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Abstract
Single-step best linear unbiased prediction (HBLUP) is a method used to predict breeding values by combining pairwise
relatedness information derived from a pedigree with the realized relationships estimated from DNA markers. It is an ideal
approach for the lodgepole pine (Pinus contorta Dougl. ex. Loud.) breeding program which has an extensive progeny testing
program but a small proportion of trees that are genotyped. However, it is unclear what level of genotyping is required to affect
prediction accuracy and genetic parameters, the performance across test sites and test cycles of different ages, and the ability to
accurately rank trees within half-sib and full-sib families. Lodgepole pine trees were sampled from four progeny test sites in
British Columbia, Canada. A SNP array was used to genotype 1569 trees which resulted in 19,584 high-quality SNPs. The
prediction accuracy of HBLUP was compared to (1) an uncorrected relationship matrix (ABLUP) and (2) BLUP using a realized
relationship matrix based on SNP markers (GBLUP) using various cross-validation scenarios for height growth at age 10 and 5
wood quality traits. Combining average and realized pairwise relationship information through the H-matrix resulted in herita-
bility and Type B genetic correlation estimates that were generally a compromise between estimates for ABLUP (0% genotyping)
and GBLUP (100% genotyping). The highest heritability was for average wood density (0.57 for ABLUP; 0.51 for HBLUP; 0.47
for GBLUP) and the lowest was for height (0.24 for ABLUP; 0.27 for HBLUP; 0.25 for GBLUP). GBLUP always had the lowest
Type B genetic correlations (except for earlywood density) of the three models (0.46 to 1.0) assessed. The prediction accuracy for
HBLUP increased slightly for genotyped trees (0.77 to 0.80), but not for non-genotyped trees as genotyping effort increased.
Furthermore, prediction accuracy was high when predicting between environments (0.46 to 0.85) and test cycles (0.33 to 0.76)
when connected through pedigree, and prediction was more accurate when using older first-cycle tests to predict breeding values
for younger second-cycle tests for all traits, except microfibril angle. Rank correlations for trees within half-sib and full-sib
families when predicting values across test cycles (the training population is phenotyped and the validation population is
genotyped) were very low using HBLUP (0.08) compared to GBLUP (0.38) but increased to 0.25 when 40% of the trees in
the training population were genotyped (HBLUP40). HBLUP should be regarded as an effective way to combine average and
realized relationship information in a breeding program for more precise estimates of genetic parameters and breeding values and
can be used for predicting and ranking trees within families without phenotypic data when genotyped trees from the same families
are included in the training population (genotyped and phenotyped).
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Introduction

Single-step best linear unbiased prediction is a method of com-
bining pedigree information and molecular marker data for use
in mixed model analyses for the prediction of breeding values
in a single analysis. The method overcomes the cumbersome
process of analyzing datasets for populations with partial
genotyping which previously was accomplished in multiple
stages (Guillaume et al. 2008; VanRaden 2008). DNAmarkers
are used to create a realized relationship matrix (VanRaden
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2008) for all genotyped individuals which is populated with
very accurate pairwise relationship estimates rather than aver-
age information used in a pedigree-based numerator relation-
ship matrix (NRM). The information for genotyped individuals
(realized relationship matrix) is combined with the average
NRM (from pedigree information) that includes relationship
information for all individuals in the population (Legarra
et al. 2009; Christensen and Lund 2010). Information from
the realized relationship matrix is used to adjust the pedigree-
based NRM for related individuals resulting in a hybrid, re-
ferred to as the “H-matrix.” The H-matrix can then be used in
traditional best linear unbiased prediction (BLUP) (Henderson
1975) to predict breeding values. The H-matrix is more dense
(less 0 elements) than the pedigree-based NRM and thus can
impose computational issues; however, these have been
overcome with the approach proposed by Misztal et al.
(2009) and used to calculate the genetic value of over 10 M
cattle (Aguilar et al. 2010).

There are many methods for creating the realized relation-
ship matrix from DNA markers (VanRaden 2008). Zapata-
Valenzuela et al. (2013) used two methods for creating the
realized relationship matrix and found no effect on prediction
accuracy of breeding values in a clonal population of loblolly
pine (Pinus taeda L.); however, when creating the H-matrix, it
is important to scale the realized relationship matrix to the
pedigree-based NRM (Christensen and Lund 2010; Forni
et al. 2011; Meuwissen et al. 2011). Also, integrating both
pedigree and DNA marker data into a single analysis helps
improve accuracy of predicted breeding values. For example,
the single-step method was more accurate for breeding value
prediction than pedigree-based BLUP and the multi-step ap-
proach in a simulated dataset (Christensen and Lund 2010)
and improved the overall accuracy in the genomic evaluation
of pigs (Christensen et al. 2012). Ratcliffe et al. (2017) used
single-step BLUP in a population of 1694 genotyped white
spruce (Picea glauca (Moench) Voss) trees to investigate per-
formance in the context of a tree breeding program for height
growth and wood density. The authors created various H-
matrices with different proportions of genotyped trees
(genotyping effort) and found that trait heritability decreased
with increasing genotyping effort, accuracy of the breeding
values improved for genotyped trees compared to non-
genotyped trees, and tree ranks were comparable between
single-step BLUP and traditional pedigree-based BLUP for
both tree height and wood density. Similar results were found
using ninemicrosatellites in a population ofPinus sylvestrisL.
(Korecký et al. 2013) and Eucalyptus grandis W. Hill ex
Maiden using DArT markers for tree growth traits (Cappa
et al. 2017). However, Klápště et al. (2018) emphasized the
need to make corrections to the pedigree using sib-ship recon-
struction (Wang 2004; Klápště et al. 2017) prior to scaling the
realized relationship matrix, which resulted in better predic-
tion accuracy.

Molecular DNA markers can be used to predict the genetic
value of trees at a young age prior to lengthy testing and costly
phenotyping which can shorten the breeding cycle and im-
prove overall efficiency by reducing gain per unit time
(Resende et al. 2012a; Beaulieu et al. 2014a; Grattapaglia
2017). One cycle of a tree breeding program can often take
many years (> 15 years), and researchers have proposed
methods of combining molecular markers with other tech-
niques to improve efficiency (Li and Dungey 2018).
Genomic selection typically describes any technique for
predicting breeding values without prior knowledge about
the underlying causal variants. The original idea of genomic
selection was to combine high-density marker data with spe-
cial analytical techniques to predict the genetic value of indi-
viduals (Meuwissen et al. 2001). In theory, these models
would be driven by the linkage between markers and quanti-
tative trait loci (QTL); however, it has been shown that the
high-prediction accuracy is due to relatedness in the popula-
tion rather than linkage disequilibrium. An important aspect of
genomic selection is the ability to capture the Mendelian seg-
regation component of an individual’s breeding value when
no phenotypic information is available, and therefore allow
the breeder to rank trees within families. There are several
analytical techniques for genomic selection in tree breeding
including Bayesian models with different prior densities
(Resende et al. 2012b; de Almeida Filho et al. 2016; Durán
et al. 2017; Ukrainetz and Mansfield 2020), ridge-regression
BLUP (Resende et al. 2012a; Beaulieu et al. 2014b; Gamal El-
Dien et al. 2015), or substituting the pedigree-based NRM
with a realized relationship matrix or H-matrix (Korecký
et al. 2013; Klápště et al. 2014; Ratcliffe et al. 2017). The
single-step method uses molecular markers to improve
pairwise relationship estimates which will improve estimates
of variance components; however, it is unclear if the transfer
of information from genotyped to non-genotyped trees in the
H-matrix will lead to more accurate breeding value predic-
tions and affect prediction accuracy and the ability to rank
trees within families.

Lodgepole pine (Pinus contorta Dougl. ex. Loud.) is a
commercially and ecologically important species in British
Columbia, Canada, and seed for reforestation is derived from
wild collections and seed orchards which are based on two
cycles of progeny testing. The goal of first-cycle progeny tests
was to provide accurate estimates of the genetic value for base
parents in order to select top candidates for seed orchards and
future breeding. This was done by establishing first-cycle tests
using open-pollinated seed collected from plus trees (base
parents) in the wild. Parents were ranked based on the perfor-
mance of progeny for growth and wood quality (Pilodyn pin
penetration) and selected for crossing to produce F1s for
second-cycle tests. The F1 generation was deployed across
five breeding zones. Despite efforts to minimize relatedness
when selecting trees for the base population, Ukrainetz and
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Mansfield (2020) found evidence of some relatedness be-
tween two sets of parents selected from the same provenance
as well as other errors in the pedigree using single-nucleotide
polymorphism (SNP) markers. The structure of the lodgepole
pine breeding programmakes it ideal for the use of single-step
BLUP because both testing cycles are linked through pedi-
gree, and there is substantial overlap in families tested across
all breeding zones (Ukrainetz et al. 2018). Single-step BLUP
can be used to complement the existing investments made in
the breeding and testing programwhile integrating genotyping
information for a portion of the population and correcting for
pedigree errors and unknown relatedness.

The aim of this study was to compare the prediction accu-
racy of single-step BLUP (HBLUP) to equivalent models
using a pedigree (ABLUP) and realized relationship matrix
(GBLUP) using cross validation. Using cross validation, we
assessed the sensitivity of genetic parameters and prediction
accuracy of HBLUP to the proportion of trees that were ge-
notyped. We also quantified the accuracy of predicted breed-
ing values across environments (test sites) and testing cycles
(environments and ages) and rank correlations within families.

Materials and methods

Sample population

The lodgepole pine breeding program in British Columbia,
Canada, is divided into five high-priority breeding zones that
have each been subjected to two cycles of testing: the first
cycle of testing, planted between 1984 and 1988, focused on
ranking base parents using data from open-pollinated progeny
tests, while the second cycle, planted between 2002 and 2006,
consisted of F1 progeny from crosses between base parents
that ranked high for growth and wood density (based on
Pilodyn pin penetration measured on trees between 10 and
13 years from planting). Progeny tests were established using
a randomized complete block design with 8 to 10 blocks per
site and families planted in row-plots within each block. Four
sites were selected for the current study based on patterns of
GxE and the structure of the breeding program. Specifically,
two sites were selected from each test cycle that represented
the breeding zones in northern British Columbia. Site charac-
teristics and climate across northern zones are more homoge-
nous than southern zones, resulting in lower levels of GxE.
We focused this pilot study on the breeding populations and
the testing program in northern British Columbia. For a more
comprehensive description of the lodgepole pine breeding
program in British Columbia, see Ukrainetz et al. (2018).

The four sites specifically selected for this studywere Tachie
Road (TACH) and Chowsunket Lake (CHOW) representing
the first cycle of testing, and Chief Lake (CHIE) and Grizzly
Lake (GRIZ) representing the second cycle of testing. The base

parents selected for this study had been selected for breeding
and testing in second-cycle tests and were common to the three
northern breeding programs. The final sample contained a mix
of half- and full-sibs represented by 57 base parents and 42 full-
sib families with a status number of 92 calculated as 1/(2 × θ),
where θ is the group co-ancestry (Lindgren et al. 1996). Freshly
flushing needles were collected from the upper crowns of all
sample trees, placed in cryovials, and transported in a vapor
tank at − 80 °C to the University of British Columbia,
Vancouver, British Columbia, Canada.

Phenotyping

A detailed description of the phenotyping for this project can be
found in Ukrainetz and Mansfield (2020). Height growth was
measured to the nearest centimeter at age 10 using a height
pole, and a 5-mm increment core was extracted from the north-
ern face of each tree in 2014 (2016 at GRIZ). The cores were
then dried and later processed using a precision pneumatic saw
to produce sections that were exactly 1.67 mm thick. The wood
sections were then Soxhlet-extracted overnight using hot ace-
tone and allowed to dry to achieve a moisture content of 7%.
Each sample had growth rings from pith to bark, and the radial
face was exposed for X-ray densitometry assessment (QTRS-
01X, Quintek Measurement Systems Inc., USA). Mean core
density (AWD), earlywood density (EWD), and latewood den-
sity (LWD) were measured as the mean for the entire core, and
latewood proportion (LWP) was determined as the proportion
of the latewood width to the width of the growth ring and
averaged across the core. Microfibril angle (MFA) was mea-
sured on the most recent growth ring (year of core extraction)
for each core sample using X-ray diffraction. The 002 diffrac-
tion arc was captured using a Bruker D8 Discovery X-ray dif-
fraction unit fit with a general area detector diffraction system
(GADDS). The intensity profile was integrated 360° along the
002 diffraction arc and is symmetrical around two peaks which
are indicative of the size of the microfibril angle. The distance
between the points of intersection between the baseline and
tangent lines was determined for each peak and averaged for
each sample, and this is referred to as 2 T which is proportional
to the microfibril angle of the sample. The 2 T value for each
sample was used in subsequent analyses as MFA.

Marker dataset

The methods used for DNA extraction and genotyping are
described in Ukrainetz and Mansfield (2020), and a brief de-
scription of the marker dataset is presented here. Genotyping
was conducted using a fixed-content SNP array (Affymetrix
Axiom array) with 51,213 SNPs selected using a sequence
capture dataset (Suren et al. 2016; Yeaman et al. 2016) and
the 1.01 draft of the loblolly pine (Pinus taeda L.) draft ge-
nome for variant calling (Neale et al. 2014). The Axiom
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Analysis Suite software package (version 4.0.2.4) was used to
screen samples and call genotypes. Samples with a dish QC
value of less than 0.82 were removed from further analysis (7
samples). SNPs were screened using samples with a call rate
> 97% (1198 samples). SNPs with a call rate > 95% andminor
allele frequency > 0.05 were retained for further analysis. The
final dataset contained 19,584 SNPs from 1569 trees (37 base
parents and 1532 descendants) with a mean of 2.1% missing
data. The mean heterozygosity of the sample population using
the final SNP dataset was 0.30, and 59% of SNPs met the
assumptions of Hardy-Weinberg equilibrium (α = 0.05). The
SNP dataset was coded as − 1 and 1 for the two homozygotes,
and 0 for the heterozygote. Given the low amount of missing
data in the final SNP dataset, a simple method for imputing
missing values was employed, where missing values were
imputed using the rrBLUP package in R and the “mean” im-
putation option that uses the mean of each marker.

Statistical analysis

Linear mixed model

Mixed model analyses were conducted using the following
linear model:

y ¼ Xτ þ Zbub þ Zaua þ e ð1Þ

where y is a vector of phenotypic data, X is an incidence
matrix for the fixed effects (site), τ is a vector of fixed effects,
Zb is an incidence matrix for the random experimental design
features (block nested within site or planting series), ub is a
vector of random effects for the design features, Za is an inci-
dence matrix for the random additive effects, ua is the vector
of additive genetic effects or estimated breeding values
(EBVs), and e is a vector of residual effects. The random
effects in the model are assumed to be IID and normally dis-
tributed with a mean of 0 and the following variance structure:
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The variance of random effects for the experimental design
features is

var ubð Þ ¼ Gb ¼
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where j refers to block nested within site (for second-cycle
tests) or planting series (for first-cycle sites), In is a diagonal
incidence matrix for n trees, and⨂ refers to the direct product
of two matrices. A heterogenous (co)variance model was used
to model additive variance across sites. The variance of EBVs

is defined as

var uað Þ ¼ Ga ¼
σ2
a1 σa ⋯ σa
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where σ2
as is the additive variance for site s, σa is the additive

covariance among sites, and A is the numerator relationship
matrix (Henderson 1975). This model produces a predicted
BLUP for each tree at each site, and the mean BLUP across
all four sites was used as the individual tree BLUP. The var-
iance of residuals is

var eð Þ ¼ R ¼
σ2
e1 0 ⋯ 0
0 σ2

e2
⋮ ⋱
0 σ2

es

2
664

3
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where In is a diagonal incidence matrix for n trees and σ2
es is

the residual variance component for site s. For BLUP calcu-
lations, G =Gb⨁Ga, Z = Zb⨁ Za, and ⨁ is the direct sum.

Calculating the G-matrix

The realized relationshipmatrix (G) was created using the first
method proposed by VanRaden (2008). LetM be a matrix of
genotypes (SNP markers) with the dimensions n ×m, where n
is the number of trees and m is the number of SNP markers,
coded − 1, 0, and 1 for the homozygote, heterozygote, and
opposing homozygote, respectively. Matrix P has the same
dimensions as matrix M (n × m) and is a matrix of allele
frequencies with the values in each column equal to 2(pk −
0.5) where pk is the allele frequency of the second allele at
locus k. Then, subtracting P from M gives Z, a matrix with
allele effects set to 0 and the realized relationship matrix is
then calculated as

G ¼ ZZ
0

2∑pk 1−pkð Þ ð6Þ

The denominator ensures that G is scaled analogous to the
NRM A.

Calculating the H-matrix

The H-matrix was calculated according the original method
proposed by Legarra et al. (2009) as modified by Christensen
et al. (2012). The A matrix was organized according to trees
with and without SNP data:

A ¼ A11 A12

A21 A22

� �
ð7Þ
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where, A11 and A22 are submatrices of A for non-
genotyped and genotyped trees, respectively, and the
submatrices A12 and A21 are the relationships between geno-
typed and non-genotyped trees. The H-matrix is then con-
structed to accommodate genomic relationships according to:

H ¼ A11 þ A12A
−1
22 Gw−A22ð ÞA−1

22A21 A12A
−1
22Gw

GwA
−1
22A21 Gw

� �
ð8Þ

Prior to constructing H, the G matrix was scaled so that G
and A11 were compatible according to

Ga ¼ βGþ α ð9Þ

where β and α solve the following system of equations:

Avg diag Gð Þð Þβ þ α ¼ Avg diag A11ð Þð Þ
Avg Gð Þβ þ α ¼ Avg A11ð Þ ð10Þ

Finally, Ga was weighted in order to avoid problems with
inversion according to Aguilar et al. (2010):

Gw ¼ 0:95*Ga þ 1−0:95ð Þ*A22 ð11Þ

Throughout this paper, we refer to BLUP analysis using the
traditional pedigree-based NRM (A) as ABLUP, the realized
relationship matrix (G) as GBLUP, and the hybrid matrix (H)
as HBLUP. Variance components were estimated using
REML, and all analyses were conducted in ASReml-R (ver-
sion 4.1.0.90).

Cross validation and evaluation

The effect of the proportion of genotyped trees in the H-matrix
on genetic parameters was assessed by randomly sampling
trees to be included in Gw. For each trait, a random sample
(set) of 20%, 40%, 60%, and 80% of the trees were included in
Gw and this was repeated 8 times for each sampling scheme
and trait. Narrow-sense heritability was calculated as:

h2 ¼ σ2
a

σ2
a þ σ2

e
ð12Þ

where σ2
a and σ2

e are the additive and residual variance
components, respectively, averaged across the four sites.
Furthermore, we assessed the effect of the proportion of trees
in Gw on predictions of (G)EBVs using cross validation (CV1).
CV1 was used to show the prediction accuracy in a closed breed-
ing population with close relatedness between the training and
validation populations. For each set (20%, 40%, 60%, and 80%),
three replicates were run with a unique H-matrix for each, and for
each set and replicate, three validation populations were created
by randomly sampling 20%of the trees and removing phenotypic
data. Trees in the validation set can be genotyped or not geno-
typed. Therefore, there were 36models run for each trait (4 sets ×
3 replicates × 3 validation populations). Prediction accuracy of

ABLUP and GBLUP for CV1 was assessed by creating five
validation populations by randomly sampling 20% of the trees
and removing phenotypic data (5 models per trait).

An important application of GS is to predict breeding
values for special populations of trees that have been grown
under different biotic and abiotic conditions (environments).
For CV2, the H-matrix was created assuming that the training
population (3 sites) has been phenotyped but not genotyped,
and that a special population exists that has been genotyped
but not phenotyped (validation population). The validation
and training populations are connected through pedigree, but
not environment. This was compared to the ABLUP model
(no genotyping) and GBLUP model (all trees were geno-
typed). HBLUP, ABLUP, and GBLUP were run so that each
site was used once as the validation set. Furthermore, we show
the change in prediction accuracy when a proportion of trees
in the training populationwas genotyped. A random sample of
40% of the trees in the training populations was included in
the Gw portion of the H-matrix (Eq. 8). Therefore, we report
the prediction accuracy when the training and validation pop-
ulations are connected by average relatedness estimates or a
proportion with realized relatedness estimates based on SNP
data. We refer to the model with 40% of the training popula-
tion included in theGw portion of the H-matrix as HBLUP40.

Finally, we assess the performance of HBLUP to predict
breeding values across testing cycles (CV3) which indicates
the ability to predict breeding values for mature traits mea-
sured in the first test cycle for young trees. For CV3, the H-
matrix was composed of trees in one test cycle with pheno-
typic data but no SNP data (training population), and the val-
idation population had SNP data but no phenotypic data. The
HBLUP model was again compared to ABLUP (no geno-
types) and GBLUP (all trees are genotyped). ABLUP,
GBLUP, and HBLUP models were run so that each test cycle
was used as the validation population once (2 models per
trait). Similar to CV2, we randomly sampled 40% of the trees
in the training population to be included in Gw (genotyped
trees) to show the change in prediction accuracy (HBLUP40).

For both CV2 and CV3, the heterogenous variance model
in Eq. 4 was replaced with a homogeneous variance model
where σ2

a1 ¼ σ2
a2 ¼ σ2

as and Eq. 5 simplifies to R ¼ σ2
e In. We

assume that GEBVs from GBLUP are the best approximation
of the true breeding value and prediction accuracy is calculat-
ed as the Pearson correlation between the (G)EBVs in the
validation population and GEBVs from GBLUP with full
phenotypic data. ANOVA were conducted using the “aov”
method in R and the “drop1” method to determine Type III
sums of squares and F-tests. Within-family rank correlations
were determined for CV3 as the Spearman correlation be-
tween the predicted breeding values of trees within half-sib
(first-cycle tests) and full-sib (second-cycle tests) families, and
the true breeding value for trees in the validation population.
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Results

Heritability and Type B genetic correlations

Heritability estimates were highest for AWD (ranging from
0.47 to 0.57) and lowest for HT (ranging from 0.24 to 0.27)
regardless of the model (Table 1). The estimates for all other
traits fell between those for AWD and HT. Across the three
models, ABLUP had the highest heritability estimates for
AWD, EWD, and LWD; GBLUP had higher estimates for
MFA and LWP; and the estimate for HT was highest using
HBLUP. Moreover, as the proportion of genotyped trees in
the H-matrix increased from 20 to 80%, the heritability esti-
mates decreased for AWD, EWD, and LWD, while the trends
were inconsistent for LWP, MFA, and HT (Fig. 1a).

All wood quality traits (AWD, EWD, LWD, LWP, and
MFA) had high Type B genetic correlations (ranging between
0.77 and 1.0) while HT had the lowest ranging from 0.46 to
0.54 across the three models (Table 2). The estimates from the
GBLUPmodels were generally lower than from other models,
except for HT and EWD. For AWD, EWD, and LWP, adding
a small number of genotyped trees to the H-matrix resulted in
slightly higher Type B genetic correlations; however, they
decreased as the extent of genotyping increased (Fig. 1b).
The Type B correlations were very high and stable across all
levels of genotyping effort for MFA. For EWD, the Type B
correlations increased to a maximum at 80% genotyping ef-
fort, and the trends across levels of genotyping were inconsis-
tent for HT with a maximum at 20% and 60% (Fig. 1b).

Prediction within a closed population

The CV1 scenario is an example of a sampling scheme with
good pedigree connections and genotyping across the training
and validation populations and across environments. The pre-
diction accuracy was not significantly different among the
three models (F = 1.35; p = 0.26). GBLUP had slightly higher
accuracy (0.82) than ABLUP (0.76) and HBLUP (0.78). For
HBLUP, there was no difference in the prediction accuracy
when more genotyped trees were added to the H-matrix (F =
1.01; p = 0.39). Although not significant, there was a trend of
increasing prediction accuracy for genotyped trees in the H-
matrix from 20 to 80% genotyping effort (Table 3). For non-
genotyped trees, the prediction accuracies for all HBLUP
models were the same as ABLUP. The largest increases in

Table 1 The heritability estimates for linear mixed model analyses
using a pedigree-based relationship matrix (ABLUP), a hybrid matrix
of pedigree and realized relationships (HBLUP), and a realized relation-
ship matrix employing SNP data (GBLUP). Standard errors of the heri-
tability estimate are presented in brackets and values for HBLUP are
average across all sets (20%, 40%, 60%, and 80% of trees genotyped)
and replicates (8 per set)

ABLUP HBLUP GBLUP

AWD 0.57 (0.111) 0.51 (0.087) 0.47 (0.064)

EWD 0.40 (0.087) 0.36 (0.071) 0.31 (0.055)

LWD 0.40 (0.092) 0.34 (0.073) 0.30 (0.058)

LWP 0.30 (0.082) 0.30 (0.076) 0.32 (0.068)

MFA 0.28 (0.084) 0.29 (0.083) 0.30 (0.073)

HT 0.24 (0.067) 0.27 (0.074) 0.25 (0.057)

Fig. 1 The heritability for each trait (a) and Type B genetic correlation
(b) for varying levels of genotyped trees included in the H-matrix (20%,
40%, 60%, and 80%). ABLUP uses a relationship matrix with 0%
genotyped trees, and GBLUP uses the realized relationship matrix with

100% of trees genotyped. Error bars are the mean standard error of the
heritability estimates averaged across replicates and validation
populations (a), the standard error of the Type B genetic correlations
for ABLUP and GBLUP, or standard error of the mean for HBLUP (b)
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accuracy occurred between 20 and 40% (0.77 to 0.79) and
between 80 and 100% (0.80 to 0.82) genotyping effort.
There was no effect on the prediction accuracy of non-
genotyped trees.

Prediction across environments and test cycles

For CV2 (prediction across test sites), there was no significant
variation amongmean prediction accuracy for the four models
(F = 0.14; p = 0.94), but there was significant variation among
the traits (F = 11.3; p < 0.001) and between the training and
validation populations (F = 66.0; p > 0.001). The prediction
accuracy for the HBLUPmodel (no genotyping in the training
population) ranged from 0.46 for HT at the CHOW and MFA
at TACH to 0.85 for LWP at GRIZ (Table 4). The prediction
accuracies from the HBLUP40 model were higher for all val-
idation populations and traits except LWP at CHIE, LWD at
GRIZ, and EWD at CHOW (Table 4). Prediction accuracy
ranged from 0.49 for MFA at TACH to 0.89 for LWP at
GRIZ.

For CV3 (prediction across test cycles), there was signifi-
cant variation in mean prediction accuracy between the two
test cycles (F = 116.4; p = <0.001) and six traits (F = 30.9;
p < 0.001). Prediction accuracy varied little among the models
(0.59–0.62) and differences were not significant (F = 1.37;
p = 0.32). The prediction accuracy was equal to or higher for
HBLUP40 compared to HBLUP across all traits, and valida-
tion sets except MFA using trees in second-cycle tests as the
validation set (Table 5). The prediction accuracy was higher
when using older first-cycle tests to predict breeding values
for the younger second-cycle tests with an H-matrix (HBLUP
and HBLUP40) for all traits, except MFA (Table 5).

It is not possible to rank trees within families using the
ABLUP models. The high prediction accuracies from
ABLUP are driven by variation among families in the popu-
lation. All trees within families are given the same mid-parent
value when using ABLUP to predict breeding values for trees
without phenotypic data. The rank correlations for trees within
families (comparing the ability of each model to rank trees
within open-pollinated and full-sib families) were much
higher for GBLUP than HBLUP (0.38 compared to 0.08),
while rank correlations for the HBLUP40 model were consis-
tently between those for HBLUP and GBLUP. For HBLUP,
the rank correlations were higher when trees in the second-
cycle were used to predict breeding values for trees in the first
cycle; however, this was the opposite for HBLUP40 and
GBLUP across all traits, except MFA (Fig. 2).

Discussion

Prediction accuracy and genetic parameters

Marker data can be used to precisely estimate relatedness be-
tween individuals, correct for errors in the pedigree, and ac-
count for underlying population structure that cannot other-
wise be detected. GBLUP uses a realized relationship matrix
with pairwise estimates based onmarker data and is the closest
approximation to the true breeding value; however, the G
matrix is dense (no 0 elements) requiring extensive computer

Table 2 Type B genetic correlations for linear mixed model analyses
using a pedigree-based relationship matrix (ABLUP), a hybrid matrix of
pedigree and realized relationships (HBLUP), and a realized relationship
matrix employing SNP data (GBLUP). For the HBLUP models, Type B
genetic correlations were average across all sets (20%, 40%, 60%, and
80% of trees genotyped) and replicates (8 per set) and standard errors of
the mean are presented in brackets. For the ABLUP and GBLUP models,
the standard error of the Type B genetic correlation estimates is presented
in brackets

ABLUP HBLUP GBLUP

AWD 0.87 (0.10) 0.85 (0.007) 0.78 (0.11)

EWD 0.83 (0.12) 0.85 (0.005) 0.85 (0.13)

LWD 0.97 (0.11) 0.96 (0.005) 0.90 (0.14)

LWP 0.88 (0.14) 0.87 (0.010) 0.77 (0.16)

MFA 1.00 (NA) * 1.00 (0.000) 1.00 (NA)*

HT 0.46 (0.24) 0.54 (0.016) 0.46 (0.20)

*The standard error for the Type B genetic correlation could not be
estimated

Table 3 Prediction accuracy
among wood and tree growth
traits for varying levels of
genotyping effort (CV1) and lin-
ear mixed models using different
relationship matrices

Training population Validation population

% genotyped genotyped not genotyped genotyped not genotyped

ABLUP 0 0.93 (0.007) 0.76 (0.012)

HBLUP 20 0.94 (0.003) 0.93 (0.004) 0.77 (0.011) 0.76 (0.006)

40 0.95 (0.004) 0.93 (0.004) 0.79 (0.007) 0.77 (0.007)

60 0.96 (0.003) 0.94 (0.004) 0.80 (0.005) 0.76 (0.008)

80 0.96 (0.003) 0.94 (0.005) 0.80 (0.005) 0.76 (0.013)

GBLUP 100 0.97 (0.004) 0.82 (0.008)
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resources and time-consuming analyses for large datasets and
DNA marker data for all trees in the population. The single-
step approach (HBLUP) provided a nice framework for inte-
grating DNA marker data for portions of the test population
into the NRM used in BLUP analyses. The models were a
compromise between having no marker data (ABLUP) and
full marker data (GBLUP) with similar genetic parameters
(heritability and Type B genetic correlations) and prediction
accuracy in all cross-validation scenarios. The within-family
rank correlations for HBLUP using results from the CV3 sce-
nario (prediction across test cycles) were very low indicating
that the predicted values were almost useless for ranking trees.
However, when 40% of the trees in the training population
were genotyped and phenotyped, the mean rank correlations
increased considerably (HBLUP = 0.08; HBLUP40 = 0.25).
The high prediction accuracies for ABLUP and HBLUP
models were driven by the variation across families in the
validation populations of the different cross-validation scenar-
ios, but little benefit was transferred from genotyped trees to
non-genotyped trees through the pedigree that would help
capture the Mendelian segregation within families. The clear
advantage of using HBLUP is for improving estimates of

genetic parameters which will provide more accurate breeding
values and can be used to rank trees within families when
related trees in the training population are also genotyped.

Estimates of additive genetic variance are prone to error
due to underlying genetic structure in the population that
cannot be detected without marker data. Wild open-
pollinated seed collections from parent trees are assumed
to be half-sibs (coefficient of relatedness of 0.25) but are
likely more closely related resulting in inflated heritability
estimates and breeding values for some traits. Determining
relationships based on marker data can help correct these
issues and consequently results in more precise estimates
of genetic parameters and breeding values. Ratcliffe et al.
(2017) used varying proportion of genotyped trees in the
H-matrix and showed that HBLUP and GBLUP reduced
the inflated genetic parameters of ABLUP which is consis-
tent with the results from our study. However, Klápště
et al. (2018) compared HBLUP results using an H-matrix
weighted with the regular pedigree and one weighted with
a corrected pedigree (Wang 2004; Korecký et al. 2013) and
found that heritability estimates were similar, but predic-
tion accuracy increased slightly when using the corrected
pedigree.

Models that use DNA markers to predict breeding
values (genomic selection models) work well within closed
populations (CV1) with low effective population size and
within environments with little genotype-environment in-
teraction (Grattapaglia 2017). Using a heterogenous vari-
ance model and accounting for additive covariance among
test environments, we showed that prediction accuracy was
> 0.76 when using HBLUP. Ratcliffe et al. (2017) showed
that the theoretical prediction accuracy for genotyped trees
increased as more genotyped trees were added to the H-
matrix, but not for non-genotyped trees. We found a small
increase in prediction accuracy using cross validation with-
in a closed breeding population and within the same envi-
ronments (CV1) for genotyped trees (Table 3) but once
again showed no effect on the accuracy associated with
non-genotyped trees . Although using a real ized

Table 4 Prediction accuracy for HBLUPwhen phenotypic data is available for three sites (training population) and SNP data is available for the fourth
site (validation population), or when 40% of the trees in the training population have both genotype and phenotype data (HBLUP40)

CHIE GRIZ CHOW TACH

HBLUP HBLUP40 HBLUP HBLUP40 HBLUP HBLUP40 HBLUP HBLUP40

AWD 0.76 0.77 0.80 0.83 0.66 0.67 0.68 0.71

EWD 0.81 0.85 0.74 0.77 0.67 0.65 0.59 0.62

LWD 0.77 0.81 0.77 0.76 0.79 0.79 0.73 0.75

LWP 0.63 0.62 0.85 0.89 0.55 0.59 0.56 0.56

MFA 0.62 0.63 0.59 0.62 0.73 0.79 0.46 0.49

HT 0.74 0.77 0.65 0.67 0.46 0.50 0.73 0.78

Table 5 Prediction accuracy for HBLUP when phenotypic data is
available for one test cycle (training population) and SNP data is
available for the second test cycle (validation population), or when 40%
of the trees in the training population have both genotype and phenotype
data (HBLUP40)

First cycle Second cycle

HBLUP HBLUP40 HBLUP HBLUP40

AWD 0.56 0.58 0.76 0.78

EWD 0.54 0.55 0.74 0.75

LWD 0.66 0.68 0.74 0.74

LWP 0.43 0.44 0.70 0.70

MFA 0.54 0.59 0.33 0.30

HT 0.50 0.52 0.67 0.71
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relationship matrix is the best approach, in reality, only a
small portion of the breeding population will have marker
information that can be used to correct the pedigree, and
HBLUP was a good compromise between ABLUP and
GBLUP. Prediction accuracy increased little after adding
more than 40% genotyped trees.

Prediction across environments and test cycles

Implementation of HBLUP in tree breeding programs will
employ a training population from one set of environments
to predict breeding values for trees grown in a different envi-
ronment, such as a different field site or a nursery. Therefore,

Fig. 2 The mean within-family
Spearman rank correlation when
predicting breeding values across
test cycles (CV3) for average
wood density (a), earlywood
density (b), latewood density (c),
latewood proportion (e),
microfibril angle (d), and tree
height at age 10 (f). The error bars
are the standard error of the mean
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it is important to understand the effect of GxE on prediction
accuracy. Growth traits are more sensitive to GxE than wood
traits (Baltunis et al. 2010), and there is substantial GxE for
height growth across the lodgepole pine breeding program in
British Columbia (Ukrainetz et al. 2018) which is consistent
with the results presented here. Wood traits were less af-
fected by environmental variation and had higher Type B
genetic correlations indicating less GxE. Height had the
lowest Type B correlation coefficients, and tree ranks for
growth are expected to be affected by the environment.
The prediction accuracy of wood traits in different envi-
ronments was high with few exceptions. Despite the low
Type B correlations for height, the prediction accuracy
estimates were above 0.65 for all validation populations
with the exception of CHOW. These results lend confi-
dence that with an appropriate (co)variance model to ac-
count for environmental variation, prediction accuracy for
HBLUP can be high when appl ied to di f fe ren t
environments.

Predicting breeding values using markers can improve ef-
ficiency in breeding programs by facilitating more accurate
estimates of breeding values for young trees using phenotypic
data collected on mature trees (Resende et al. 2012a; Beaulieu
et al. 2014a). However, phenotypic data must be collected in
the training population at an appropriate age for the target trait
because low age-age correlations can affect the prediction
accuracy (Thistlethwaite et al. 2017). Tree breeding programs
deploy testing cycles as programs advance, but older tests are
often available for long periods of time, making them ideal
targets as training populations for traits that takemany years to
mature. We showed that prediction accuracy was high for all
wood traits, except MFA. The wood traits from first-cycle
tests included more growth rings and a more comprehensive
assessment of wood density and latewood proportion that
more closely resembles what would be expected at rotation
age. Despite the different ages between the test cycles, predic-
tion accuracies were high. MFA is highly affected by maturity
of the wood (Mansfield et al. 2007) and changes as the tree
matures (Mansfield et al. 2009), and given that data was col-
lected at a single point representing the oldest growth ring for
each core sample, the low prediction accuracies for MFA be-
tween testing cycles likely reflects the effect of low age-age
genetic correlations for this trait. HT was collected at age 10 at
all test sites, and the lower prediction accuracies were due to
the effect of GxE. The Type B genetic correlation for MFA
was high and approached unity indicating very little GxE for
this trait across the four sites tested. With such low GxE, we
would expect high prediction accuracy for CV2 (prediction
across sites) yet the values were of the same magnitude as
other traits with lower Type B correlations. The high estimates
of Type B genetic correlations likely indicate a problem fitting
a model to the MFA data, and the results should be interpreted
with caution.

Single-step BLUP in tree breeding

The single-step approach for calculating breeding values is
ideal for integrating new genotyping technologies that offer
a variety of benefits with the extensive investment made in
long-term field trials by tree breeding programs. The H-matrix
provides equivalent breeding value estimates to ABLUP and
GBLUP and corrects for inflated additive variance estimates
due to underestimated average relationship parameters used in
the numerator relationship matrix (Ratcliffe et al. 2017;
Klápště et al. 2018).

The H-matrix uses genomic marker data, through the real-
ized relationship matrix, to adjust the relationships throughout
the entire pedigree, resulting in more accurate estimates of
relatedness between individuals, better estimates of variance
components, and more precise predictions of breeding values
within families (Legarra et al. 2009). One of the benefits of
incorporating genotyping data into mixed models is the ability
to better estimate the Mendelian segregation within family
which makes it possible to rank trees within families even
for trees without phenotypic data, although this requires all
trees be genotyped. Although there was low value in using
HBLUP to rank trees within families when predicting between
test cycles, there was an effect on heritability and Type B
genetic correlations with even a small number of genotyped
trees included in the H-matrix. In order to be effective at rank-
ing trees within families, theremust be a significant proportion
of related trees (40% in this study) with both genotype and
phenotype data in the H-matrix. Future research still needs to
be done to find the optimum number of genotyped trees and
sampling for building the H-matrix.

There was a small increase in the theoretical prediction
accuracy of breeding values for genotyped trees in both height
and wood density as genotyping effort increased for Picea
glauca (Ratcliffe et al. 2017). However, there was no effect
on the theoretical prediction accuracy of maternal or progeny
without genotype data. Results from the current study are
consistent with Ratcliffe et al. (2017) and show a small, but
non-significant, improvement in prediction accuracy with in-
creasing genotyping effort, but no improvement for non-
genotyped trees (Table 3). The effect of increasing genotyping
effort on heritability and Type B genetic correlations was
unique to each trait. For AWD, EWD, and LWD, there was
a decrease in heritability as more genotyped trees were added
to the H-matrix and this trend was most likely a result of
increased precision in pairwise relatedness estimates through-
out the relationship matrix resulting in correction of inflated
heritability estimates when using average coefficients of relat-
edness in the pedigree-based NRM (Fig. 1). The change in
heritability with increasing genotyping effort was less clear
for LWP, MFA, and HT which was likely due to the way
variation was partitioned between additive, microsite (blocks
within site), and residual effects. For most sites, additive
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variance estimates decreased as the proportion of genotyped
trees increased in the H-matrix; however, the effect on herita-
bility depends on the allocation of the excess variation to the
other variance components (blocks and residuals). For some
traits (LWP, MFA, and HT), the decrease in additive variance
did not result in a corresponding decrease in heritability be-
cause the variance no longer attributed to additive effects was
captured by block effects rather than being added to the resid-
ual variance which resulted in relatively stable heritability
estimates across models (Table 1). Breeders planning to in-
corporate HBLUP into tree breeding programs should expect
an equivalent model to ABLUP with slight improvements to
the breeding value predictions for genotyped trees and better
estimates of variance components. It is no surprise that
HBLUP models are still sensitive to GxE which must be con-
sidered carefully when calculating breeding values. Tree
breeders can also expect good predictions between testing
cycles that are connected through pedigree but occur in dif-
ferent environments, which allows prediction of mature traits
on young trees or seedlings.

Comparison of single-step BLUP and genomic
selection

One advantage of the single-step method is that it considers all
phenotypic and genotypic data simultaneously in a single
analysis. Genomic selection methods require marker data for
all individuals in the population in order to predict GEBVs
and a multi-step approach to make use of data from non-
genotyped individuals. Computational efficiency becomes
an issue for programs with considerable phenotypic data and
large marker datasets, but Misztal et al. (2009) provided an
approach for the single-step method and large datasets, while
Aguilar et al. (2010) showed that the single-step approach was
superior to the multi-step approach when using an extremely
large number of individuals, such as 10 M cattle records. The
single-step method can be used to predict breeding values for
trees without phenotypic data but should be viewed as an
alternative to ABLUP rather than a genomic selection alterna-
tive. Genomic selection can be used to improve the efficiency
of breeding programs by accurately predicting the breeding
value of trees from marker data and eliminating costly and
time-consuming testing (Beaulieu et al. 2014b; Resende
et al. 2017). Breeding value predictions must be accu-
rate in order to achieve gains with selection, and cross
validation is a good approach to estimate accuracy
using different scenarios. The prediction accuracies
from our work for genotyped trees are consistent with
prediction accuracies for genomic selection studies in
other conifers for wood and growth traits using similar
cross-validation methods (Zapata-Valenzuela et al.
2013; Beaulieu et al. 2014b; Durán et al. 2017).

Conclusions

The single-step method (HBLUP) for combining pedigree and
genomic marker data into a single relationship matrix can
improve the estimation of genetic parameters thereby improv-
ing breeding value estimates, but should not be used as a
method for predicting the genetic value of trees in the absence
of phenotypic data as has been proposed for other molecular-
based models. The inflated heritabilities for some traits were
reduced when marker data was incorporated into the NRM
and approached those for GBLUP with full marker data.
Prediction accuracy for cross-validation across test environ-
ments and test cycles of different ages were high and similar to
those reported in the literature for genomic selection models;
however, the ranking of trees within families was poor (<
0.25) unless a significant proportion of trees with (training
population) and without (validation or selection population)
phenotypic data is genotyped. Even a small amount of
genotyping (20% of trees in the population) was enough to
affect prediction accuracy, heritability, and Type B genetic
correlations. HBLUP should be regarded as an effective meth-
od for combining pedigree and marker data allowing breeders
to fully utilize the investments made in testing, phenotyping,
and genotyping, ultimately resulting in more precise estimates
of genetic parameters and breeding values.

Data archiving statement All raw SNP data will be submitted to dbSNP
on the public website hosted by National Cancer for Biotechnology
Information (NCBI) National Cancer for Biotechnology Information
(NCBI): http://www.ncbi.nlm.nih.gov/SNP, where submitted SNPs can
be downloaded via anonymous FTP at ftp://ncbi. nlm.nih.gov/snp/.
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