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Abstract
Selection of candidate cultivars in macadamia requires extensive phenotypic measurements over many years and trials. In
particular, yield traits such as nut-in-shell yield and kernel yield are economically vital characteristics and therefore guide the
selection process for new cultivars. However, these traits can only be measured in mature trees, resulting in long generation
intervals and slow rates of genetic gain. In addition, these traits are expensive to measure. Strategies to reduce the generation
interval and increase the intensity of selection include using yield component traits, identification of markers associated with
component traits, and genomic selection for yield. Yield component traits that contribute to resource availability for fruit
formation include floral and nut characteristics. In this review, these traits will be investigated to estimate their relative importance
in macadamia breeding and their heritability and correlations with yield. Furthermore, the usefulness of genome-wide association
studies regarding yield component traits will be reviewed. Genetic-based breeding techniques could exploit this information to
increase yield gains per breeding cycle and estimate the quantitative nature of yield traits. Genomic selection uses genome-wide
molecular markers to predict the phenotype of individuals at an early age before maturity, thereby reducing the cycle time and
increasing gain per unit time in plant breeding programmes. This review evaluates the potential for measurement of yield
component traits, genome-wide association studies, and genomic selection to be employed in the Australian macadamia breeding
programme to accelerate gains for nut yield.
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Introduction

In the past few decades, substantial increases in yield have
resulted from genetic improvement in many crops including
maize (Duvick 1984) and apple (Igarashi et al. 2016).
However, genetic improvement is still in its infancy in many
tree species due to their long generation times and the cost of
screening new cultivars (Khan and Korban 2012; Kumar et al.
2013a; Isik 2014; van Nocker and Gardiner 2014; Cros et al.
2015). High yield is often the focus in crop breeding
programmes, yet selection gains can be hindered since yield
is commonly difficult to select due to its complex nature. The

process of yield genetic gain in fruit tree crops can be accel-
erated in a number of ways.

One method of improving yield is by mining for yield
component traits. Component traits that are correlated with
yield, and are more heritable and easier to measure, may be
used to indirectly select for high yield (Fraser and Eaton 1983;
Sparnaaij and Bos 1993; Piepho 1995). This indirect selection
may increase breeding gains by reducing cycle times if the
component traits are measured earlier in the process than
yield.

Other methods to increase yield in crop breeding
programmes include employing DNA-based technologies.
This includes combining genome-wide association studies
(GWAS) with marker-assisted selection (MAS), and using
genomic selection (GS) (Lande and Thompson 1990;
Varshney et al. 2005; Endresen 2010; Khan and Korban
2012; van Nocker and Gardiner 2014; Isik et al. 2015).
GWAS can help identify genetic markers associated with
key yield component traits, which can then be screened for
in a population and elite candidates selected using MAS. GS
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can be used to select for the more complex trait yield by
modelling genetic markers across the genome and their effect
on the trait to predict the yield of each candidate.

Luby and Shaw (2001) proposed that fruit crops have more
to gain fromMAS than annual crops due to their large tree size
and long generation times, and the time and cost involved in
maintaining the trees. However, they recognised that this may
be true only if the trait in question is simply inherited, is
economically important, and is conventionally very expensive
to measure (Luby and Shaw 2001). Since that time, the tech-
nology of molecular markers has dramatically expanded and
advanced. Genomics-based methods for improving the effi-
ciency of breeding programmes such as GWAS and GS are
now particularly pertinent for fruit trees (Wong and Bernardo
2008; Kumar et al. 2012b; Iwata et al. 2016; Yamamoto and
Terakami 2016; Peace 2017). These methods have advanced
from the more fundamental marker-assisted breeding and trait
mapping, have higher accuracies and wider applications
(Iwata et al. 2016), and have potential use in breeding for
increased yield in a crop such as macadamia.

This review investigates genomic improvement in crop
breeding, with specific reference to fruit and nut tree crops
including macadamia. The potential use of yield component
traits, GWAS, and GS in improving yield in macadamia will
be explored.

Macadamia: a native Australian nut

Macadamia (Proteaceae) is a subtropical rainforest tree, native
to the east coast of Australia between Mount Bauple,
Queensland, and Lismore, New South Wales (Gross 1995;
Hardner et al. 2009). The genus contains four species:
M. integrifolia, M. tetraphylla, M. ternifolia, and M. jansenii
(Peace et al. 2008; Hardner et al. 2009). Individual trees are
produced predominantly from outcrossing, similar to many
other rainforest species, are large in size, and have a long
juvenile period (Fig. 1; Sedgley et al. 1990; Trueman and
Turnbull 1994). Both M. integrifolia and M. tetraphylla and
their hybrids are cultivated around the world for their edible
nuts (Fig. 2; Hardner et al. 2009).

Macadamias are diploid (2n = 28), highly heterozygous,
with genome size estimates ranging from 652 Mb (Nock
et al. 2016) to 780Mb (Chagné 2015). A draft genome assem-
bly of short-read Illumina sequences from cultivar ‘HAES
741’ covers 79% of the total estimated genome, at 518 Mb
in length (Nock et al. 2016). Nock et al. (2016) discussed
ongoing work to improve genome coverage by incorporating
deeper, long-read PacBio sequence data and develop a high-
density linkage map, which will be advantageous for future
genomics studies. The Australian National Macadamia
Germplasm Collection contains accessions across all four

Macadamia species, which is also available as a genomics
resource for sequencing (Hardner et al. 2004).

Domestication and cultivation

Domestication of macadamia is only relatively recent, with
cultivation beginning in the late 1800s (Peace et al. 2008;
Hardner et al. 2009; Hardner 2015). Two early importations
of M. integrifolia nuts from Australia to Hawaii occurred in
the 1880s and 1890s (Hamilton and Fukunaga 1959). It has
been suggested that the first exports originated from near
Mount Bauple (Hardner 2015). Planting of seedlings began
around 1920 by the Hawaii Agricultural Experiment Station,
whilst evaluation and selection of new cultivars commenced
in the mid-1930s (Hamilton and Fukunaga 1959; Hardner
2015). This programme provided the majority of commercial
cultivars currently grown around the world (Hardner 2015). In
Australia, the first orchards were established near Lismore,
NSW, in the 1880s and in Queensland in 1910 (Hardner
et al. 2009). As such, cultivated varieties are only a few gen-
erations removed from their wild relatives. Macadamias are
mainly produced in Australia, South Africa, the USA
(Hawaii), and Kenya (Australian Macadamia Society 2012).

Trees begin to bear nuts after 4 to 5 years, are fully mature
after 10 to 15 years, and can be commercially productive for
up to 60 years (Hardner et al. 2009). In 1997, the
Commonwealth Scientific and Industrial Research

Fig. 1 Timeline of the Australian macadamia breeding programme’s first
generation, showing evaluation steps indicative of traditional breeding
practices
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Organisation (CSIRO) launched an Australian macadamia
breeding programme from which subsequent selections have
been made for parental crossing and regional variety trials
(RVTs) to evaluate elite selections (Fig. 1; Hardner et al.
2002). Large areas are required over various environments
to evaluate new cultivars. RVTs in macadamias are usually
maintained for 8 years from planting date, with many traits
measured each year (Hardner et al. 2002). Several years of
data are required in order to select high-yielding cultivars
(Hardner et al. 2001). Yield and growth data up to year 8 are
available for ~ 2000 trees in Australia from these trials.

High yield is the primary trait used to select new cultivars
(Stephenson et al. 1986; Hardner et al. 2009; Howlett et al.
2015). Other important traits selected in the Australian breed-
ing programme are high kernel recovery, small tree size, and
high proportion of intact kernels (Topp et al. 2012). Nut-in-
shell (NIS) yield refers to the weight of de-husked nuts at 1%
moisture content with the shell intact (Hardner et al. 2002).
Kernel recovery (KR) is the ratio of kernel to nut mass (Kester
and Asay 1975; Hardner et al. 2002); high KR is desired as
this indicates that the kernel is relatively large compared with
the weight of the shell. However, cultivars with high KR have
thin shells, which are susceptible to pests and diseases
(Hardner et al. 2009). Depending on the use of the product,
whole unbroken kernels may be desirable, so this is also an
important trait (O'Hare et al. 2004; Hardner et al. 2009).
Industry standards for these traits are as follows: 5 t per ha
NIS of > 18 mm diameter, > 36% KR, 2–3 g kernels, and >
50% whole kernels (O'Hare et al. 2004); however, production
can fall short of these standards.

Gain from selection

Gain from selection efforts in breeding can be predicted using
the following formula:

R ¼ h2S
Y

where R is the response per year, or genetic gain; h2 is the
narrow-sense heritability, and also a function of trait measure-
ment accuracy; S is the selection differential, the amount by
which the average parents’ performance exceeds the average

breeding population performance; and Y is the selection cycle
length in years (Hansche 1983). In macadamia, genetic gain is
impeded by a long breeding cycle with the current breeding
programme requiring 8 years to evaluate NIS yield (Fig. 1).
Reducing the selection cycle is thus an important aim for
macadamia breeding. Selection intensity and accuracy are
costly to improve due to the large plant size which adds to
the cost of increased population size and replication. The fol-
lowing sections address these factors with reference to im-
provements in macadamia.

Yield and its component traits

Yield is the highest priority in macadamia breeding; yield was
consistently ranked by the industry as the most important fu-
ture cultivar characteristic (O'Hare and . 2010) and was eco-
nomically weighted the highest of all traits in the selection
index used in Australian macadamia breeding (Hardner et al.
2006). Macadamia yield can be quantified as wet nut-in-husk,
wet nut-in-shell, nut-in-shell dried to 1% kernel moisture, and
expressed on a per tree size or per hectare basis (Hardner et al.
2009). However, selecting for yield in the breeding pro-
gramme is difficult as it is a complex trait (variation is the
result of small effects at many loci). Hardner et al. (2002)
found that broad-sense heritability for annual NIS yield
ranged from 0.06 to 0.18, whilst cumulative NIS ranged from
0.11 to 0.20 (Table 1).

Yield or other complex traits may be indirectly selected
through correlated component traits that are more heritable
(Fraser and Eaton 1983; Sparnaaij and Bos 1993; Piepho
1995). It is best to initially explore simple component traits
related to yield that may be easier and/or cheaper to measure
(Sparnaaij and Bos 1993). The investigation of component
traits can reduce cycle times if they can be measured earlier
in the tree’s life, and selection intensity can be increased if the
traits are efficiently measured, allowing evaluation of a larger
number of plants. This is particularly true when the trees are
young, as less land and fewer resources are required.
However, Fraser and Eaton (1983) noted that in broad acre
and horticultural crops, it may be ineffective to rely on com-
ponent traits correlated with the complex target trait as many
components are often linked. Other sequential and path

Fig. 2 Macadamia nuts—the edible kernel is enclosed in a hard, woody shell and the outer husk. Left to right: nut in husk, split husk, nut in shell, cracked
shell, and kernel. Illustration by Todd Fox
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analyses have been proposed to overcome this difficulty (e.g.
Li 1975; Thomas and Grafius 1976; Eaton and Kyte 1978;
Sparnaaij and Bos 1993; Piepho 1995).

It is important to recognise the relationship between
different traits and how they affect yield (Samonte et al.
1998). Understanding genetic parameters such as herita-
bility and correlations between various traits can help se-
lect parents in breeding programmes (Falconer 1989;
Bodzon 2004). In Prunus, traits affecting fruit quality
such as flavour, colour, and shape are often related (de
Souza et al. 1998; Cantín et al. 2010). Correlations of
component traits and yield in macadamia and other nut
crops are presented in Table 1.

There are many components of yield in macadamia, some
of which have been evaluated and others that need further
exploration (Hardner et al. 2009). This review focuses on
those factors that affect flower and nut development, and
hence resource utilisation for the nuts. Further research is
needed to understand the different components of yield in

macadamia and to identify the important related traits that
can easily be measured.

Flowering and growth traits

Flowering plays a critical role in fruit production, and so it is
necessary to understand the factors affecting flower develop-
ment (Westwood 1993). A review of flowering and fruiting in
macadamia was conducted by Trueman (2013). The flowers
are initiated on inflorescences called pendant racemes, varying
from 6 to 30 cm in length (Huett 2004; Fig. 3). A mature tree
can produce about 2500 racemes, with 100–300 flowers
(florets) on each raceme. Macadamia flowers are pollinated
predominantly by native stingless bees and European honey-
bees (Trueman 2013; Howlett et al. 2015).

Macadamia is generally self-incompatible through mecha-
nisms including protandry, though there is evidence of self-
compatibility in some cultivars (Urata 1954; Sedgley et al.
1985; Sedgley et al. 1990). Self-incompatibility in plants can
be controlled by several multi-allelic genes acting at different

Table 1 Heritability and correlations between various flower and fruit characteristics in macadamia and other nut crops. rg genetic correlation, rp
phenotypic correlation, H2 broad-sense heritability, h2 narrow-sense heritability

Crop Trait/s Heritability Correlation between traits Source

Macadamia Annual nut-in-shell yield (10 yrs) H2 = 0.14 Hardner et al. 2002

Macadamia integrifolia
and M. tetraphylla

Cumulative nut-in-shell yield (10 yrs) H2 = 0.17

Kernel recovery and cumulative kernel
yield (10 yrs)

rg = 0.08, rp = 0.12

Stem girth and cumulative nut-in-shell
yield (10 yrs)

rg = 0.22, rp = 0.59

Nut weight H2 = 0.63 Hardner et al. 2001

Kernel weight H2 = 0.63

Kernel recovery H2 = 0.63

Nut weight and kernel weight rg = 0.79, rp = 0.68

Kernel recovery and kernel mass rg = 0.48, rp = 0.49

Kernel recovery and shell thickness rp = −0.70 Leverington 1962

Pecan Nut weight h2 = 0.35 Thompson and Baker 1993

Carya illinoinensis Kernel weight h2 = 0.38

Kernel recovery and kernel weight rp = 0.394

Nut yield (kg/tree) H2 = 0.855 Kumar et al. 2013a

Kernel recovery H2 = 0.897

Kernel recovery and kernel weight r = 0.569

Hazelnut Kernel weight h2 = 0.67 Yao and Mehlenbacher 2000
Carylus avellana Kernel recovery h2 = 0.87

Relative husk length h2 = 0.91

Cashew Tree nut yield and whole nut weight rp = 0.108 Aliyu 2006
Anacardium occidentale Tree nut yield and number nuts per panicle rp = 0.844

Tree nut yield and number hermaphrodite
flowers per panicle

rp = 0.863

Walnut Crop yield h2 = 0.07 Hansche et al. 1972
Juglans regia Nut weight h2 = 0.86

Crop yield and nut weight rp = −0.20
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stages of flower development (de Nettancourt 1977; Seavey
and Bawa 1986). For example, self-fertility in almond
(Prunus dulcis) is controlled by a major gene, operating in a
quantitative manner (Kester and Asay 1975). Sedgley et al.
(1990) found that several macadamia cultivars (predominantly
M. integrifolia) presented inferior pollen tube growth from
self-pollen compared with outcrossed pollen, as well as lower
fruit set.Macadamia tetraphylla also showed some self-com-
patibility, though, again, cross-pollen produced higher seed set
per raceme (Pisanu et al. 2009). Self-compatibility should be
investigated in various genotypes to identify if it is a heritable
trait in macadamia, as this may be a target for breeding and
selection to increase pollination success. Furthermore, the re-
lationship between self-fertility and nut yield could be a focus
of research in macadamia genotypes to determine if inbreed-
ing level affects seed set.

In Australia, flower development occurs from May to
October. Bud initiation begins in May, followed by bud dor-
mancy (50–96 days), raceme and floret elongation, style elon-
gation and looping, and anthesis (Moncur et al. 1985).
Fertilisation occurs 1 week after anthesis; however, most
flowers abscise in the following 2 weeks. Fruits develop and
some premature fruit drop occurs; nuts are mature about
28 weeks after anthesis (Nagao and Sakai 1990). Research is
required to investigate the heritability of raceme and floret
characteristics, and their correlation with yield.

Several studies have investigated the relationship between
yield and flowering with variable results. Since the racemes
have many florets, there are many opportunities for nuts to be
set; floret number does not appear to be a limiting factor. Ito
(1980) stated that about 0.3% of the flowers develop into
mature, saleable nuts. However, this analysis was based on
estimates of the numbers of racemes and flowers and of
yield, and not replicated measurements. Further, Urata
(1954) argued that it was unreasonable to count the number

of flowers per length of raceme due to the low percentage of
flowers setting nuts and the low correlation between the two
characters.

Trueman and Turnbull (1994) found that number of flowers
per raceme affected initial fruit set in different pairs of cross-
pollinated cultivars. Both cv. ‘H2’ and cv. ‘333’ racemes bear-
ing 200 flowers when cross-pollinated with cv. ‘246’ had
higher initial fruit set (22.3 and 40.3%, respectively), than
control racemes (9.1 and 24.0%). For cv. ‘660’, racemes with
50 flowers set more fruits (21.6%) than those with 200 flowers
(15.9%) when cross-pollinated with cv. ‘344’. In comparison,
the number of fruits per raceme at the final nut set increased
with number of flowers per raceme for cv. ‘660’. Trueman and
Turnbull (1994) also found that for cv. ‘660’, nut and kernel
fresh weights as well as KR were higher in cross-pollinated
(with cv. ‘333’ and ‘246’) fruits than control racemes. These
results demonstrate significant variation in pollination success
between macadamia cultivars. Further research is required
across many genotypes to determine if raceme and flower
production and fruits per raceme limit yield in macadamia.

Xylem and phloem transport water, nutrients and photo-
synthates throughout plants (Campbell and Reece 2002), and
thus the size of these vessels may influence the growth of
limbs and fruit. Hardner et al. (2002) found that cumulative
NIS yield up to year 10 was positively phenotypically corre-
lated with girth of the trunk stem (0.59) in 40 cultivars
(Table 1). The rachis (raceme stem) in macadamia enlarges
after anthesis and is wider in inflorescences with high num-
bers of nuts than in inflorescences with low numbers of nuts
(Urata 1954). Fruiting wood with larger diameters produced
larger fruits in two out of six peach (Prunus persica) cultivars
(Porter et al. 2002). The inheritance of the diameter of tree
trunk, raceme stems, and fruit pedicels should be investigated,
along with the relationship between yield and these
characteristics.

Fig. 3 Stages of flower and nut
development on a raceme in
macadamia. a Developing florets,
with looping stage shown near
base of raceme. b Anthesis. c
Initial nut set, with fewer nutlets
than florets. d Developing nuts,
fewer than previous stage. e Nuts
in husk at full size. f Nuts dehisce
from husk and fall to ground.
Illustration by Todd Fox
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Fruit characteristics

Nut development and abscission affect yield and profitabil-
ity in macadamia (Boyton and Hardner 2002). After polli-
nation, the pollen tube grows down to the ovary and
fertilises one of the two ovules. Occasionally both ovules
are fertilised, resulting in twin nuts (Sedgley 1981). The
immature nut expands and oil accumulates from 80 to
165 days after anthesis (McConchie et al. 1996; Trueman
et al. 2000). Nuts can drop from just after fertilisation to
when they are mature (Boyton and Hardner 2002). Nuts are
mature when they reach their maximum oil content, about
135 to 165 days after anthesis, or from February to March in
Queensland and New South Wales, Australia (McConchie
et al. 1996); commercial nut drop can continue through to
September, depending on the cultivar (McConchie et al.
1997; Boyton and Hardner 2002). The husk can dehisce
(split open) on the tree and the nut-in-shell falls to the
ground, or the husk may fall with the shell (Hardner et al.
2009). It is economically advantageous to have cultivars in
which the nut-in-husk abscises from the tree. This results in
higher yield recovery due to the improved mechanical har-
vesting efficiency and reduced carry-over due to disease-
harbouring stick-tight husks.

Saleable kernel yield in macadamia is related to several
component traits. Parents and their progeny are usually select-
ed for NIS yield and KR. The nuts consist of an edible kernel
enclosed by the shell, a woody testa, and husk (an outer peri-
carp) (Hardner et al. 2009; Fig. 2). Nut size is also an impor-
tant yield component trait in almond: larger nuts correspond
with higher yields per acre (Kester and Asay 1975). Topp et al.
(2012) suggested selecting for high KR after 4 or 5 years as an
indirect indication of future precocity. Precocity is a desirable
trait in macadamia (Hardner et al. 2009), though as found in
the cultivar ‘Ikaika’ precociousness may mean lower yields at
later ages compared with other cultivars (Hamilton and Ito
1984).

It may be useful to investigate the partitioning of the
tree’s resources in husk, shell, and kernel. Harvest index
was initially described by Donald (1962) regarding the ratio
of economic yield to total biomass in grain crops. Cannell
(1985) proposed that harvest index in perennial fruit trees
should relate to the ratio of harvested fruit to total above-
ground dry biomass. However, as only a portion of the
macadamia nut is edible, then perhaps, an index based on
the kernel rather than the nut-in-shell and husk should be
used. As much as 30% of the moisture in a macadamia nut
may be in the husk (Rosengarten 2004). Husk hardness,
which influences the level of pest damage (Hardner et al.
2009), differs between cultivars (Campbell et al. 2005). It is
not known whether the size of the husk affects yield. It is of
interest to investigate if energy used by the tree in produc-
ing husk occurs at the expense of kernel production.

Bazzaz et al. (1987) suggested that perennial plants may
not invest as much energy into reproduction as annuals as they
have more opportunities to reproduce and can allocate re-
sources to other activities such as defence. Flowering intensity
has been inconsistently correlated with reserves of carbohy-
drates in macadamia trees (McFadyen et al. 2012).
Carbohydrate resources may be depleted during flowering
and fruit development, meaning that fruit set is negatively
affected (Stephenson et al. 1989; Wilkie 2009).

Previous studies have reported correlations between differ-
ent components of yield. Nut and kernel weight were strongly
correlated in macadamia (rg = 0.79, rp = 0.68; Table 1)
(Hardner et al. 2001; Peace 2005), and KR decreased signifi-
cantly with increased shell thickness (rp = − 0.70) (Leverington
1962). Kernel recovery and kernel mass were moderately cor-
related (rg = 0.48, rp = 0.49, p < 0.005) in different cultivars
(Hardner et al. 2001). Hansche et al. (1972) found that walnut
crop decreased with increased nut weight (rp = − 0.20), after
adjusting for year effect. In other species like cashew nut
(Anacardium occidentale), the yield per tree was highly corre-
lated with both number of nuts per panicle (rp = 0.844,
p < 0.01) and number of hermaphrodite flowers per panicle (r-
p = 0.863, p < 0.01) (Aliyu 2006). In pecan (Carya
illinoinensis), Thompson and Baker (1993) found a moderately
low phenotypic correlation (rp = 0.394, p < 0.002) between KR
and kernel weight, whilst Kumar et al. (2013a) found a high
correlation (r = 0.569). The differences between these pecan
studies may be due to alternate fruit bearing in the crop, differ-
ences in the study populations, or year of data collection
(Thompson and Baker 1993; Kumar et al. 2013a).

No information is available on the link betweenmacadamia
yield and raceme length or number of nuts per cluster.
However, fruit set per raceme varied in different cultivars
(McConchie et al. 1997; Boyton and Hardner 2002). As pre-
viously mentioned, the heritability of NIS yield per tree in
macadamia is low. Broad-sense heritability based on individ-
ual trees ranged from 0.06 to 0.18 for annual NIS, 0.11 to 0.20
for cumulative NIS, and 0.11 to 0.21 for cumulative kernel
yield, between 4 and 10 years after planting, respectively
(Table 1) (Hardner et al. 2002). Quantification of these traits
in a wider group of genotypes will be beneficial for the breed-
ing programme.

Nut size and ratio of edible nut to shell are important
breeding factors in nut tree crops. Nut weight, kernel
weight, and KR in macadamia were all found to have the
same broad-sense heritability of 0.63 by Hardner et al.
(2001); Table 1). These characteristics were also measured
in 152 pecan families (Thompson and Baker 1993). Pecans
are selected for thin shells and high KR, similar to
macadamia. Estimates of narrow-sense heritability for nut
and kernel weight in pecan were 0.35 and 0.38, respective-
ly. In contrast, in hazelnut (Corylus avellana), kernel
weight, KR, and relative husk length (husk:nut length) were

7 Page 6 of 14 Tree Genetics & Genomes (2018) 14: 7



highly heritable (Yao and Mehlenbacher 2000; Table 1).
Walnut nut weight was also very highly heritable, though
crop heritability was extremely low (Hansche et al. 1972;
Table 1). Kumar et al. (2013a) selected nuts from 34 pecan
selections and three standard cultivars and found that
broad-sense heritability for nut yield and KR (> 0.85;
Table 1) was extremely high compared with macadamias
(0.14). However, this may have been due to favourable
environmental conditions during the study, rather than ge-
netic influence in pecan (Kumar et al. 2013a).

Genetic gain for yield may be hastened by selecting for
yield component traits instead of selection for yield per se.
However, indirectly selecting for high yield through compo-
nent traits depends on a number of factors. Firstly, success
depends on the genetic variance of the component trait and
its heritability, which also encompasses the accuracy of mea-
suring the trait. Traits with high heritability will be more easily
bred and selected for than traits with low heritability.
Component traits should be highly correlated with yield and
more easily and cheaply measured than yield (Sparnaaij and
Bos 1993).

The relative efficiency of indirect selection on a trait X via
direct selection for trait Y depends on the ratio of correlated
response (CRX) to direct response (RX) (Falconer 1989):

CRX

RX
¼ iY hY rAσAX

iX hXσAX

Or if the selection intensities are the same, more simply,
hyrA/hx.

Hardner et al. (2001, 2002) estimated heritability for kernel
mass (H2 = 0.66; therefore, hy = 0.81) and cumulative kernel
yield to 10 years (H2 = 0.14; hx = 0.37) with a genetic corre-
lation (rA) between these traits of 0.30. Thus, using the above
equation, for this population, the ratio of the two responses
was 0.65, indicating that indirect selection using kernel mass
was only 65% as efficient as direct selection for yield. A
genetic correlation of > 0.46 would be needed for indirect
selection of kernel mass to be more efficient than direct selec-
tion for yield. These estimates were from a population of clon-
ally propagated elite selections and cultivars. Genetic esti-
mates are required from segregating progeny populations to
allow conclusions of the use of indirect selection in stage one
breeding. More combinations of yield and component traits
should be investigated to determine if correlated response to
selection is promising in macadamia populations.

Genetic gain will also be affected by the stage at which the
component trait can be measured and assessed in the tree: if it
can be measured when the trees are juvenile, then costs may
be reduced by elimination of inferior individuals prior to ex-
pensive field evaluations. Trees must flower before crosses

can be made to produce the next generation of seedlings.
Therefore, selection for component traits should be coupled
with selecting for early flowering (Huett 2004).

Using genomic information to accelerate
genetic gains in tree crops

Identifying target genes through genome-wide
association studies followed by marker-assisted
selection

Economically important traits in fruit trees such as yield and
quality are likely to be controlled by several multi-allelic
genes or a very large number of genes (Khan and Korban
2012; Iwata et al. 2016). Genome regions identified through
linkage (family based) mapping as being associated, or in
linkage disequilibrium (LD), with the target or component
traits are called quantitative trait loci (QTLs) (Iwata et al.
2016). These QTLs can be used to predict individuals with
high breeding values which can be used in marker-assisted
selection (MAS) (Lynch and Walsh 1998; Myles et al. 2009;
Hayes and Goddard 2010; Muranty et al. 2014; Iwata et al.
2016). Breeding values (BVs) are the sum of the mean addi-
tive effects of all alleles in an individual (Heffner et al. 2009).

Since QTLs can be thousands of kilobases in length, mul-
tiple genes may be closely linked with the target gene (Khan
and Korban 2012). Linkage drag may occur with adverse
results for the breeding programme as a result of undesirable
traits positioned in proximity to desired ones (Khan and
Korban 2012). As such, a more directed approach is desirable
for capturing significant genes using genomic methods
(Savolainen and Pyhäjärvi 2007).

Genome-wide association studies (GWAS) can utilise the
allelic state of unrelated individuals to detect markers linked
with target traits including the broader germplasm pool rather
than using family-basedmethods such as biparental controlled
crosses, which can be impractical, laborious, and expensive
(Myles et al. 2009; Iwata et al. 2016). Association mapping in
the form of GWAS offers a more fine-scale approach than
QTLs to identify smaller, individual markers in LDwith target
traits. This can overcome the detrimental effects of genetic
drag as the marker intervals are shorter, as well as accounting
for population structure (Rikkerink et al. 2007; Myles et al.
2009; Brachi et al. 2011; Khan and Korban 2012; Isik 2014).
The incorporation of population structure and kinship infor-
mation can reduce a major problem of false associations be-
tweenmarkers and phenotypes in a GWAS (Brachi et al. 2011;
Khan and Korban 2012; Iwata et al. 2016).

In GWAS, each marker is tested individually for an asso-
ciation with the trait (Hayes and Goddard 2010; Khan and
Korban 2012; Huang and Han 2014). This process relies on
markers being in LD with the genes controlling the trait
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(Balding 2006), and very few markers are located within that
causative locus itself (Hayes and Goddard 2010). Single nu-
cleotide polymorphisms (SNPs) are now a commonly used
genetic marker for these studies, where there is a variation in
the base at a location in the genome which can be compared
among individuals (Hayes and Goddard 2010; Huang and
Han 2014).

Recent advancements have led to high-throughput and
high-density genotyping at lowered costs per marker point
for use in genomic analysis (Iwata et al. 2016). Next-
generation sequencing technologies such as genotyping by
sequencing can detect molecular markers for use in genomics
studies like GWAS (He et al. 2014). Marker order along the
genome is not strictly required, so association studies and
some other genomics studies can be performed without a ref-
erence genome. This is particularly useful in novel species
(Iwata et al. 2016).

GWAS for quantitative traits such as yield have shown that
often there are many markers that influence the corresponding
phenotype, and these can have a minor or major effect (Lee
et al. 2008; Khan and Korban 2012). The gain from MAS is
proportional to the variance of the trait captured by the
markers and the significance of the association (Collard
et al. 2005). As such, MAS has little value for traits that are
complex (that is, affected by a large number of mutations all of
small effect); MAS is more effective for monogenic or
oligogenic traits (Luby and Shaw 2001; Hayes and Goddard
2010; Huang and Han 2014). Screening for target markers
using GWAS and MAS can occur before the plants flower
as only DNA is needed for the selection, and thus can sub-
stantially reduce the selection cycle and increase genetic gain
by eliminating undesirable genotypes (van Nocker and
Gardiner 2014).

‘DNA-informed breeding’, a term coined by Peace (2017),
is becoming the convention driving breeding direction in
Rosaceae crops in the USA. Previously, however, Ru et al.
(2015) reviewed the opportunities and constraints of using
MAS in Rosaceae breeding. They found that MAS was not
yet widely applied in fruit trees, but that affordable and
programme-specific testing of DNA for major trait loci at
the seedling stage could be effective for the adoption of the
technique. There are relatively few published studies
employing GWAS in fruit trees. Recently, a study by
Minamikawa et al. (2017) investigating fruit quality traits in
676 citrus individuals using 1841 SNPs found that correlated
traits were controlled by several common SNPs. In apple,
Kumar et al. (2013b) found significant associations in six fruit
quality traits using 2500 SNPs across 1200 seedlings. SNP
markers with the largest effect across linkage groups individ-
ually explained only 2% of the phenotypic variation for fruit
firmness and 17% for red flesh, which was reasonably low, yet
substantially more than that explained by pedigree-based anal-
ysis in many other traits (Kumar et al. 2013b). Kumar et al.

(2013b) also found two genomic regions that were linked with
two pairs of fruit quality traits, suggesting a pleiotropic effect.

Further studies have employed GWAS utilising genetic
markers other than SNPs. For example, Iwata et al. (2013)
and Cao et al. (2012) investigated fruit quality in Japanese
pear (Pyrus pyrifolia) and peach, respectively, using simple
sequence repeat (SSR) markers. Iwata et al. (2013) detected
significant associations between markers and resistance to
black spot disease, spur number, and harvest time, which in-
dicated links to major QTLs, despite the small scale of the
study in terms of number of markers (n = 162) and cultivars
(n = 76). Using 53 SSR markers distributed across linkage
groups, Cao et al. (2012) found that the significantly associ-
ated markers detected for peach fruit quality were located
nearby previously known QTLs. Between 8.1 and 14.5% of
the variation in red flesh pigment was explained by four SSRs.
Similar to the findings of Kumar et al. (2013b) in apple, two of
the pigment markers were associated with two other sets of
traits: ripening time and fruit development period, and fruit
weight and flowering time (Cao et al. 2012).

A review of breeding progress in tree nut crops by
Mehlenbacher (2002), including efforts of trait mapping and
MAS, concluded that genetic improvement is limited by small
breeding programme size. Hardner et al. (2005) evaluated the
potential for MAS to improve macadamia specifically, stating
that SSR markers and pedigree will be useful in detecting
marker-trait associations. However, the technology in the ge-
nomics field has vastly increased and improved; many more
markers can now be screened at a lower cost. GWAS and
MAS regarding important component traits of yield such as
nut and kernel weights and KR using SNP markers appear to
be feasible to improve macadamia if the traits are controlled
by few genes of moderate to large effect. Determining the
number of markers and their effects for these traits should be
the focus of future genomics studies, as this is currently
unreported.

Yield prediction using genomic selection

Genomic selection (GS) uses genome-widemarkers to capture
the effects of loci that affect the target trait (Meuwissen et al.
2001). GS is best when markers such as SNPs are in high LD
with genes of large effect, hence capturing a large proportion
of genetic variance (Goddard 1991; Druet et al. 2014; Viana
et al. 2016). A two-step process is involved. In a reference (or
training) population, where individuals have both genome-
wide marker genotypes and target trait phenotypes available,
the effects of all markers on the trait are estimated simulta-
neously. The effect of each marker is used to establish a pre-
diction equation. The equation can then be used to predict
genomic estimated breeding values (GEBVs) for genotyped
selection candidates, likely to be seedlings or young trees. The
accuracy of GS is assessed with cross validation of the
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predicted GEBV against the known and accurate phenotypes
in a validation (or testing) population (Meuwissen et al. 2001).

Many simulations suggest that GS is superior to MAS and
traditional phenotypic selection for complex traits (Bernardo
and Yu 2007; Heffner et al. 2009; Grattapaglia and Resende
2011; Iwata et al. 2011). This is because MAS only uses
markers significantly associated with a target trait, yet many
yield and quality traits are often controlled by numerous
minor-effect genes (Jannink et al. 2010; Kumar et al. 2012a;
Iwata et al. 2016). In comparison, GS utilises all available
genetic markers with no significance threshold and can there-
fore explain more of the genetic variability than MAS
(Meuwissen et al. 2001; Viana et al. 2016). Thus, GS avoids
marker effect biases and produces more highly correlated
measured and predicted BVs (Meuwissen et al. 2001;
Heffner et al. 2009).

GS can increase genetic gain in horticulture crops by ac-
celerating breeding cycles (Meuwissen et al. 2001; Heffner
et al. 2010; Jannink et al. 2010; Desta and Ortiz 2014). By
selecting potential elite juvenile individuals, filtering candi-
dates and only proceeding to the field with potentially high-
performing trees, time, cost, and labour can be reduced.
However, yield and other traits still need to be assessed over
several locations before cultivars are recommended (Acquaah
2012). Selection of potential superior cultivars in the juvenile
stage can also drastically reduce capital and maintenance costs
(Luby and Shaw 2001; Rikkerink et al. 2007). This would be
useful in macadamia where the trees do not reach full nut
production until they are 8 years old (Hardner et al. 2009).
Iwata et al. (2016) and Namkoong et al. (2005) recognised that
a combination of traditional and marker selection strategies
should be employed.

Denis and Bouvet (2013) concluded that perennial crops
may have more to gain from GS than annual crops since ge-
netic gain per unit time in perennial crops is critical for im-
proved cultivars. There is a paucity of published studies for
tree nut crops, though there has been some work conducted in
citrus (Minamikawa et al. 2017), apple (Kumar et al. 2012b),
oil palm (Wong and Bernardo 2008; Kwong et al. 2017), and
pear (Iwata et al. 2013).

In their recent study of fruit quality traits in citrus,
Minamikawa et al. (2017) obtained high (r > 0.7) prediction
accuracies for six of the 17 traits including fruit weight. They
also found that some model accuracies were trait dependent,
but the genomic best linear unbiased prediction (GBLUP)
model was the highest for most traits and was more accurate
in predictions than MAS based on significant SNPs. Kumar
et al. (2012b) investigated the use of GS in improving fruit
quality traits in apple. They used 2500 high quality SNPs for
1120 seedlings, and model predictions for fruit quality were
high, at 0.70 to 0.90 (Kumar et al. 2012b).

Wong and Bernardo (2008) demonstrated that gain per unit
cost and time can be increased in oil palm (Elaeis guineensis)

through GS. Costs for GS ranged from USD$75,000 to
$194,000 per unit gain, depending on cost per marker data
point, population size, QTL number, and heritability, com-
pared with USD$116,000 to $333,000 per unit gain for
19 years of phenotypic selection per cycle. Also in oil palm,
Kwong et al. (2017) found that for 1218 individuals geno-
typed using a 200K array, GS model accuracy increased with
trait heritability, ranging from 0.40 to 0.70. The results of these
studies may be applicable to other tree species with long gen-
eration intervals and large planting areas.

Pear has a long juvenile period and needs to be evaluated
over many years and thus Iwata et al. (2013) found could
benefit from GS. They investigated nine disease resistance
and fruit set traits in 76 Japanese pear cultivars using 162
markers, mostly SSRs. Prediction of GEBVs was moder-
ately high for flesh firmness and fruit weight (0.60 and
0.53, respectively). They found that using all makers, rather
than just those with significant associations as identified
using GWAS, was more accurate (Iwata et al. 2013). In
comparison, predictions of BVs in citrus for fruit weight
and other fruit quality traits were high (> 0.7) across 106
cultivars (Iwata 2016). A corresponding GWAS detected
the influence of major QTLs in all citrus fruit traits; the
use of all markers was more accurate than using only sig-
nificant SNPs (Iwata 2016).

Given the large amount of phenotypic data available for
macadamia, and documented parentage since the first domes-
ticated cultivars, this species is a strong candidate for GS.
Macadamia has a selection cycle of 22 years and typical plant-
ing densities of 312 trees/ha (Topp et al. 2012) and would
benefit greatly from this technology. Potentially, the first stage
of progeny testing (Fig. 1) could be substantially reduced by
genotyping seedlings, applying GS models, and only continu-
ing further evaluations with those individuals predicted to be
high yielding.

The reference population’s size and structure, relationship
between training and testing populations, choice of model,
marker number and density, heritability of key traits, and LD
span need to be assessed when employing GS in breeding.
These have been considered in reviews conducted by
Grattapaglia (2014) and Lin et al. (2014) on forestry and an-
nual species. The accuracy of models can decline over subse-
quent generations, so it is necessary to recalibrate every few
generations with new phenotypes and allelic frequencies
(Goddard 2009; Viana et al. 2016).

The training population needs to be sufficiently large to
enable accurate estimation of small effects across many loci
and to capture all the genetic variation present in the breeding
programme (Meuwissen et al. 2001). Ideally, the training and
testing populations should be related or part of the same breed-
ing programme for best results (Habier et al. 2007). Kumar
et al. (2012b) divided 1120 apple seedlings into two groups
for their GS evaluations: 90% of individuals for the training
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population and 10% for validation. In their simulations of GS
in oil palm, Wong and Bernardo (2008) used small population
sizes of 30 to 70 individuals.Macadamia has a relatively small
breeding population available for genomic studies; the mean
number of seedlings per family in the Australian macadamia
breeding programme’s ‘B1.2’ population is 14 (n = 1961)
(Topp et al. 2016). However, almost half of these trees have
been removed from the field and are no longer available for
genomic analysis. A larger second-generation progeny popu-
lation (n ≈ 4000) is currently being phenotyped and will be
available for further genomic selection evaluation (B. Topp,
pers. comm.).

A number of prediction models have been developed for
GS: BLUP (best linear unbiased prediction), GBLUP, ridge
regression, Lasso, reproducing kernel Hilbert space, and
various Bayesian regressions (Jannink et al. 2010; Heslot
et al. 2012). Heslot et al. (2012) suggested using a reduced
set of models for implementing GS in breeding. These in-
clude a faster version of BayesB called weighted Bayesian
shrinkage regression, Bayesian Lasso, and random forest. It
is possible to combine different models to improve
predictions; however, Heslot et al. (2012) found that com-
bining different models did not always improve the accura-
cy of predictions. Cross validation is an essential step in GS
to identify the accuracy of the model or to compare different
models (Crossa et al. 2010; Heslot et al. 2012). Models such
as GBLUP and BayesR (Erbe et al. 2012) are sound candi-
dates for use in macadamia, assuming, respectively, a nor-
mal distribution of SNP effects using a genomic relation-
ship matrix among candidates (GBLUP) and allowing for a
small number of moderate to large effect QTL (BayesR).
Testing both strategies is advisable given the paucity of data
regarding the genetic nature of macadamia yield traits.

Models are affected by effective population size, herita-
bility of the trait, and the size of the reference population
(Daetwyler et al. 2008; Goddard 2009; Hayes et al. 2009).
Effective population size is calculated using marker infor-
mation and population heterozygosity; genetic gains are
greater in species with smaller effective populations
(Goddard 2009). Thus, the genetic diversity of the crop
must be determined before genomics studies can begin.
GEBVs are more accurately predicted when the trait is
highly heritable (Hayes et al. 2009). Therefore, it is impor-
tant to understand the heritability of the characteristics and
its component traits. The accuracy of predicting BVs in-
creases with the size of the reference population (Hayes
et al. 2009), showing the importance of the training set in
GS.

Accurate phenotyping is critical for GS; if the accuracy of
phenotyping is poor, many more individuals will be need in
the reference population (Desta and Ortiz 2014). Accurate
phenotyping requires multiple well-characterised environ-
ments, stringent selection criteria, and large training

populations (Rikkerink et al. 2007; Xu and Crouch 2008;
Resende Jr et al. 2012; Desta and Ortiz 2014). For many traits
such as yield, data need to be collected across multiple years
and sites and are costly and time consuming (Bernardo 2008;
Stephens et al. 2009; Resende Jr et al. 2012; Xu et al. 2012;
Isik 2014). This has been the case in macadamia where 2000
progeny from 47 families have been evaluated for 8 years at
nine locations (Topp et al. 2016).

To implement GS in macadamia would involve growing
progeny to their first leaf for DNA extraction and
subsequent genotyping, hence reducing the labour and
maintenance costs of growing trees to maturity. Topp
et al. (2012) compared capital, maintenance, and evaluation
costs, standardised to year of release of five cultivars for
four breeding strategies. They found that full traditional
assessment, involving the evaluation of 1200 hybrid seed-
lings for 9 years followed by regional variety trial for a total
cycle length of 22 years, was much more expensive
($1,545,922 net present value) with a low ratio of gain to
breeding cost ($570,000) compared to tandem selection,
where seedlings are evaluated to age 7 only ($795,508
and $1,080,000). Their cloned seedling strategy, which
evaluates 200 hybrid seedlings in a regional trial after only
2 years of initial measurements, also reduced the cycle
length to 15 years, with improved breeding costs and gain
to cost ratio than traditional assessment ($986,075 and
$680,000) (Topp et al. 2012). Rapid phenotyping would
be extremely useful in large tree crops with long juvenile
periods like macadamia.

Genotyping costs continue to decline, with more data
points becoming available, and therefore more markers
likely to be in proximity to causal genes (Heffner et al.
2009; Khan and Korban 2012; Iwata et al. 2016). The cost
of genotyping analysis varies with the volume of sequenc-
ing applied per sample, with the most popular services
applying between one million to five million reads and
the price per sample varying usually between US$25 to
US$55 (A. Killian pers. comm.). Thus, with advancing
technology, the accessibility of large numbers of molecu-
lar markers and the declining costs, the employment of
and opportunity to use GS in breeding is increasing
(Heffner et al. 2009; Iwata et al. 2016). Future macadamia
breeding efforts should compare the costs and benefits of
traditional breeding with selection strategies involving
GWAS and GS.

Conclusions

The complex nature of yield in macadamia and its low herita-
bility, as well as long cycle times, currently hinder cultivar
development. Genetic improvement of yield by indirect selec-
tion for its component traits may improve breeding efficiency.
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Characteristics, such as nut, kernel, and husk weight, and ra-
ceme length and width, may be more simply and accurately
measured in breeding populations, especially in the years be-
fore yield per tree estimates are stable. Yield component traits
can be investigated with GWAS to determine if any major
markers are associated with each trait. If so, this information
could be used in MAS. GS models are suitable for predicting
complex traits like yield in macadamia seedlings, as well as to
predict important related traits. It is essential to compare the
genetic gains and the costs using these different breeding strat-
egies, to determine which method or combination of methods
are most efficient.
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