impact of breeding
cycle reduction and increased selection intensity on the overall
selection efficiency in E. benthamii breeding.

Material and methods

Experimental material and phenotyping

The target study population was an open-pollinated progeny
trial of E. benthamii located at Otacílio Costa, Santa Catarina
state, Brazil, planted in October 2010, following a randomized
complete block design with 20 replicates of 81 families in
single-tree plots, totaling 1620 trees in the trial. Open-
pollinated seeds used to establish the trial were collected from
select trees in two progeny trials at two different locations of
Telêmaco Borba (Paraná state) with genetic material original-
ly introduced from Kedumba Valley, NSW, Australia.

The trees were measured at age 4 years for diameter at
breast height and total height. Using these two traits, volume
growth was estimated. A sample of 780 individuals from 77
families was selected for volume using REML/BLUP meth-
odology by the following mixed model:

y ¼ Xβ þ Zaþ e

where y is the phenotypic measure of the evaluated trait; β is
the vector of fixed effect associated with the block replication;
a is the random vector of genetic additive individual effects; e
is the random residual effect; X and Z are the incidence ma-
trices for the respective effects.

To obtain wood quality traits, from all 780 trees, two wood
cores were extracted at breast height (1.3 m) at age 4 years
using an increment borer with 12 mm diameter. The first core
was used to measure basic wood density (BWD) using the
direct relation between dry weight (Wdry) and volume at full
saturation (Vs): BWD =Wdry/Vs. The second core was ground
by a Wiley mill and the sawdust was graded using 40 and 60
mesh sieves and stored in a room with controlled temperature
and humidity (23 °C and 50% respectively) and further used
for chemical analysis. The following traits were measured:
extractive content (EXT) (TAPPI TA of the P and P 2000),
total lignin content (LIG) (Goldschmid 1971; Gomide and
Demuner 1986), and the sum of cellulose and hemicellulose
content, here referred to as carbohydrates content (CBO)
(Wallis et al. 1996).

Using data for the 780 measured trees, prediction models
for all wood chemical and quality traits were built using near-
infrared spectroscopy (NIRS). These models were then used
to predict the wood traits for the remaining alive individuals in
the progeny trial (476). At age 6 years, an additional

measurement of diameter at breast height and total height
was carried out for all trees in the trial, and volume growth
was estimated (VOL6).

Genotypic material and quality control

The 780 measured trees were genotyped using the Illumina
Infinum EUChip60K for Eucalyptus (Silva-Junior et al. 2015)
at Geneseek (Lincoln, NE, USA). Genomic DNAwas extract-
ed from fresh leaves using a rapid optimized protocol for high
phenolics content tissue (Inglis et al. 2018). Data quality con-
trol was carried out using PLINK (Purcell et al. 2007). The
data were filtered to remove SNP markers with a call rate ≤
95% and individual samples with a call rate ≤ 90%. Samples
that did not have phenotype measurements for all evaluated
traits were also removed. Some outlier samples possibly due
to non-sampling errors (i.e., error that occurs during data col-
lection, causing the data to differ from the true values) were
also removed using a PCA (principal component analysis)
using a LD-pruned (r2 < 0.2) subset of markers. Another fil-
tering step removed monomorphic SNPs keeping SNPs with a
minor allele frequency (MAF) > 0. In the end, data for 15,293
SNPs and 671 individuals remained and were used in subse-
quent analyses.

Statistical modeling

The relationship matrix based on pedigree information (A)
was computed using the expected genetic relatedness between
individuals considering the ancestors that we were able to
track down, i.e., 24 grandmothers for 53 of the 77 genotyped
families.

With information from SNP markers, the additive genomic
relationship matrix (G) was obtained according to VanRaden
(2008):

G ¼ ZZ
0

2∑p
i¼1pi 1−pið Þ

where Z is the centered matrix of SNP encoded as 0, 1, and 2
and pi is the allele frequency of individuals for the i SNP locus.
The resulting matrix was checked and confirmed to be posi-
tive semi-definite, as it is a common prior for genomic
analysis.

The dominance relationship matrix (D) was estimated ac-
cording to Vitezica et al. (2013):

D ¼ SS
0

∑p
i¼i 2pi 1−pið Þf g2

where S is the matrix codified as −2(1 − pi)
2 for the alter-

native homozygote, 2pi(1 − pi) for the heterozygote, and −2pi2
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for the reference homozygote; pi is the same as stated in the
estimation of the G matrix.

The hybrid single-step matrix (H) that includes expected
relatedness (A) and realized genomic relatedness (G) was ob-
tained using the approach of Legarra et al. (2009) and Aguilar
et al. (2010):

Η ¼ Ann þ A
0
gnA

−1
gg Ga−Agg

� �
A−1
ggAgn A

0
gnA

−1
ggGa

GaA−1
ggAgn Ga

" #

where matrices Agg, Ann, and Agn are submatrices of A, and
contain the relatedness between genotyped individuals (Agg),
non-genotyped (Ann), and between genotyped and non-
genotyped individuals (Agn) (Christensen 2012). Ga is the
genomic relationship matrix (G) adjusted with the following
expression:

Ga ¼ βGþ α

where β and α are obtained by solving the following sys-
tem of equations:

Avg diag Gð Þf gβþ α ¼ Avg diag Agg

� �� �
;

Avg Gð Þβþ α ¼ Avg Agg

� �

This adjustment has the function of rescaling G in order to
obtainGa, so that the mean of its diagonal equals the diagonal
mean of Agg, as well as the mean of all Ga and Agg elements.

The G matrix, accounting for the additive and additive-
dominant GBLUP models, contains only genotyped individ-
uals. The matrixH, in turn, contemplates genotyped and non-
genotyped individuals, that is, the entire progeny trial, gener-
ating different sample sizes between these models. So, in or-
der to allow the comparisons between the performance of the
models against the standard infinitesimal additive model, the
A model (ABLUP) was adjusted with two datasets: one con-
taining only genotyped individuals (Ag model), and another
contemplating all individuals (At model).

Fitting of both A models was carried out with the rrBLUP
package (Endelman 2011), with the following linear mixed
model:

y ¼ Xβ þ Zauþ e

where y is the phenotypic measure of the evaluated trait; β is
the vector of fixed effect associated with the block replication;
u is the random effect vector associated with the additive
effect; e is the random residual effect; X and Za are the inci-
dence matrices for the respective effects. It was assumed that
a∼N 0;Aσ2

a

� �
.

The subsequent models were adjusted using Bayesian re-
gression modeling as particular cases of Reproducing Kernel
Hilbert Spaces (RKHS) using the statistical package BGLR
(Pérez and De Los 2014).

For the GBLUP model that considers only the additive
effect (GA), the genomic relationship matrix (G) was provid-
ed as a kernel matrix, in order to fit the following mixed
model:

y ¼ Xβ þ Zaaþ e

where y is the phenotypic measure of the evaluated trait; β is
the vector of fixed effect associated with the block replication;
a is the random effect vector associated with the additive
effect; e is the random residual effect; X and Za are the inci-
dence matrices for the respective effects. For the analysis, the
following priors were assumed:

p(μ)∝ constant; ajK1;σ2
a∼N 0;K1σ2

a

� �
For the model that considers both the additive and domi-

nance effects (GAD), the additive (G) and dominance (D)
genomic matrices were provided as kernel matrices in order
to fit the following mixed model:

y ¼ Xβ þ Zaaþ Zdd þ e

where y is the phenotypic measure of the evaluated trait; β
is the fixed effect vector associated with the block replication;
a is the vector of random effects associated with the additive
effect; d is the vector of random effects associated with dom-
inance deviation; e is the random residual effect;X,Za, andZd

are the incidence matrices for the respective effects. For the
analysis, the following priors were assumed:

p ( μ ) ∝ c o n s t a n t ; ajK1;σ2
a∼N 0;K1σ2

a

� �
e

djK2;σ2
d∼N 0;K2σ2

d

� �
In the assumptions of both GA and GADmodels above,K1

and K2 are, respectively, the kernel matrices G and D.
When fitting the single-step GBLUP, or HBLUP model

(H), the G matrix was replaced with the H in the GA model.
The same priors were also assumed.

In order to obtain the variance components associated with
each model, the standard distributions of the BGLR package
(Pérez and De Los 2014) were assumed: σ2i ∼χ−2 σ2

i jd f i; Si
� �

with dfi degrees of freedom and scale parameter Si > 0.
After previous analysis on Markov chains using the coda

package (Plummer et al. 2006), 120,000 iterations were con-
sidered, with the first 2000 excluded as burn-in with a thinning
interval of 100.

Heritabilities were estimated at the broad (h2G ) and narrow

sense (h2a ) as:

h2G ¼ σ2
a þ σ2

d

σ2
a þ σ2

d þ σ2
e

h2a ¼
σ2
a

σ2
a þ σ2

d þ σ2
e

where h2G is the broad-sense heritability (only estimated for the
GAD model); h2a is the narrow-sense heritability; σ2

a is the
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additive variance associated with the respective relationship
matrix; σ2

d is the genetic variance associated with the domi-
nance deviation (only accounting for the GADmodel); and σ2

e
is the residual variance.

To assess whether the dominance variance, when included
in the model, influences the estimation of the additive vari-
ance, we calculated a ratio between the additive variance es-
timated considering the dominance effect (GAD model -
σ2
a GADð Þ ) and the additive variance estimated without consid-

ering the dominance effect (GA model - σ2
a GAð Þ ):

To ascertain the magnitude of the variance associated with
the dominance effect in relation to the additive variance esti-
mated with the GAD model, a ratio was calculated between
these variances: σ2

d=σ
2
a.

Predictive ability and prediction bias

The performance of the models was compared using two
criteria:

(a) Prediction bias (bias): estimated by a 10-fold cross-vali-
dation procedure, using the regression coefficient obtain-
ed between values predicted by the model and the phe-
notypic values, where 1 is the ideal value (i.e., absence of
bias).

(b) Prediction ability (PA): estimated by a 10-fold cross-val-
idation procedure. The data were divided into two sub-
sets, one with 90% of the individuals (training popula-
tion), and another with the remaining 10% (validation
population).

Selection efficiency and selection intensity

Genomic selection models were compared to traditional best
linear unbiased prediction (BLUP)-based phenotypic selec-
tion (PS) using the selection efficiency (Seff) in terms of per-
cent time reduction in breeding cycle length. The selection
efficiency was obtained using a ratio between expected genet-
ic gain from genomic (EggGS) and BLUP-based selection
(EggPS) as Seff = [(EggGS/EggPS) − 1] × 100, as described ear-
lier (Grattapaglia and Resende 2011).

The expected genetic gains were obtained by the classical

breeder’s equation: Egg ¼ irσa
L (Falconer 1989), where i is the

selection intensity, r is the method accuracy, σa the additive
genetic standard deviation, and L is the breeding cycle length.
Since σa is equal for both genomic and BLUP-based selection,
and aiming to evaluate only the impact of time and accuracy,
we initially considered an equal i for both methods, and thus,
the equation was simplified as Egg ¼ r

L.
The BLUP-based selection accuracy (rPS) was estimated

for both datasets, the one with only genotyped individuals

and the one contemplating all individuals as the square root

of narrow-sense heritability (rPS ¼
ffiffiffiffiffi
h2a

q
). To compute the

genomic selection accuracies (rGS), two paths were considered
depending on the main purpose of selection, recurrent selec-
tion (RS), or clonal selection (CS). Since the selection purpose
dictates the most suitable model, the accuracies of both addi-
tive (GA) and single-step (H), which are the most appropriate
models for RS, were obtained as a ratio between its predictive
ability (PA) and the square root of its narrow-sense heritability

(rGS ¼ PA=
ffiffiffiffiffi
h2a

q
). For CS, however, the additive-dominant

model (GAD) is the most adequate one. The ratio to obtain
rGS, consider both the additive and dominant effect, and so,

the broad-sense heritabilty was used (rGS ¼ PA=
ffiffiffiffiffiffi
h2G

q
).

For clonal selection, the total breeding cycle length, that is,
the traditional BLUP-based selection (PS) cycle, was assumed
to be 18 years (Resende et al. 2012, 2017). This cycle length
includes 5 years for flowering, mating, and seedling produc-
tion, 3 years for progeny testing, 5 years for the first initial
clonal screening trial of a larger number of clones, and the
final 5 years expanded clonal trial of a reduced number of
clones. For RS, the PS cycle length was assumed to be 10
years, where the first 5 years are the same as explained for
the clonal route above, and the remaining 5 years are for
progeny testing. We considered the progeny test of RS to be
longer, in order to adequately evaluate wood quality traits,
since this strategy is aimed at selecting parents of the subse-
quent generation. These values (18 years for CS and 10 years
for RS) were used as benchmarks to compare the Seff of geno-
mic selection for different percent time reductions in breeding
cycle length, ranging from amore conservative 10% reduction
(e.g., 9 years for RS; 16.2 years for CS) to a more aggressive
50% reduction (5 years for RS; 9 years for CS).

Since genomic selection opens the possibility to greatly
increase selection intensity (i) by indirectly evaluating a much
larger number of plants when compared to BLUP-based se-
lection and still select the same number of trees, we aimed to
verify its impact on Seff, and, again, used the breeder’s equa-
tion to obtain selection efficiencies with the same estimation
method as described above. To calculate the expected genetic
gains, we also used the benchmark values for total breeding
cycle length, depending on the chosen route (10 years for RS;
18 years for CS), as fixed values in the estimate of EggPS. For
EggGS, we then adopted a breeding cycle reduction of 45%,
such that a RS cycle would take 5.5 years and a CS cycle 10
years. We simulated selection at the truncation point, with the
100 best individuals selected for the trait, thus varying the total
number of evaluated plants. We fixed the selection intensity
(i) at 5%, i.e., 100 top individuals in 2000 evaluated plants, for
EggPS, and varied i from 5 to 0.25%, i.e., 100 top individuals
in 2000 up to 40,000 evaluated plants for EggGS. The value of
i was obtained by the ratio between z (height of the
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standardized normal at a given truncation point) and p (per-
centage of selected individuals) (Falconer and Mackay 1996).
To obtain i, the observations must be normally distributed;
therefore, normality was verified through the Kolgomorov-
Smirnoff (KS) test.

Results

Phenotypic data

Considerable phenotypic variation was observed for the eval-
uated traits in the progeny trial (Table 1). For basic wood
density (BWD), it ranged from 296 to 505 kg m−3, extractives
content (EXT) from 0.22 to 5.31%, lignin content (LIG) from
27 to 35%, carbohydrates content (CBO) from 58 to 66%, and
from 0.01 to 1.14 m3 for total tree volume ate age six (VOL6).

Growth (VOL6) displayed the highest phenotypic varia-
tion, with a coefficient of variation of 55%. The lowest vari-
ation was seen for CBO, with a coefficient of variation of
1.9%.

Pedigree and genomic relatedness

The pedigree matrix (Fig. S1 – A), included 97.4% of the
pairwise relationships as not genetically related, 1.1% as
half-first cousins and 1.5% as half-sibs. Using SNP marker
data, the average relatedness was consistent with the expected
pedigree-based relatedness. However the G matrix (Fig. S1 –
B) was able not only to correct relationships between pairs of
individuals mistakenly considered as half-sibs or unrelated by
the Agg matrix, but was also able to capture the more granular
relatedness existing in the population, such as the presence of
full-sibs or even selfed individuals.

Genetic estimates and predictive abilities

Due to the different sample sizes between the dataset that
includes only the genotyped individuals (Ag, GA, and GAD

models) and the dataset of all individuals in the trial (At and H
models), comparisons of heritabilities between genomic and
phenotypic methods were performed only for models adjusted
for the same sample size.

Narrow-sense heritabilities (h2a ) estimated using genomic
models (H, GA, and GAD) were lower than the estimates

using the pedigree matrix (h2a ) (Ag and At models) for all
evaluated traits, with exception of VOL6, for which the Ag
model showed the lowest value (Table 2). The largest differ-
ences between the heritabilities estimated using genomic and
pedigree methods using only genotyped individuals were
found for VOL6 with the additive model (GA) and for LIG
the additive-dominant model (GAD). The estimate of herita-
bility for EXT obtained with the GA model (0.30) was 66.7%
higher than the estimate of the heritability obtained with the
Ag model (0.18), while for LIG it was 45% lower with the
GAD model (0.22) when compared to the Ag model (0.40).
The smallest differences were seen for BWD and VOL6,
where the genomic estimates of the GA model corresponded
respectively to 90.9 and 116.7% of the estimates obtained
with the Ag model. For the dataset containing all individuals,
the largest differences between the single-step (H) and
pedigree-based (At) genomic estimates were for LIG and
CBO, corresponding to 54.9% and 55.7% of pedigree-based
heritability, respectively. The smallest differences were seen
for VOL6, where the estimates were practically the same
(94.6%) and for BWD (76.1%).

The magnitude of the ratio between dominance and addi-
tive variances (σ2

d=σ
2
a ) indicated the presence of dominance

effect for all traits, varying from 0.46 (BWD) to 1.38 (VOL6).
For EXT and VOL6, it exceeded the unit, that is, these traits
involve a dominance effect larger than the additive effect. The
ratio of the additive variance estimated with the additive effect
model (GA) and the additive and dominant effect model
(GAD), σ2

a GADð Þ=σ
2
a GAð Þ, was calculated to evaluate the pres-

ence of orthogonality between the additive and dominance
effects. The ratio varied from 0.68 (EXT) to 0.86 (BWD)
indicating that the GAD model contains 68 to 86% of the
additive variance estimated by the GA model for EXT and
BWD, respectively.

Estimates of prediction bias (bias) show whether the eval-
uated models underestimate (values >1) or overestimate
(values <1) the predicted values (Table 2). For BWD, LIG,
and CBO, none of the tested models showed large deviations
from the unit, meaning that for these traits, all models are
largely free from biased prediction. For EXT, an overestima-
tion was seen with the genomic models considering only ge-
notyped individuals (0.82 - GA; 0.83 - GAD), and an under-
estimation with the pedigree-based model (1.26 - Ag).
However, for the dataset that contains all trees in the trial, no
bias was seen in the pedigree (At) and single-step hybrid (H)
models, indicating that the inclusion of the additional

Table 1 Range, standard deviation (SD), and coefficient of phenotypic
variation (CV) for basic wood density (BWD), extractives (EXT), lignin
(LIG), and carbohydrates (CBO) content at age four and volume at age
six (VOL6) for the progeny trial of E. benthamii

Range BWD
(kg m−3)

EXT (%) LIG (%) CBO (%) VOL6 (m3)

Min 296.00 0.22 26.80 57.70 0.01

Mean 380.10 2.15 31.68 61.47 0.42

Max 505.00 5.31 35.50 66.4 1.14

SD 30.60 0.86 1.12 1.15 0.23

CV (%) 8.05 40.14 3.55 1.87 54.83
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phenotypic information, together with the increase in sample
size, resulted in predicting more accurate values for this trait.

For VOL6, known to involve a significant contribution of
dominance variance, the inclusion of the D matrix corrected

Table 2 Genetic parameters estimated with the genomic additive (GA),
additive-dominant (GAD), and single-step (H) models in comparison
with both pedigree models for the genotyped (Ag) and total dataset (At)

for basic wood density (BWD), extractives (EXT), lignin content (LIG),
and carbohydrates (CBO) at age four and volume growth at age six
(VOL6) for the open-pollinated progeny trial of E. benthamii

Trait Model bias h2a h2G σ2
a GADð Þ=σ

2
a GAð Þ σ2d=σ

2
a

BWD At 1.03 0.67
(0.04)

- - -

H 1.01 0.51
(0.05)

- - -

Ag 1.05 0.55
(0.06)

GA 0.99 0.50
(0.06)

- - -

GAD 0.99 0.43
(0.06)

0.63
(0.07)

0.86 0.46

EXT At 0.99 0.70
(0.05)

- - -

H 1.02 0.42
(0.06)

- - -

Ag 1.26 0.28
(0.06)

GA 0.82 0.22
(0.04)

- - -

GAD 0.83 0.15
(0.04)

0.35
(0.07)

0.68 1.28

LIG At 1.03 0.51
(0.03)

- - -

H 1.03 0.28
(0.04)

- - -

Ag 1.04 0.40
(0.03)

- - -

GA 1.02 0.28
(0.05)

- - -

GAD 0.98 0.22
(0.05)

0.40
(0.06)

0.81 0.80

CBO At 1.04 0.61
(0.04)

- - -

H 1.04 0.34
(0.05)

- - -

Ag 1.02 0.37
(0.04)

- - -

GA 0.99 0.28
(0.05)

- - -

GAD 1.01 0.21
(0.04)

0.40
(0.06)

0.78 0.87

VOL6 At 1.02 0.37
(0.05)

- - -

H 1.15 0.35
(0.05)

- - -

Ag 1.18 0.18
(0.04)

- - -

GA 0.87 0.30
(0.06)

- - -

GAD 1.01 0.21
(0.05)

0.51
(0.07)

0.69 1.38

h2a: narrow-sense heritability with its standard deviation in parenthesis; h2G: broad-sense heritability with its standard deviation in parenthesis;

σ2
a GADð Þ=σ

2
a GAð Þ: ratio between additive variance estimated with an additive-dominant model and an additive model; σ2

d=σ
2
a : ratio between dominance

variance and additive variance
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the overestimation of the values predicted by the GA model
(0.87), as well as the underestimation of the Ag model (1.18),
resulting in an unbiased estimation (1.01 - GAD).
Additionally, the H model produced a slight underestimation
of the predicted values for VOL6 showing that there is some
level of bias associated (1.15).

Predictive abilities (Fig. 1) ranged from 0.12 (VOL6 -
Model Ag) to 0.44 (BWD - Models H, GA, and GAD). For
all evaluated traits, the genomic models (GA and GAD)
showed improved predictive abilities when compared to the
Ag model. The same was seen for all traits when comparing
the single-step (H) and the At models, with the exception of
EXT, where both models performed equally well.

BLUP-based vs. genomic selection efficiency with
reduced breeding cycle length and increased
selection intensity

Following the same approach used for genetic parameters es-
timation, the estimates of selection efficiency (Seff) were ob-
tained respecting the sample size difference of datasets. The
intersection between a model Seff curve and the zero value on
the Y-axis corresponds to the point where GS becomes more
efficient than PS at a given percent time reduction of breeding
cycle length (Fig. 2).

For all traits, except volume at age 6 years (VOL6), the GA
model presented the highest selection efficiencies. For density
(BWD), Seff started near zero for the GA model and became
positive for GAD and Hmodel at around 15% of breeding cycle
reduction (8.5 years by a GAD model for CS; 15.3 by H model
for RS), reaching an increase in efficiency of 233% for GA and
200% for GAD and Hmodels with a 50% reduction in breeding

cycle length. Extractives (EXT), carbohydrates (CBO), and lig-
nin (LIG) showed a similar behavior for the GA model, starting
at Seff = 8% (EXT) to 19% (CBO) with a 10% reduction of
breeding cycle length, up to 248% (EXT) to 286% (CBO) with
a 50% reduction. Although both the GAD and H models start
with a negative or near zero Seff for these three traits, theHmodel,
for LIG displayed the second highest Seff (235%), while for EXT
and CBO, it showed a lower Seff (137% for EXT; 184% for
CBO), than the GAD model (183% for EXT; 224% for CBO).

Growth (VOL6) was the only trait for which the GAmodel
did not stand out. The GAD model reached the highest in-
crease in selection efficiency, 356%, with a 50% reduction
in breeding cycle length, followed by the GA (299%) and
the H models (249%) respectively.

The impact of increasing the selection intensity (i) by adopting
genomic selection on the overall Seff, was modeled considering
the same final number of selected individuals, set to 100, for
increasing numbers of evaluated plants assuming a fixed reduc-
tion of 45% in breeding cycle length. The fixed reduction in
breeding cycle length explains why the modeled curves do not
start at zero but rather at a positive gain in selection efficiency.
The proportion selected varied from 5%, i.e.,100 in 2000 plants
corresponding to a typical selection intensity in progeny trial by
BLUP-based selection, down to 0.25% assuming a very high
selection intensity of the same 100 individuals in a genomic
selection trial with 40,000 plants (Fig. 3).

When the same selection intensity was used (5%, i.e., 100
selections in 2000 evaluated plants), GS already showed an
increased efficiency due to the reduced breeding cycle length.
Once again, for all traits, except VOL6, the GA model was
superior. A rapid increase in selection efficiency was observed
as the selection intensity increased from the evaluation of

0.0

0.1

0.2

0.3

0.4

BWD EXT LIG CBO VOL6
Trait

r g
y

Model
At
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Fig. 1 Predictive abilities (rgy)
with standard error bars of the
different models (see text for
details) for basic wood density
(BWD), extractives (EXT), lignin
(LIG), and carbohydrates (CBO)
at 4 years of age and volume at 6
years of age (VOL6) for an open-
pollinated progeny trial of
E. benthamii

38   Page 8 of 20 Tree Genetics & Genomes (2021) 17: 38



Fig. 2 Increase in selection efficiency (Seff) of genomic selection (GS) in comparison to traditional BLUP-based selection (PS) with a progressive
reduction in the time necessary to complete a breeding cycle for growth and wood traits in an open-pollinated progeny trial of E. benthamii
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Fig. 3 Increase in selection efficiency (Seff) of genomic selection (GS) with increasing selection intensity (evaluated plants) for a fixed reduction of 45%
in breeding cycle for growth and wood traits in an open-pollinated progeny trial of E. benthamii
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2000 to 10,000 plants and less so but still considerably when
up to 40,000 showing a logarithmic behavior of the curves.
For VOL6 the GAD model, again presented the highest in-
crease in Seff among the models tested, starting, at 105%when
2000 plants are evaluated, up to 210%when 40,000 plants are
evaluated.

Discussion

Variation in wood quality traits in Eucalyptus
benthamii

Considerable variation was observed for all evaluated wood
quality traits in the E. benthamii progeny trial (Table 1), in line
with previous estimates in other species of the genus.
Comparative assessments of wood quality traits across euca-
lypts, although potentially useful to make predictions, are dif-
ficult to properly make as they depend on a number of factors,
including species, the genetic origin of the material, planting
site conditions, measurement methods, type of wood sample
used, and age of the tree (Rencoret et al. 2011). It is important
to note that our measurements were taken at a relatively young
tree age. BWD, for example, is known to increase with the age
of the eucalypt trees (Santana et al. 2012; Resquin et al. 2019).
Extractives have been reported to generally increase with age
(Miranda and Pereira 2002; Raymond 2002; Mohammadi
et al. 2011; Morais and Pereira 2012). The same can be stated
for LIG, with reports showing increased (Miranda and Pereira
2002; Mohammadi et al. 2011; Rencoret et al. 2011), de-
creased (Healey et al. 2016), or not influenced values with
the age of the tree (Santana et al. 2012; Lachowicz et al.
2019). Same for cellulose content, with reports showing in-
creasing (Raymond 2002; Mohammadi et al. 2011; Rencoret
et al. 2011) as well as decreasing values with age (Miranda
and Pereira 2002). For hemicelluloses, existing reports show
decreasing values over the years (Miranda and Pereira 2002;
Mohammadi et al. 2011; Lachowicz et al. 2019). Overall, no
single trend seems to exist. Nevertheless, our study provides
additional data for a Eucalyptus species for which very little
data exists and emphasizes the need for further studies to
better understand the expected patterns of variation of wood
chemical traits with age.

Basic wood density (BWD) ranging from 414 to 539 kg
m−3 has been reported for Eucalyptus species at 5 to 10 years
of age (Chen et al. 2018; Lima et al. 2019; Resquin et al. 2019;
Carrillo-Varela et al. 2019). Our average BWD (380 kg m−3)
was on the low end of these estimates and even lower than
previous reports for E. benthamii (Resquin et al. 2019;
Carrillo-Varela et al. 2019). For total lignin content (LIG),
average content in the trial (31.7%) was higher than previous
reports for other Eucalyptus species, which ranged from 23.2
to 31.5% at 5 to 7.5 years of age (Pereira et al. 2013;

Samistraro et al. 2015; Lima et al. 2019; Carrillo-Varela
et al. 2019). In contrast to LIG, carbohydrate content (CBO)
(61.5%) was lower than the literature reports for this trait,
usually ranging from 62.2 to 70.8% at 5 to 10 years of age
(Longue Júnior et al. 2010; Pereira et al. 2013; Samistraro
et al. 2015; Chen et al. 2018; Lima et al. 2019). This contrast
is expected, since CBO is a trait composed by the sum of the
polymers that compose cellulose and hemicellulose: glucan,
xylan, arabinan, galactan, mannan, and acetyl (Wallis et al.
1996); therefore, it is inversely proportional to LIG.
Estimates for extractives content (EXT) (2.15%) were found
within the reported ranges for E. urophylla × E. grandis
(1.27%), E. grandis (1.20%), E. saligna (3.14%), E. dunnii
(3.21%), and E. benthamii (3.69%) at age seven (Simetti et al.
2018). Overall, our estimates of LIG and CBO were similar to
the ones previously reported for E. benthamii (Samistraro
et al. 2015), suggesting that this species has higher LIG and
lower CBO values in the spectrum of the most widely planted
Eucalyptus species.

Hidden relatedness and pedigree reconstruction

Our results corroborate the ability of genome-wide SNP data
to capture and reveal a considerable amount of hidden relat-
edness among individuals in the trial and possibly correcting
pedigree errors although an individualized parentage analysis
was outside the scope of this study. This can be seen in the
realized relationship matrix (Fig. S1 - B), showing a greater
range of relationship values, and thus a more complex rela-
tionship structure expected from the numerator pedigree ma-
trix, even revealing a considerable inter-relatedness among
families, also neglected by the pedigree matrix. Advancing
breeding cycles by an open-pollinated strategy with exclusive
maternal control has frequently been adopted by tree breeders
for its simplicity and lower cost when compared to full pedi-
gree tracking through controlled pollination, especially in her-
maphrodite species with small seed yield per fruit like
Eucalyptus that require intensive labor to complete a full mat-
ing design (Gamal El-Dien et al. 2016; Klápště et al. 2018).
However, with the introduction of marker data in tree breed-
ing, this strategy was shown to frequently carry considerable
pedigree errors (Kumar and Richardson 2005; Bush et al.
2011; Gamal El-Dien et al. 2016; Müller et al. 2017; Lima
et al. 2019). This hidden relatedness can affect the accuracy of
genetic parameter estimation, genotypic values, and predictive
ability and inflate the additive variance (Squillace 1974;
Namkoong et al. 1988; Tambarussi et al. 2018; Klápště et al.
2018). With the current accessibility to inexpensive large-
scale breeder-friendly SNP genotyping data, we envisage its
increased routine adoption to improve the accuracy of genetic
parameter estimates and predicted genetic values, minimize
pedigree errors, and precisely manage inbreeding as genera-
tions of mating and selection advance. For E. benthamii, a
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species still in the initial stages of breeding and typically ad-
vanced by incomplete pedigree control, the use of marker data
should prove particularly valuable.

Heritability, orthogonality of effects, and dominance
variance

Wood chemical traits and BWD showed a moderate to high
levels of genetic control, considerably higher than volume
growth, corroborating the higher complexity of the latter, ir-
respective of the model used, in agreement with studies in
other Eucalyptus species (Resende et al. 2017; Tan et al.
2017, 2018; Cappa et al. 2019; Lima et al. 2019).
Notwithstanding the difference in estimates obtained with
pedigree and genomic data, the magnitudes of the narrow-

sense genomic heritabilities (h2a ) obtained for volume growth
(ranging from 0.21 to 0.35 for the GAD and H models respec-
tively) agree with the only estimates reported for E. benthamii
(Müller et al. 2017) between 0.10 and 0.28 with different
pedigree and genomic models. Our estimates for BWD (0.43
- GAD, up to 0.51 - H) are also consistent with previous
studies in other Eucalyptus species reporting values between
0.30 and 0.67 (Resende et al. 2017; Tan et al. 2018; Lima et al.
2019; Suontama et al. 2019). For LIG, our estimates (0.22 -
GAD to 0.28 - H / GA) match those reported earlier for
E. grandis × E. urophylla hybrids ranging from 0.23 to 0.24
(De Moraes et al. 2018) but are considerably lower than those
reported for these same hybrids in a recent study where values
varied between 0.58 and 0.68 (Lima et al. 2019). Estimates for
the sum of cellulose and hemicellulose content, here referred
to as carbohydrate content (CBO), were very similar to those
reported separately for these two components for E. grandis ×
E. urophylla hybrids (Lima et al. 2019)

The substitution of the pedigree matrix for a GRM and the
inclusion of the non-additive component allowed
disentangling the non-additive from the additive variance pro-
viding, as a result, more realistic estimates of variance com-
ponents (Table S1) and narrow-sense heritability (Table 2).
Narrow-sense heritabilities estimated using all three genomic
models used (H, GA, and GAD)were lower than the estimates
obtained from the pedigree matrix (Ag and At models) excep-
tion made for volume growth at age six. These results are
generally in line with a number of recent studies in forest trees
reporting higher pedigree-based heritabilities than genomic-
based estimates for a range of traits in Picea (Beaulieu et al.
2014; Gamal El-Dien et al. 2015), E. grandis × E urophylla
hybrids (Resende et al. 2017; Lima et al. 2019), and
E. benthamii (Müller et al. 2017). Despite a general trend
showing an overestimated pedigree-based heritability, this
does not appear to be a rule. InEucalyptus nitens, for example,
these two estimates were found to be relatively similar in

magnitude, with small deviations, both for growth and wood
quality traits (Suontama et al. 2019).

The main reason behind the higher heritability estimated
with both A models (Ag and At) when compared to the geno-
mic heritability is the assumed nature of the A matrix itself.
Expected pedigrees are prone to pedigree mislabeling and
unaccounted relatedness in the population (Fig. S1), leading
to overestimated additive genetic variance (Table S1)
(Squillace 1974; Namkoong et al. 1988; Goddard et al.
2011; Ratcliffe et al. 2017; Tambarussi et al. 2018; Klápště
et al. 2018), a problem that tends to be more pronounced in
mixed mating species, such as E. benthamii for which an
outcrossing rate of tm= 0.62 has been estimated, therefore
allowing a significant amount of selfing and biparental in-
breeding at least in natural populations (Butcher et al. 2005;
Tambarussi et al. 2018). Although inbreeding might contrib-
ute to the drawback of matrix A not reflecting the correct
relatedness, this does not seem to be the case in this popula-
tion. By taking the average mean of the genomic relationship
matrix (G) diagonal, we estimated an F statistic called FGRM
(Ghoreishifar et al. 2020) equal to one. In a non-inbred popu-
lation, this value is in fact expected to be equal to one (Isik
et al. 2017).

Narrow-sense heritabilities obtained with the GAD
model, that is, including the dominance effect, were lower
than those estimated with the GA model. When the GA
model is used, the dominance effect is not modeled and,
therefore, becomes part of the residual error (Duenk et al.
2017). The GA model thus provides less accurate esti-
mates of the additive variance, as it assumes that the re-
siduals are identically distributed, which is known not to
be the case, since the dominance deviations vary from
genotype to genotype. In addition, reports in the literature
have shown a lack of independence between additive and
dominant effects, which are often mistakenly treated as
orthogonal (Tan et al. 2018; Xiang et al. 2018). The
non-orthogonality between additive and non-additive ef-
fects has been reported in Eucalyptus (Tan et al. 2018)
comparing additive with additive-dominant models for
growth and wood quality traits in Eucalyptus hybrids.
That study found that, by including the dominance effect,
part of the additive variance was removed, reducing its
magnitude and consequently decreasing the genomic esti-
mate of narrow-sense heritability. The same effect was
seen in our study when looking at the variance compo-
nents (Table S1) and the σ2

a GADð Þ=σ
2
a GAð Þ ratio (Table 2).

The closer to unity this ratio is, the more orthogonal are
the effects for that given trait. Apparently, a trend was
seen in the magnitude of the dominance variance, indicat-
ed by the σ2

d=σ
2
a ratio, and the non-orthogonality between

the effects. VOL6 and EXT, which displayed greater
dominance variance, appeared to be less orthogonal in
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terms of the associated effects. This non-orthogonality
most likely occurs because only under ideal conditions
of the epistatic model described by Cockerham (1954),
where allele frequencies are assumed to be independent
between loci (linkage equilibrium), there is a true orthog-
onality between the additive and non-additive effects.
However, as these conditions are not easily met in breed-
ing populations, these effects can be entangled (Muñoz
et al. 2014). This phenomenon has also been reported in
other studies (Su et al. 2012; Muñoz et al. 2014; Bouvet
et al. 2016; Vitezica et al. 2017).

Typically, full-sib families are necessary to estimate dom-
inance variance using pedigree data. In our data set, there were
few known full-sib relationships based exclusively on pedi-
gree information. However, genome-wide markers revealed
those additional unknown full-sib relationships allowing one
to estimate dominance (Vitezica et al. 2013).

For Eucalyptus, the contribution of dominance variance tends
to vary greatly between traits, species, and hybrids in the genus
(Tan et al. 2018; Lima et al. 2019). Still, in general, a substantial
effect of non-additive genetic control has been reported for
growth traits. Our estimate of the σ2d=σ

2
a ratio for VOL6 (1.38)

is in agreement with previous reports for growth traits in the
genus (Bison et al. 2006; Volker et al. 2008; Resende et al.
2017; Tan et al. 2018; Chen et al. 2018; Lima et al. 2019;
Mora et al. 2019) although on the lower end. Estimates have
been reported in Eucalyptus where the dominance variance was
considerably higher than the additive for a range of growth traits
(Resende et al. 2017; Tan et al. 2018; Lima et al. 2019). It is
important to note, however, that these high values were all re-
ported for E. grandis x E. urophylla hybrids where the genetic
architecture of this trait might be the result of different non-
additive sources of variation non-accounted for by the models
emerging from their unique interspecific nature. In pure species
of the genus, the few studies available have not shown a signif-
icant contribution of dominance effects to the variation in growth
(Costa e Silva et al. 2009; Klápště et al. 2017) with the exception
of a recent study in E. globulus (Mora et al. 2019).

The estimated ratios of σ2
d=σ

2
a for CBO (0.87) and LIG

(0.80) indicated an almost equal contribution of dominance
and additivity to trait variation. The few reports available to
date in Eucalyptus were published for hybrids and generally
indicated a small contribution of dominance to wood chemical
trait variation (Chen et al. 2018; Lima et al. 2019) with values
ranging from 0 to 0.08 for cellulose, although for hemicellu-
lose values were 0.08 to 3.5. For lignin, values ranging from
0.19 to 1.15 were found by Chen et al. (2018) and 0 to 0.19 by
Lima et al. (2019). Overall, it appears that dominance varia-
tion for wood chemical traits is considerably less important
than for growth, in line with another recent study (Resende
et al. 2017) and anecdotal statements based on unpublished
studies where lignin and hemicellulose content are considered

predominantly inherited in a additive fashion (Assis 2000).
Finally, dominance was also important for extractives content
(EXT) in E. benthamii (1.28). However, only one study with
Picea abies to date has studied this trait showing unimportant
dominance (Hannrup et al. 2004).

Predictive ability

Overall, the use of genomic data resulted in considerably more
accurate predictions of trait values when compared to
pedigree-only-based models in E. benthamii for the majority
of traits, exception made for EXT where the single-step (H)
and the At models performed equally well. This result corrob-
orates previous reports in Eucalyptus species and hybrids as
well as mainstream conifer species, showing the outstanding
value of the convergence between quantitative genetics and
genomics in providing more reliable selective breeding poten-
tial (Grattapaglia et al. 2018). The HBLUP method, or single-
step GBLUP (model H in this study), combining the benefit of
an estimate with a larger sample size with the robustness of
relationships estimated from genotype data further illustrates
the power of this convergence. In our study, HBLUP
displayed performance equivalent to the other genomic
models for BWD (0.44 – H, GA, and GAD), LIG (0.32 – H
and GA; 0.31 – GAD), and CBO (0.32 – H; 0.31 – GA and
GAD), but superior performances for EXT andVOL6. Similar
results have been reported showing that HBLUP is superior or
at least comparable to models based on pedigree (A) and ad-
ditive GBLUP (GA) in terms of predictive ability (Beaulieu
et al. 2014; Legarra et al. 2014; Ashraf et al. 2016; Cappa et al.
2017, 2019; Pérez-Rodríguez et al. 2017; Ratcliffe et al. 2017;
Morais Júnior et al. 2018). The superiority of the H model
over traditional genomic methods (GA) was more apparent
for growth with a PA 35.5% higher than that obtained with
model GA for VOL6 consistent with a previous study in
Eucalyptus (Cappa et al. 2019). For this trait, the H model
was only inferior to the GAD model, both in PA (Fig. 1), as
well as bias (Table 2), likely due to the larger importance of
dominance for volume growth. Although the Hmodel was not
the best for VOL6, its predictive ability (0.31) was close to
that obtained with the GAD model (0.34), as well as higher
than the other tested models (0.12 - Ag; 0, 22 - At; 0.23 - GA).
For the other traits, although model H did not stand out as the
best, it was as good as the best models (Fig. 1). Different from
the other traits, for extractive content (EXT), the increased
sample size used in the At and H models resulted in higher
predictive abilities (0.32 for both models) when compared to
the other models, which ranged from 0.16 (Ag) to 0.22
(GAD). This possibly occurred due to a larger training popu-
lation generating a more reliable prediction, with less predic-
tive bias (Table 2) and greater PA (Fig. 1) (Daetwyler et al.
2010; Grattapaglia and Resende 2011; Tan et al. 2017).
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It is important to note that by accounting for all trees in the
trial, the HBLUP model allows improved selection of any
individual tree in the trial, not just the genotyped portion, with
an equivalent or even superior predictive ability of other ge-
nomic models that only predict for the genotyped individuals.
We therefore foresee an increased use of this modeling ap-
proach especially in forest tree breeding programs where typ-
ically large interconnected progeny trials are established
across sites and only a portion of trees can actually be geno-
typed due to budget constraints. With the HBLUP model,
while the genomic data provides information unavailable in
the expected pedigrees, the non-genotyped trees not only pro-
vide useful additional phenotypic data but they also become
selection candidates with equivalent accuracy.

When dominance effects constitute a considerable portion
of the phenotypic variance, the inclusion of this effect in
modeling has been shown to increase the accuracy of pre-
diction (Nishio and Satoh 2014; De Almeida Filho et al.
2016; Duenk et al. 2017). In our study, this effect was de-
tected even with a small variance associated with the dom-
inance effect for BWD (0.46), LIG (0.80), and CBO (0.87)
(Table 2). For these traits, the GAD model reached a similar
predictive ability to the other genomic models (H and GA)
(Fig. 1). Similar observations were reported for BWD and
pulp yield (Resende et al. 2017; Tan et al. 2018), where,
despite a relevant dominance variance found, it did not in-
fluence the predictive ability.

For volume (VOL6), an increase of the predictive ability
was seen when modeling the D matrix. Although dominance
variance was detected for all traits in the study, for EXT and
VOL6 dominance was preponderant, exceeding the magni-
tude of the additive variance (σ2

d=σ
2
a > 1) (Table 2). As a

result, a much higher PA for VOL6 was obtained with the
GAD model (0.34) when compared to the GA model (0.23)
(Fig. 1). However, for EXT, the GAD model did not show a
higher performance suggesting that for this trait additional
sources of genetic variation were not adequately captured by
the models. Increased predictive abilities between 5 and 14%
for growth traits by including a genomic-based dominance
component was previously reported in interspecific
E. grandis × E. urophylla hybrids (Resende et al. 2017; Tan
et al. 2018). Besides the effect of dominance variance, this
much larger increase in predictive ability may also be due to
the estimation method used. The non-parametric RKHSmeth-
od used in our study was shown to provide greater predictive
abilities for growth traits, especially in the presence of non-
additive effects (Tan et al. 2017; Momen et al. 2018; De
Almeida Filho et al. 2019). From the breeding standpoint,
the predictive abilities estimated for VOL6, exceed the only
existing estimate for volume growth in E. benthamii (0.14)
(Müller et al. 2017), and are within the same range of esti-
mates for this trait in other species of the genus, such as

E. pellita (0.42) (Müller et al. 2017), E. globulus (0.04 to
0.42) (Ballesta et al. 2018), and E. urophylla x E, grandis
(0.27 to 0.30) (Tan et al. 2017).

Selection efficiency increases with reduction of
breeding cycle length and increased selection
intensity

Since its original conception, genomic selection (GS) was
proposed as a powerful method to reduce the time associated
with breeding cycles (Meuwissen et al. 2001). Devising ways
to accelerate breeding cycles while keeping the same or closer
selection accuracies has always been a mantra in forest tree
breeding, where breeding cycles are usually significantly lon-
ger than almost all other plant species (Grattapaglia and
Resende 2011; Ratcliffe et al. 2015; Grattapaglia et al.
2018). The main anticipated advantage of GS over BLUP-
based selection (PS) arises when the selection of yet unknown
phenotypes is made with a time reduction in traditional breed-
ing cycle length as predicted by simulations and empirical
results (Grattapaglia and Resende 2011; Resende et al. 2012;
Grattapaglia et al. 2018)

We evaluated the reduction of breeding cycle length and
increased selection intensity for two main breeding routes
where genomic selection could be implemented in
Eucalyptus breeding, reminding that both routes would be
implemented in parallel for the two complementary objectives
as illustrated earlier (Grattapaglia et al. 2018). For clonal se-
lection (CS), a total breeding cycle length of 18 years was
assumed for PS and an additive-dominant model (GAD) used
in order to capture both additive and dominance effects. For
recurrent selection (RS), where typically only the additive
variance is accounted for, additive models were used (GA
and H) and a total breeding cycle length of 10 years was
assumed. These breeding cycle lengths were chosen to reflect
the current operational practice of tropical Eucalyptus breed-
ing (Resende et al. 2012, 2017). Overall, in all scenarios of
time reduction of the length of the breeding cycle, a consider-
able increase of selection efficiency was observed (Fig. 2). In
general, conservative reductions of 30% already resulted in
gains of selection efficiency above 50% or more depending
on the trait and model used.

For the recurrent selection breeding route, an increase in
selection efficiency (Seff) up to 137% for basic wood density
(BWD), using an H model, to 299% for volume at age six
(VOL6), with the GAmodel, would be expected with a reduc-
tion of 50% (Fig. 2). Although a 50% reduction in the breed-
ing cycle may seem aggressive, it would essentially corre-
spond to precluding the progeny trial, and carrying out selec-
tions at the seedlings stage followed by successfully complet-
ing flower induction and mating in 5 years, which is currently
considered a feasible option from the operational standpoint.
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Reductions below 50% would correspond to situations where
although progeny trial is precluded, the breeder would take a
bit longer to complete genomic selection and mating due to
delays in genotyping, flowering or mating.

When considering the recurrent selection route, even
though the H model provided better predictive abilities than
the GAmodel for EXT and VOL6 (Fig. 1), the GAmodel was
superior in terms of increasing Seff when compared the H
model for all traits (Fig. 2). This may be explained by the
impact of sample size on BLUP-based accuracy. Since the
GA model is fitted with only the genotyped individuals, it is
directly compared with the BLUP-based accuracy obtained

from the genotyped dataset only (given by
ffiffiffiffiffi
h2a

q
). The H

model, on the other hand, is fitted with both genotyped and
non-genotyped individuals, and must be compared with
BLUP-based accuracies obtained for the full dataset. These
BLUP-based accuracies, although not shown in our study,
were heavily influenced by sample size, showing higher
values for the full dataset. Increasing sample size can increase
PA values for some traits, but an increase in BLUP-based
accuracy is much more relevant to increase the final selection
efficiency Seff of PS when compared to GS. In order to better
assess the relative value of GS, studies must go beyond just
reporting PAs. For example, in our study, although the highest
PA estimated by a genomic model was for BWD (Fig. 1), this
was not the trait where GS would have the largest impact on
selection efficiency.

For the clonal selection route, GS would be implemented
under a GAD model, either more conservatively, i.e., testing
selected individuals as clones in two stages, initial and ex-
panded clonal trials or more aggressively, with just a single
expanded clonal trial, but in both approaches, the progeny trial
would be precluded. With the aggressive approach, consider-
ing a 40 to 50%-time reduction, Seff gains ranged between
150% (EXT) to 300% (VOL6). On the conservative path, with
breeding cycle reduction around 20%, gains in efficiency
would be considerably more modest down to a point that GS
would not be attractive (Fig. 2). Such an exponential nature of
the rapid gain in selection efficiency with breeding cycle re-
duction corroborates earlier reports based on deterministic
simulations of predictive ability and heritabilities
(Grattapaglia and Resende 2011; Resende et al. 2012). In
our study, we now used actual estimates of these parameters
from experimental data and adopted a 50% ceiling for time
reduction in the breeding cycle length which is realistic for
tropical Eucalyptus breeding. Greater reductions in time as
described in those simulations would apply to temperate spe-
cies with longer breeding cycles such as conifers.

Besides accelerating breeding cycles, an additional foreseen
advantage ofGS is the possibility of increasing selection intensity
in the progeny trial phase, provided that a valuable cost/benefit
relationship between genotyping costs and selection gains is

obtained (Grattapaglia 2014; Heslot et al. 2015; Grattapaglia
et al. 2018; Muleta et al. 2019). Overall, increased selection
intensities had a positive impact on gains in selection efficiency
and models that performed best for each trait for breeding cycle
reduction were also the best when increasing selection intensity
(Fig. 3). However, the modeled curves had a contrasting loga-
rithmic behavior when compared to the exponential growth
curves seen when shortening breeding cycles, with a distinct rate
of diminishing returns when greatly increasing the number of
evaluated individuals. These simulations suggest that generally
a two-fold gain in selection efficiency happens when going from
2000 up to 10,000 plants evaluated, withmodest additional gains
afterwards. This result is in line with what could be realistically
implemented in practice, considering that it is unlikely that the
cost of genotyping more than 10,000 seedlings would currently
be economically feasible in most eucalyptus breeding programs.
However, a number of lower density genotyping methods based
on targeted next-generation sequencing of up to ~3000 SNPs
have become available in recent times, that allow significantly
reduced costs per sample as long as much larger samples sizes
are multiplex genotyped (Campbell et al. 2015; Ruff et al. 2020).

Conclusion

To summarize, the genetic analysis carried out for E. benthamii
adds further experimental data advocating the positive forecasts
for the routine adoption of genomic data to deliver the power of
realized genomic relationships in eucalypt breeding programs. A
number of recent studies recently reviewed (Grattapaglia et al.
2018) have shown that the integration of genomic data in breed-
ing practice provides a powerful approach to genetic parameters
estimation by tracking the variation due to the randomMendelian
segregation in pedigrees. In our study, this effect was crystalline
for volume growth, indisputably still the central trait in most
industrially oriented Eucalyptus breeding programs, regardless
of the final use of wood. This major contribution of dominance
variance to growth in Eucalyptus has consistently been shown in
a number of studies that used genomic data to model this effect
when compared to studies that relied exclusively on expected
pedigrees. The positive impact of dominance variance for
growth, on the estimates of heritability and predictive ability,
has a critical consequence on the prospects of genetic gain from
selective breeding, especially inEucalyptuswhere clonal deploy-
ment of elite genotypes exploits all sources of variation, additive
and non-additive. Nevertheless, an overestimation of the domi-
nance variance cannot be ruled out, an issue reported to be asso-
ciated with the RKHS method for the GAD model used in our
work (Azevedo et al. 2015; Santos et al. 2017; De Almeida Filho
et al. 2019).

Our experimental results also provide additional pieces of
evidence that the single-step method (HBLUP) improves ge-
nomic prediction of growth and wood traits when phenotypes
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of the non-genotyped trees in the trial are used. This has been
shown in Eucalyptus and other forest trees (Forni et al. 2011;
Christensen 2012; Beaulieu et al. 2014; Cappa et al. 2017,
2019; Ratcliffe et al. 2017; Velazco et al. 2019) and is rapidly
becoming the preferred analytical approach when considering
the use of genomic data in forest tree breeding. From the
practical standpoint, the use of the hybrid matrix (H) can be
seen as an approximate pedigree reconstruction of the entire
trial based on the genotypes of only a portion of family-related
individuals. The benefit of genetic relationship is leveraged
two ways: while on one hand the genotyped trees provide
the pedigree correction with a limited genotyping cost, the
non-genotyped trees increase overall prediction accuracies
by increasing the samples size. Because forest tree pedigrees
frequently contain unknown proportions of mislabeling and
undesired inbreeding, or are deliberately advanced by exclu-
sive maternal control, SNP data not only provide an overall
correction of parentage errors but also allow advancing pop-
ulations as though they were derived from labor-intensive
fully controlled mating designs. Most importantly, however,
the HBLUP method extends the genomic enabled predictive
ability to all genetically connected trees across trials, a partic-
ularly relevant advantage for large networks of field trials
commonly deployed in forest tree breeding.

Our modeling of the expected gain in selection effi-
ciency based on the actual estimates of predictive ability
and heritabilities obtained for the E. benthamii trial cor-
roborated previous deterministic simulations (Grattapaglia
and Resende 2011) and also forecasted exponential gains
in efficiency by implementing genomic prediction even
with realistic time reductions in breeding cycle length
between 30 and 50% in a recurrent selection Eucalyptus
breeding program by precluding progeny testing. In a
clonal selection route, the elimination of progeny testing
alone results in only modest gain in efficiency, depending
on the trait, requiring the additional exclusion of the ini-
tial clonal testing trial to accrue a meaningful gain in
efficiency. Additional gains in efficiency when compared
to standard BLUP-based selection were also seen when an
increased selection intensity is applied using genomic da-
ta. However, in this scenario, the increase in selection
efficiency was quick up to a 5-fold increase in the number
of evaluated progeny individuals (2000 to 10,000) and
slow thereafter, therefore requiring a careful cost/benefit
analysis about increasing selection intensity beyond this
point. Finally, an additional projected advantage of GS
not evaluated in our study is the possibility to perform
an early indirect selection for all traits of interest simulta-
neously using index selection methods, especially with
the inclusion of wood chemical properties that are late
expressing and require expensive and time-consuming as-
says. In operational Eucalyptus breeding, such traits are
usually only evaluated on a limited number of trees in the

final stages of clonal trials, after truncation selection for
volume growth is applied. The possibility of increasing
selection intensity by GS provided that genotyping costs
are kept within budget, would be a game changer in
exploiting the entire spectrum of genetic variation for all
traits of interest in a tree breeding program, not only for
eucalypts but especially for species that have much longer
breeding cycles.
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