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Abstract
Over the years, breeding programs have sought efficient strategies to select genotypes with superior performance. Genome-wide
selection (GWS) emerged in 2001, aiming to increase efficiency and accelerate selection gain. This technique is considered
essential in the breeding of perennial species, such as Coffea canephora, mainly due to the potential to increase the gain per unit
of time. Thus, this study aimed to apply the GWS principle, evaluate the efficiency of this technique in C. canephora population
using SNP molecular markers, and evaluate eight main phenotypic traits. A total of 165 genotypes were evaluated, being 51 of
varietal group of Conilon, 32 of Robusta, and 82 intervarietal hybrids. Through the sequencing of the RAPiD Genomics
company, 18,111 SNP markers were identified, of which 14,429 were used after quality analysis. All traits showed good
predictive capacity, except for fruit maturation time, fruit size, and yield per plant. The lower values of genomic heritability
found for these traits may justify the low values of predictive capacity obtained. The accuracy values estimated were considered
as moderate to high, ranging from 67 to 82%. By shortening the cycle time from 6 to 3 years, GWS provided selective efficiency
ranging from 22 to 146%. Results revealed that GWS provides higher gains per unit of time. Therefore, GWS proved to be a
useful and promising tool for the breeding of C. canephora for accurately predicting the individuals’ genotypes, shortening the
time required to complete the selection cycle and providing gains in selective efficiency per unit of time.
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Introduction

For a long time, genetic breeding programs selected the best
individuals using morphological markers. These markers are
influenced by the environment and have low selection gain
(Toppa and Jadoski 2013). Technology has improved the use
of molecular markers, allowing significant progress in the
selection of superior individuals by detecting DNA polymor-
phism (Sousa et al. 2017; Alkimim et al. 2017). In the early
1990s, marker-assisted selection (MAS) was proposed, based
on the existence of linkage disequilibrium between DNA
markers and genes of interest (Lande and Thompson 1990).
When comparing MAS for oligogenic traits with phenotypic
selection, the selective efficiency increases and the time re-
quired to carry out selection shortens, among other benefits
(Noir et al. 2003; Lopez et al. 2013; Romero et al. 2014;
Alkimim et al. 2017). Also, this technique enables preventive
breeding by allowing the selection of genotypes carrying
genes of interest in regions where the pathogen is absent
(Alkimim et al. 2017). However, the MAS technique has
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proven to be more efficient for monogenic or oligogenic traits
with high heritability (Asins et al. 2012; Kemper and Goddard
2012). Agronomic traits, in general, are governed by several
genes, compromising the efficiency ofMAS. Therefore, a new
selection method, known as genome-wide selection (GWS),
was developed (Meuwissen et al. 2001). GWS emphasizes the
simultaneous prediction of the genetic effects of hundreds or
thousands of markers that densely cover the genome. Thus, all
quantitative trait loci (QTL) of a quantitative trait are expected
to be in linkage disequilibrium with at least some of the
markers (Grattapaglia and Resende 2011; Valente et al.
2016). GWS stands out for promoting high selective accuracy
and for not requiring the knowledge of the prior location
(maps) of the QTL in the chromosomes (Meuwissen 2007;
Jannink et al. 2010; de Almeida et al. 2016).

In the GWS approach, genomic estimated breeding value
(GEBV) can be predicted by different statistical methodolo-
gies, including GBLUP (genomic best linear unbiased predic-
tion) (VanRaden 2008). In this method, the GEBV values are
predicted using the kinship matrix, estimated from the infor-
mation of molecular markers, known as the genomic kinship
matrix (G). The GBLUP prediction uses much more informa-
tion on parentage than phenotypic selection, which is based on
pedigree (through the parentage matrix A). Then genomic
heritability and accuracy of genomic selection can sometimes
be higher than those parameters from phenotypic selection.
And this can be explained by the many more genetic relation-
ship in the G (the genomic relationship matrix) than in A (the
genetic relationshipmatrix based on genealogy). This increase
in the amount of information by using the genomic matrix G
can, sometimes, lead to better and more precise estimations
and predictions. For two populations and its hybrid popula-
tion, the genetic variance and heritability are defined at the
interpopulation level (Bernardo, 2010; Resende, 2015).

The GBLUP is advantageous for its simplicity and for the
shorter computational time required (Heslot et al. 2015). This
method is mostly recommended for polygenic traits, which are
governed by several genes of minor effect (VanRaden 2008).
GBLUP is suitable for the analysis of continuous traits or
outcomes. For non-normally distributed traits such as those
evaluated by a score scale, GBLUP can be used with the
technique called generalized linear model. The results may
not differ so much from those got by using the standard pro-
cedure of linear mixed model. This is in line with theory,
which preconizes that the higher the number of score scale
classes, the smaller the benefit from using the generalized
linear model technique (Sousa et al. 2019).

The molecular markers SNPs (single nucleotide polymor-
phism), used in GWS studies, stand out for being the most
common type of polymorphism in genomes, for the possibility
of automation, and for being codominant and biallelic
(Resende et al. 2008; Liao and Lee 2010). Recently, the de-
velopment of next-generation sequencing (NGS) platforms

has facilitated the discovery of SNPs, decreasing data point
costs. With the identification of SNP markers widely distrib-
uted in the species genome, GWS has become a reality,
allowing significant gains for several breeding programs
(Goddard and Hayes 2007; Meuwissen 2007; Carvalho and
Silva 2010; Resende et al. 2012; Fritsche-Neto et al. 2012;
Van Eenennaam et al. 2014; Zhao et al. 2015; Sousa et al.
2019).

Although significant, the number of reports regarding
GWS in the genus Coffea, even for species of commercial
importance, such as Coffea canephora and Coffea arabica,
is still low (Ferrão et al. 2017, 2019; Sousa et al. 2019). In a
recent study with two populations of a recurrent selection of
C. canephora, genotyping by sequencing (GBS) showed good
potential to be used in coffee breeding programs (Ferrão et al.
2017). C. canephora is characterized as allogamous, diploid
(2n= 2x=22), with gametophytic self-incompatibility (Leroy
et al. 2005). The species stands out for its rusticity, high yield
potential, higher soluble solids content, and genetic resistance
to coffee leaf rust, caused by the fungus Hemileia vastatrix
(Zambolim 2016).

This study aimed to apply the GWS principle and evaluate
its efficiency in the prediction of genomic-genetic value and in
the shortening of the selective cycle in C. canephora popula-
tion, through the RAPiD Genomics sequencing company, by
building specific probes in coding and non-coding regions.

Material and methods

Genetic material

The population consisted of clones of the Conilon and
Robusta varietal groups and intervarietal hybrids originated
from crosses between these groups. The Conilon genetic ma-
terial was obtained from the Instituto Capixaba de Pesquisa,
Assistência Técnica e Extensão Rural (Incaper), and the
Robusta material was obtained from the Centro Agronómico
Tropical de Investigación y Enseñanza (CATIE). This
population composes the breeding program of the Empresa
de Pesquisa Agropecuária de Minas Gerais (Epamig), in
partnership with the Universidade Federal de Viçosa (UFV)
and the Empresa Brasileira de Pesquisa Agropecuária—Café
(Embrapa Café), located in Oratórios/MG and Viçosa/MG.

The Conilon and Robusta varietal groups consisted of 51
and 32 genotypes (Table 1), respectively. Also, 82 intervarietal
hybrids were obtained by artificial crosses between five geno-
types of the Conilon group (male parents) and five genotypes
of the Robusta group (female parents), evaluated in the inter-
populational partial diallel (Table 2).

For the non-crossed genotypes, information came only
from the parents of Conilon and Robusta in the experiment
and from their parentage with the crossed parents.
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Table 1 Coffea canephora
genotypes used in the genome-
wide selection study

Varietal group Genotypes

Conilon UFV 513 UFV 3628-23 UFV 3628-45 UFV 3629-31

UFV 3627-20 UFV 3628-24 UFV 3628-46 UFV 3629-34

UFV 3627-24 UFV 3628-26 UFV 3628-5 UFV 3629-4

UFV 3627-27 UFV 3628-27 UFV 3629-10 UFV 3630-10

UFV 3627-29 UFV 3628-28 UFV 3629-11 UFV 3630-2

UFV 3627-30 UFV 3628-29 UFV 3629-17 UFV 3630-5

UFV 3627-31 UFV 3628-3 UFV 3629-24 UFV 3630-6

UFV 3628-1 UFV 3628-32 UFV 3629-25 UFV 3630-7

UFV 3628-10 UFV 3628-35 UFV 3629-26 UFV 3631-10

UFV 3628-16 UFV 3628-4 UFV 3629-27 UFV 3631-11

UFV 3628-17 UFV 3628-40 UFV 3629-28 UFV 3631-13

UFV 3628-2 UFV 3628-42 UFV 3629-29 UFV 3631-9

UFV 3628-22 UFV 3628-44 UFV 3629-30 –

Robusta UFV 3356-71 UFV 3362-118 UFV 3367-101 UFV 3373-43

UFV 3356-76 UFV 3363-125 UFV 3367-105 UFV 3374-29

UFV 3357-93 UFV 3365-144 UFV 3368-52 UFV 3375-65

UFV 3358-88 UFV 3366-134 UFV 3368-58 UFV 3375-66

UFV 3360-169 UFV 3366-138 UFV 3370-50 UFV 3376-8

UFV 3360-171 UFV 3366-139 UFV 3371-19 UFV 3376-9

UFV 3361-148 UFV 3367-96 UFV 3371-20 UFV 3377-12

UFV 3361-151 UFV 3367-97 UFV 3373-36 UFV 514

Table 2 Intervarietal hybrids and
description of their crosses, used
in the genome-wide selection
study

Hybrids Crosses

H092-2, H092-8, H092-10, H092-20, H092-22, H092-35 UFV 3366-139 x UFV 513

H093-1, H093-10, H093-12, H093-20 UFV 3366-139 x UFV 3629-11

H094-2, H094-5, H094-12, H094-13, H094-18, H094-30 UFV 3367-98 x UFV 513

H095-9, H095-11, H095-14, H095-25, H095-28 UFV 3366-139 x UFV 3627-31

H097-8, H097-13, H097-16, H097-17, H097-18, H097-19 UFV 3374-28 x UFV 3627-31

H098-1, H098-2, H098-3, H098-5, H098-13 UFV 3365-144 x UFV 3629-11

H099-1, H099-2, H099-7, H099-8, H099-10 UFV 3365-144 x UFV 513

H0910-4, H0910-5, H0910-6, H0910-7, H0910-8 UFV 3367-98 x UFV 3629-11

H0911-2, H0911-3, H0911-4, H0911-5, H0911-6, H0911-7 UFV 3367-98 x UFV 3628-2

H0912-1, H0912-3, H0912-4, H0912-6, H0912-7, H0912-8 UFV 3366-139 x UFV 3628-2

H0913-1, H0913-3, H0913-4, H0913-5, H0913-7 UFV 3365-144 x UFV 3628-2

H0914-2, H0914-3, H0914-4, H0914-5, H0914-6 UFV 3374-28 x UFV 513

H0915-1, H0915-2, H0915-3, H0915-4, H0915-5 UFV 3373-36 x UFV 3628-2

H0916-1, H0916-2, H0916-4 UFV 3367-98 x UFV 3629-25

H0917-1, H0917-2, H0917-3 UFV 3365-144 x UFV 3629-25

H0918-1, H0918-2, H0918-3 UFV 3373-36 x UFV 513

H0919-2 UFV 3373-36 x UFV 3629-11

H0920-1 UFV 3373-36 x UFV 3629-25

H0921-1 UFV 3374-28 x UFV 3629-11

H0922-1 UFV 3373-36 x UFV 3627-31
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Phenotypic evaluations

The experiment was established in an incomplete block design
with up to 35 replicates and single tree plots. It included hy-
brids and parents. Phenotypic evaluations were carried out for
eight traits during three consecutive years (2014–2016). Five
categorical traits and three continuous traits were evaluated.
Evaluations were performed at the time of physiological ma-
turity of the coffee fruits.

The categorical traits evaluated were as follows: vegetative
vigor (Vig), field evaluation of rust incidence (Rus) and
cercosporiosis incidence (Cer), fruit maturation time (Mat),
and fruit size (FS). The vegetative vigor was evaluated by
the general appearance of the plant, by observing plant leaf
development, leaf color, nutritional status, and health of coffee
plants. A score scale ranging from 1 to 10 was used, where 1
was attributed to totally depleted plants and 10 was assigned
to highly vigorous plants. Rust incidence and cercosporiosis
were evaluated by a score scale ranging from 1 to 5, where 1
was attributed to genotypes with no symptoms of the patho-
gen, and 5 was assigned to highly susceptible genotypes,
cercosporiosis. Fruit maturation time was classified as early,
intermediate, and late, with scores ranging from 1 to 3, respec-
tively. Fruit size was classified as small, medium, and large,
with scores from 1 to 3, respectively.

The continuous traits evaluated were as follows: plant
height (PH), diameter of the canopy projection (DC), and
yield in liters per plant (Y). Plant height (cm) was determined
bymeasuring the most developed orthotropic branch, from the
ground to the last apical point of the coffee plant, using a
measurement tape fixed to a wooden rod. The diameter of
the canopy projection was determined in centimeters (cm),
using a ruler perpendicular to the planting row. The yield per
coffee plant was evaluated by harvesting all the fruits in a
genotype and measuring the total volume in liters of freshly
harvested coffee.

Analysis of phenotypic data

The phenotypes were corrected for environmental effects of
years and blocks using the Selegen REML/BLUP software
(de Resende 2016). The model used was as follows:
y=Xu+Za+Wc+Qs+ Sb+ e, where y is the data vector; u
is the vector of year-mean effects (assumed as fixed) added
to the overall mean; c is the vector of specific combining
ability effects between the Conilon and Robusta parents (as-
sumed as random and distributed as N~Iσ2

c ); a is the vector of
additive genetic effects of individuals (assumed as random
and distributed asN~Aσ2

a ); s is the vector of permanent effects

of individuals (assumed as random and distributed as N~Iσ2
s );

b is the vector of permanent environment effects of blocks
(assumed as random and distributed as N~Iσ2

b ); and e is the

residual vector (assumed as random and distributed as N~Iσ2
e

). All the effects were assumed as uncorrelated. Uppercase
represent the incidence matrices for these effects. The
corrected phenotypes were given by corrected phenotypes
were given by y∗ = y−Xu ^ − Sb^ and are called deregressed
phenotypes, which enter in the genomic analyses (Garrick
et al. 2009; de Andrade et al. 2019).

The selective accuracy was obtained by the equation ryy =
(1 − PEV/σ2

a )1/2, where σ2
a is the additive genetic variation

between individuals under evaluation and PEV is the variance

of the prediction error, given by PEV = C22
i σ2

e , where C
22
i is

the ith element of the inverse diagonal of the matrix of the
coefficients of the mixed model equations, and σ2

e is the resid-
ual variance.

According to the model y=Xu+Za+Wc+Qs+ Sb+ e, the
individual heritability was estimated by the following:

h2 ¼ σ2
a= σ2

a þ σ2
c þ σ2

s þ σ2
b þ σ2

e

� �
, where σ2

j is the variance

component associated to the j effect.

Genomic DNA extraction, identification, and quality
analysis of SNP markers

Young and fully expanded leaves of the 165 coffee trees under
study were collected, and the genomic DNA was extracted
using the methodology described by Diniz et al. (2005). The
DNA concentration was verified in NanoDrop 2000, and its
quality was evaluated in 1% agarose gel. The DNA concen-
tration of the samples was standardized and sent to RAPiD
Genomics, located in Florida, USA, for the construction of
probes, sequencing, and identification of SNP molecular
markers.

To identify SNP markers and coffee genotyping, 10,000
probes were selected from 40,000 polymorphic probes
(Resende et al. 2016), and 18,111 SNP markers were identi-
fied. The probes were constructed from reference sequences.
One of the databases was the Brazilian Genome Coffee
Project, which contains over 200,000 ESTs (expressed se-
quence tags), corresponding to about 33,000 transcribed
genes, known as Unigenes (Vieira et al. 2006). Another one
was the reference genome of the C. canephora species, con-
taining a total of 25,574 genes (Denoeud et al. 2014). Using
these reference sequences, specific probes were obtained so
that the whole genome was covered, considering both coding
and non-coding regions. With these probes, the coffee geno-
types were sequenced using the Illumina platform, and the
SNP markers were identified using the methodology devel-
oped by the company RAPiD Genomics (Resende et al.
2016), developed for humans (Gnirke et al. 2009), and
adapted to plants (Neves et al. 2013, 2014). This technology
uses a method of genotyping-by-sequencing of specific re-
gions of the genome. Details of the construction of the probes
and identification of the SNP markers can be obtained in the
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study carried out by Alkimim et al. (2018). The SNPs set was
subject to analysis of quality implemented in the Rbio soft-
ware (Bhering 2017). Quality control of SNPs was carried out
by the MAF (minor allele frequency—higher than or equal to
5%) and/or call rate (CR—higher than or equal to 90%). The
critical level for the MAF parameter was obtained by the
equation MAF ¼ 1ffiffiffiffiffi

2N
p , where N refers to the total number of

genotypes evaluated (de Resende et al. 2017).

Prediction using the GBLUP model

Analyses were carried out using the GBLUP method via
RKHS (Reproducing Kernel Hilbert Spaces) (Gianola 2006),
with a Bayesian algorithm, via R environment, in the BGLR
package (Resende 2008; Perez and De Los Campos 2014).
RKHS accounts for the genetic effects using the Gaussian
kernel matrix (K). K = exp. (− hD / median(D)), where h is
the reduction coefficient to K values, h is equal to 1, and D is
the Euclidean distance of codified markers matrix. A total of
100,000Markov ChainMonte Carlo (MCMC) iterations were
used, with a burn-in of the first 2000 MCMC iterations and a
sampling interval (thinning) of 10.

The general mixed linear model (de Resende 2007, 2015;
VanRaden 2008) was adjusted to estimate the additive genetic
effects of the individuals: y* = Xm + Zg + e, where y* is the
vector of corrected phenotypic observations,m is the vector of
fixed effects (general mean), g is the vector of random effects
of the additive genomic effects of the individuals (assumed
distributed as N~Gσ2

g ), and e refers to the vector of random

residuals. Uppercase letters represent the incidence matrices
for these effects. The genomic mixed model equations for the
prediction of g using the GBLUP method are given by the
following:

X 0X X 0Z

Z 0X Z
0
Z þ G

σ2
e

σ2
g

24 35 bmbg
" #

¼ X 0
y*

Z 0
y*

� �

The genomic relationshipmatrixG comes from a incidence
matrixMwhich contains the values 0, 1, and 2 for the number
of alleles of the marker (or the so-called QTL) in a diploid
individual.

The componentMij refers to the element i of the row j of the
matrix M, referring to individual j. G is a function of MM′
(VanRaden 2008). The genomic heritability was computed

as h2a ¼
σ2g

σ2gþσ2eð Þ, where σ2
g is the additive genomic variance

and σ2
e is the residual variance.

Cross-validation

The cross-validation method K-fold was used, considering
k=11 folds. The set of observations of 165 genotypes was,

randomly, divided into groups. In the process of analysis, 150
genotypes were used as training population, and the group of
15 genotypes (remaining of original population of 165 indi-
viduals) was used as the validation population. This procedure
was repeated 11 times (k=11) so that all groups of excluded
genotypes were used in the validation.

Predictive capacity, prediction, and accuracy bias
of GWS

The predictive capacity and the prediction bias are practical
measures of the capacity of a method in predicting with accu-
racy and not with bias. The predictive capacity (rgy) is deter-
mined by the correlation between the predicted genomic
values and the observed phenotypic values, which are equiv-
alent to the GWS predictive capacity to estimate the pheno-
types. The prediction bias (b) is determined by the coefficient
of regression of the predicted genomic values on the pheno-
typic values (de Resende et al. 2012; Pértile et al. 2016). The

accuracy was determined by the estimator rgg=rgy=
ffiffiffiffiffi
h2

p
,

where rgy is the prediction ability of GWS, and h2 is the indi-
vidual heritability (Borém and Fritsche-Neto 2013).

Estimate of the number of QTL (nQTL) and number
of individuals (Ni) to obtain desired accuracy

The estimate of the number of QTLs that control each trait was

calculated by the expression nQTL ¼ 1−r2ggð ÞNh2

r2gg
, where rgg is

equivalent to the GWS accuracy, N refers to the number of
individuals in the population, and h2 is the individual herita-
bility (de Resende et al. 2014).

The estimate of the number of individuals (Ni) that should
be evaluated in order to obtain desired accuracy was calculat-

ed by the expression Ni ¼ r2ggnQTL
1−r2ggð Þh2, where rgg is equivalent to

the accuracy of GWS, nQTL is the number of QTLs that con-
trol each trait, and h2is the individual heritability (de Resende
et al. 2014).

Efficiency of GWS

The selective efficiency of GWS compared with the selection
based only on 6-year phenotypes was calculated using the

expression Ef ¼ rgyL f

ryyLGWS
, where rgy is the predictive capacity

of GWS, ryy is the accuracy of the selection based on pheno-
types, Lfis the mean time required for the selection cycle based
on phenotypes, and LGWS is the mean time required for the
selection cycle based on GWS (de Resende et al. 2012).
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Results

Analysis of phenotypic data

Phenotype data were corrected for environmental effects of
years and blocks. The values of selective accuracy (ryy)
were estimated from the phenotypic evaluations (Table 3).

No satisfactory predictive capacity was verified for the
traits fruit maturation time, fruit size, and yield per plant.
Therefore, the accuracy values of these traits were not estimat-
ed. In addition, for the trait cercosporiosis incidence, selective
accuracy was not estimated since the value of broad-sense
heritability was 0, based on the phenotypic data.

In general, the evaluated traits showed ryy of high magni-
tude. Values ranged from 39% for rust incidence to 67% for
the plant height.

Analysis of quality of SNP markers

With the sequencing of the 165 genotypes using 10,000
probes (previously selected and distributed throughout the

genome), 18,111 SNPs were identified. After the quality
analyses, carried out in the Rbio software (Bhering 2017),
14,429 SNP markers were obtained. The initial set of SNP
markers reduced by 20.33% (Fig. 1). The number of SNPs
per chromosome, after the quality analyses, ranged from 4
to 2163. The highest number of SNPs was observed on
chromosomes 0 and 2 (Fig. 1). We made available a file
with 14,429 SPNs used in the genetic analyzes and their
respective positions in the genome (Online Resource 1).

Genomic heritability, predictive capacity, prediction,
and accuracy bias of GWS

Estimates of genomic heritability values, predictive capacity
of GWS, prediction bias, and accuracy based on the pheno-
type data are shown in Table 3.

The estimated genomic heritability values (h2a ) ranged
from 0.15 for the trait yield per plant (Y) to 0.53 for the trait
diameter of the canopy projection (DC). Despite the consider-

able h2a values obtained for fruit maturation time (0.21), fruit

Table 3 Genome-wide selection (GWS) and estimates of selective accuracy based on phenotypic data obtained by mixed model analysis
(REML/BLUP) for eight morphoagronomic traits in a breeding population of Coffea canephora

Traits h2a ± sd rgy ± sd b ± sd ryy rgg

Vig 0.43 ± 0.04 0.44 ± 0.15 1.18 ± 0.50 0.60 0.67

Rus 0.37 ± 0.04 0.48 ± 0.15 1.40 ± 0.67 0.39 0.79

Cer 0.43 ± 0.04 0.54 ± 0.20 1.31 ± 0.57 – 0.82

PH 0.36 ± 0.04 0.41 ± 0.22 1.35 ± 0.86 0.67 0.68

DC 0.53 ± 0.03 0.58 ± 0.13 1.23 ± 0.41 0.57 0.80

Mat 0.21 ± 0.19 − 0.03 ± 0.19 1.08 ± 2.99 – –

FS 0.21 ± 0.19 0.00 ± 0.29 0.60 ± 1.42 – –

Y 0.15 ± 0.02 − 0.02 ± 0.30 − 0.11 ± 2.12 – –

h2a : genomic heritability; sd: standard deviation; rgy: predictive capacity; b: predictive bias; ryy: accuracy of selection based on the phenotypic data

obtained by the REML/BLUP method; rgg: accuracy of GWS; Vig: vegetative vigor; R: rust incidence; Cer: cercosporiosis incidence; PH: plant height;
DC: diameter of the canopy projection; Mat: fruits maturation time; FS: fruit size; Y: yield per plant
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size (0.21), and yield per plant (0.15), their predictive capacity
was low.

Regarding predictive capacity of GWS (rgy), the traits
Vig (0.44), Rus (0.48), Cer (0.54), PH (0.41), and DC
(0.58) stood out for their high estimate. This confirms that,
in general, the rgy values were higher for traits that had the

highest h2a values.
The prediction bias (b) resulted in values close to 1.0 for

the traits vegetative vigor, rust incidence, cercosporiosis
incidence, plant height, diameter of the canopy projection,
fruit maturation time, and fruit size. The trait yield per
plant showed no prediction bias close to 1.0. In addition,
this trait had the lowest estimate value of genomic
heritability.

The accuracy of GWS (rgg) for the traits fruit maturation
time, fruit size, and plant yield was not satisfactory, and there-
fore, their accuracy was not estimated.

The estimates of the accuracy values were obtained for the
other traits, ranging from 67% (Vig) to 82% (Rus). dergg
values were moderate (68%) to high (79%), even for plant

height and rust incidence, which had low h2a values (0.36
and 0.37, respectively).

Estimate of the number of QTL (nQTL) and number
of individuals (Ni) to obtain desired accuracy

The estimated number of QTLs controlling each trait ranged
from 35 (Cer) to 87 (Vig). In addition, the lowest values of
accuracy of GWS, 67% (Vig) and 68% (PH), were obtained
for the traits that had the highest number of QTLs (Table 4).

Table 4 shows the estimated number of individuals (Ni)
that should be evaluated to achieve desired accuracy (rggd).
The values of desired accuracy used were of 0.50, 0.60, 0.70,
0.80, and 0.90 to estimate the number of individuals. This
calculation considered estimates of the genomic heritability

values (h2a ), shown in Table 3, and the estimated number of
QTLs (nQTL) controlling each trait, shown in Table 4. To ob-
tain desired accuracy of 70%, which is considered of high
magnitude (de Resende and Duarte 2007), 194 individuals
need to be evaluated for the trait vegetative vigor, 96 for coffee
rust, 78 for cercosporiosis incidence, 184 for plant height, and
89 for diameter of the canopy projection. For all traits evalu-
ated, the higher the accuracy desired, the larger was the num-
ber of individuals to be analyzed.

Efficiency of GWS

Figure 2 shows the efficiency of the GWSwith the decrease of
the selective cycle in relation to the selection based only on
6 years of phenotypic data, for all traits that had good predic-
tive capacity, except for cercosporiosis incidence (Cer). Thus,
the GWS efficiency was estimated for the traits vegetative

vigor, rust incidence, plant height, and diameter of the canopy
projection.

Figure 2 shows an increase in selective efficiency by using
GWS, even for vegetative vigor and plant height, which had
high estimates of accuracy from selection based on phenotyp-
ic data (60 and 67%, respectively) (Table 2). Even the traits

with low h2a values, plant height (0.36), and rust incidence
(0.37) showed efficiency gains with GWS. With the decrease
of the selective cycle from 6 to 3 years, GWS was higher
(ranging from 22 to 146%) for all traits.

Discussion

Analysis of phenotypic data

Selective accuracy (ryy) was estimated by the REML/BLUP
method (de Resende 2016). Selective accuracy reflects the
quality of the information and procedures used to predict the
genetic values of the individuals (Sousa et al. 2019).

In general, the evaluated traits had high magnitude ryy,
ranging from 39% (R) to 67% (PH). Therefore, the higher
the value of the selective accuracy, the higher is the confidence
in the evaluation and the predicted genetic value of an indi-
vidual (Sousa et al. 2019).

Quality analysis of the SNP markers

Quality analyses revealed 14,429 SNP molecular markers.
Quality evaluations allow identifying markers with ideal qual-
ity criteria (Sant’Ana et al. 2018). In addition, this evaluations
are advantageous for they remove poor quality markers prior
to the statistical analyses, consequently decreasing the occur-
rence of false-positive (type I error) and false-negative (type II
error) (Anderson et al. 2010). High marker density is essential
for capturing genes with lower and higher effect and,

Table 4 Number of QTLs that control the trait (nQTL) and number of
individuals (Ni) required to achieve desired accuracy of GWS (rggd) in a
breeding population of Coffea canephora for Vig, Rus, Cer, PH, and DC
traits

Traits nQTL Number of individuals (Ni)

rggd 0.50 rggd 0.60 rggd 0.70 rggd 0.80 rggd 0.90

Vig 87 67 114 194 360 863

Rus 37 33 56 96 178 426

Cer 35 27 46 78 145 347

PH 69 68 108 184 341 817

DC 49 31 52 89 164 394

Vig: vegetative vigor; Rus: rust incidence; Cer: cercosporiosis incidence;
PH: Plant height; DC: diameter of the canopy projection
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consequently, increasing the probability of explaining most of
the genetic variation of the study trait (Resende et al. 2008;
Resende et al. 2016). Valente et al. (2016) found that the use of
higher marker densities is required to obtain prediction accu-
racy of high magnitude (> 70%, according to de Resende and
Duarte 2007).

A greater number of SNPs were identified on chromo-
somes 0 and 2. However, chromosome 0 is not a true chro-
mosome, but a set of unsorted sequence scaffolds of
C. canephora. This result, number of SNPs identified on chro-
mosome 2, may be due to the length of chromosome 2 in the
genome of C. canephora (Denoeud et al. 2014).

Genomic heritability, predictive capacity, prediction
bias, and GWS accuracy

The results of estimated values of genomic heritability (0.15
for yield per plant at 0.53 for diameter of the canopy projec-
tion) indicate the inheritable capacity of each trait. Despite the

considerable h2a values, given the genetic complexity of the
traits, obtained for the fruit maturation time (0.21), fruit size
(0.21), and yield per plant (0.15), their predictive capacity was
low. Estimates of predictive capacity are expected to be lower
for traits with low heritability (Legarra et al. 2008). The fact

that these three traits had the lowest h2a values justifies their
low predictive capacity values.

Good predictive capacity (rgy) was recorded for the traits
Vig (0.44), Rus (0.48), Cer (0.54), PH (0.41), and DC (0.58),
indicating the capacity to anticipate phenotypes for these
traits. All of them are lower than 58%. Although 58% is not
a high (above 70%) magnitude, it can be possible do have
genetic gain from genomic selection and it can be higher per
unit of time than that from phenotypic selection. These data
show that, in general, the rgy values were higher for the traits
that had the highest h2a values. A GWS study with cashew tree
(Anacardium occidentale) also revealed a response of the

predictive capacity in function of the heritability (Cavalcanti
et al. 2012).

The prediction bias (b) was close to 1.0 for vegetative vig-
or, rust incidence, cercosporosis, plant height, diameter of the
canopy projection, fruit maturation time, and fruit size.
Predictive bias close to 1.0 indicates that the prediction was
non-biased and, therefore, is effective in predicting the real
magnitudes of the differences between the individuals evalu-
ated (Resende et al. 2012). The yield per plan trait had a biased
prediction. This trait had also the lowest estimate value of
genomic heritability, which may justify the observed bias. In
addition, traits governed by larger numbers of genes require
populations with larger sample sizes.

The accuracy can be classified as very high (> 90%); high
(70–90%); moderate (50–70%), and low (<50%) (de Resende
and Duarte 2007; Rabier et al. 2016). The traits fruit matura-
tion time, fruit size, and yield per plant showed unsatisfactory
predictive capacity. Therefore, their accuracy values were not
estimated. The estimates of the accuracy values were obtained
for the other traits, ranging from 67% (Vig) to 82% (R). The
rgg values were moderate (68%) to high (79%), even for plant

height and rust incidence, which had low h2a values (0.36 and
0.37, respectively). These results confirm the efficiency of
GWS in the selection of traits with low heritability and agree
with other studies (Legarra et al. 2008; Zhang et al. 2010).

Estimate of the number of QTLs (nQTL) and number
of individuals (Ni) to obtain desired accuracy

The estimated number of QTLs controlling each trait ranged
from 35 (Cer) to 87 (Vig). These results show the quantitative
nature of the traits evaluated in this study. In addition, traits
with the highest number of QTLs were those with the lowest
values of accuracy of GWS, 67% (Vig) and 68% (PH). A
study carried out with oil palm (Elaeis guineensis Jacq.) re-
vealed that the accuracy of GWS is inversely proportional to
the number of QTLs that control the traits (Wong and
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Bernardo 2008). This is expected because traits governed by a
larger number of QTLs are more complex. Also, in polygenic
traits, in general, each gene has a little contribution to the
manifestation of the trait. However, even in a scenario under
low heritability and a higher number of QTLs, results of our
GWSwork were promising. This event probably occurred due
to the set of SNPs selected by the quality criteria. Another fact
is that the SNPs are widely distributed along the genome of
this species. These results lead us to highlight the importance
of implementing the GWS technique in the Brazilian coffee
breeding program. This can be gradually incorporated, obey-
ing the pace and conditions of each program, as an auxiliary
tool in the practical conduction of improvement programs, in
order to obtain quick and accurate gains.

The estimate of the number of individuals required to
achieve desired accuracy was obtained considering values of
desired accuracy of 0.50, 0.60, 0.70, 0.80, and 0.90. To obtain
desired accuracy (rggd) of 70% (high magnitude) (de Resende
and Duarte 2007), 194 individuals would have to be evaluated
for vegetative vigor, 96 for coffee rust incidence, 78 for
cercosporiosis incidence, 184 for plant height, and 89 for di-
ameter of the canopy projection. Thus, this study evaluated
more individuals than necessary to achieve accuracy of 70%
for most of the traits (Rus, Cer, and DC). In addition, this
study revealed that the higher the desired accuracy, the larger
is the number of individuals to be analyzed.

Efficiency of GWS

The y-axis values shown in Fig. 2 mean the ratio of gain, per
unit of time, between genomic selection, and phenotypic se-
lection. When higher than 1, it indicates that genomic selec-
tion will provide superior gain. For example, for a value of
1.25, the gain is 25%. Genomic prediction is an additional
information on the genetic value of the individual and as such
can allow an earlier selection with precision and so can enable
reduction of the number of harvests below four (it is well-
known that coffee trials require, on average, four harvests
for an efficient selection).

In perennial species, such as C. canephora, one of the
advantages of genomic selection is the shortening of the se-
lection cycle in order to practice early selection (Castro et al.
2016). In our work, the selective efficiency increased when
using GWS, even for vegetative vigor and plant height, which
showed high estimates of accuracy based only on phenotype
data (60 and 67%, respectively). This increase in efficiency is
due to the reduction in the time required to complete a selec-
tive cycle using GWS. Thus, reducing the cycle from 6 to
3 years increased the selective efficiency of the GWS for all
the traits throughout the reduction of the cycle. Therefore,
even when the accuracy of genomic selection has the same
magnitude as that obtainedwith selection based on phenotypic

data, GWSwill provide higher genetic gains due to the shorter
selection cycle (Gois et al. 2016).

With the decrease of the selective cycle from 6 to 3 years,
GWS was more efficient (ranging from 22 to 146%) for all
traits. Thus, the reduction in the time required to complete a
selective cycle is significant when using GWS. Genomic pre-
diction and selection can be performed at the seedling stage,
and therefore, GWS has a higher efficiency per unit of time
(Resende et al. 2012; Gois et al. 2016). Similar results were
observed in other studies. In a study evaluating the selective
efficiency of GWS with a 50% decrease in the selective cycle
of citrus, GWS was superior for all the traits evaluated (rang-
ing from 31 to 160%) (Gois et al. 2016). A study with oil palm
(Elaeis guineensis Jacq.) revealed a reduction in the selection
cycle from 19 to 6 years when using GWS (Wong and
Bernardo 2008). In a study with maize (Zea mays L.), the
use of GWS significantly increased the selective accuracy
and the genetic gains per unit of time (Fritsche-Neto et al.
2012). In other studies, genomic selection also showed great
potential in increasing breeding efficiency by simulated re-
sults (Resende et al. 2008; Valente et al. 2016).

GWS provided gains in efficiency even for traits with low

h2a, plant height (0.36), and rust incidence (0.37). These data
confirm the importance of GWS in the selection of low-
heritability traits, a fact that is also observed in other studies
(Resende et al. 2012; Gois et al. 2016).

Conclusion

Results reveal that genome-wide selection is useful for
C. canephora breeding since it accurately predicts the pheno-
types of individuals. This fact leads to a significant reduction
in the time required to complete the selection cycle, providing
gains in selective efficiency per unit of time. In addition, these
results can be used as the basis for further studies on the genus
Coffea and on perennial species with genetic similarity.
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