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Abstract Palm oil has a balanced fatty acid composition and
has no trans fat. As a result, its use in food has increased as
food-labeling laws have changed to specify trans fat content.
Increasing oil production is the main goal in oil palm breed-
ing. Genetic mapping and genomic studies in palm trees are
necessary to understand the genetic architecture of economic
traits of importance for palm oil production. To help achieve
this, we sampled 422 oil palms fromMPOB (Malaysian Palm
Oil Board) Angola germplasm collection and measured 13
economic traits from these palms. Multi-locus genome-wide
association studies (GWAS) were conducted using least abso-
lute shrinkage and selection operator (LASSO) and genome-
wide efficient mixed model analysis. We identified 19 quan-
titative trait loci (QTLs) for 8 traits. Of these, four Angola-
specific QTLs associated with bunch components were detect-
ed on chromosomes 4, 8, and 11. These QTLs are potentially

useful for introgression of desirable genes from the Angola
palms to advanced breeding populations for improvement of
bunch and oil yield traits. The majority of the QTLs were
detected by LASSO-A, in which the p values of individual
markers were calculated based on bootstrapped standard er-
rors. Many of the detected QTLs are nearby known QTLs
detected from linkage studies reported by other research
groups. We also conducted genomic selection (GS) for the
13 traits and concluded that GS can be an effective tool for
oil palm breeding. This is the first GWAS and GS study con-
ducted on oil palm germplasm from Angola, and the results
can be very useful in oil palm genetic studies and breeding.

Keywords BLUP . Bootstrap sampling . GWAS . LASSO .

Mixedmodel . Oil palm

Introduction

One of the prime objectives in oil palm breeding is to improve
oil yield. Over the past six decades, the average palm meso-
carp oil yield has increased from ~ 1.0 to 3.0 t per hectare. In
Southeast Asia, early improvement efforts largely used de-
scendants of four dura palms established in the Bogor
Botanical Garden, Java. Oil palm breeders then made use of
limited numbers of pisiferas from Ekona, Calabar, Yangambi,
La Me, and AVROS to generate a commercial hybrid, tenera.
However, the few palms originally used for breeding offered
very little genetic diversity. Thus, Central and Western Africa
(home of the oil palm) were prospected for more germplasms
(Rajanaidu and Jalani 1994). These materials have great po-
tential for oil palm improvement as they have a large genetic
diversity and possess new traits, such as less saturated oil,
lower height increment, long stalk, high kernel, carotene, oleic
acid, and vitamin E contents (Kushairi et al. 2011).
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Malaysian Palm Oil Board (MPOB, previously called
MARDI and PORIM) initiated several projects to search and
collect oil palm germplasms from the primary center of diver-
sity of natural oil palm that is in Africa. One of the countries
explored for the germplasm collection is Angola. In this coun-
try, about 54 bunches were collected from eight sites
(Rajanaidu et al. 1991) in 1991 and were planted at the
MPOB research station in Kluang, Johore to assess their phe-
notypic performance. Field evaluation of these palms demon-
strated their potential for improving stalk length, oil yield,
height increment, and oil unsaturation (Kushairi et al. 2003;
Noh et al. 2002). Some palms have excellent fruit quality
traits, comparable to the advanced female parental lines
(duras) currently used to produce commercial planting mate-
rials, e.g., large fruit size and good fruit-to-bunch (FTB) ratio,
which, in combination, can give high mesocarp oil yield.
These palms are comparable to advanced female parental lines
(duras) currently used to produce commercial planting mate-
rials. In terms of height increment, materials from sites 7 and
8, located in the north, were reportedly shorter (height incre-
ment of 20 to 30 cm/year) than those from the south of
Angola, sites 1, 2, and 3 (50 to 60 cm/year).

One of the major developments in plant and animal genetic
research is the application of molecular markers for detection
of DNA polymorphism, which could be associated with traits
of interest. The use of molecular markers has enabled the
study of mutations and recombination events in a species or
population to be uncovered. Significant efforts at exploiting
recombination events for linkage studies and, subsequently,
the discovery of markers associated with traits of interest have
been reported. In mapping populations, only a small fraction
of quantitative trait loci (QTLs) associated with the traits have
been identified. Furthermore, due to the relatively low recom-
bination events among hybrid crosses than in wild or unadapt-
ed populations, any QTL detected can be loosely associated
and are often population specific. Nevertheless, linkage map-
ping does offer the power to identify QTLs with large genetic
effects.

The linkage mapping approach has allowed detection of
major QTLs associated with important traits in oil palm, such
as height and fatty acid composition (FAC) (Lee et al. 2015;
Montoya et al. 2013; Pootakham et al. 2015; Singh et al. 2009;
Ting et al. 2014). The QTLs for these traits explained 10 to
51% of the phenotypic variation. In 2010, using several map-
ping populations, Billotte et al. (2010) reported QTLs associ-
ated with yield parameters (bunch number, bunch weight,
fresh fruit bunch yield) and bunch components (fruit weight,
ratios of FTB, e.g., mesocarp-to-fruit and kernel-to-fruit) in oil
palm. As not all the QTLs influencing a particular trait are
present in any specific population, validating these QTLs
poses a great challenge. The introduction of an alternative
method to detect QTLs for phenotypic traits in plant species
has opened up a promising opportunity for validation as well

as identification of additional QTLs. The method, known as
association mapping (AM) analysis, was initially used in hu-
man genetic research due to the limited number of progenies
per family available for analysis, which has a similar limita-
tion faced in large plant species, like oil palm. The AM meth-
od involves phenotypic and genotypic characterizations of
unadapted or wild populations, followed by statistical associ-
ation analysis between the genotype polymorphism and the
phenotypic trait variation. In such populations, relatively more
QTLs underlying a trait are present. These populations carry
numerous recombination events, which optimize the detection
of QTLs with minor effects and efficiently eliminate loosely
associated QTLs. This feature ideally complements the genet-
ic linkage mapping approach. The AM analysis was carried
out successfully for oil palm recently, which led to the identi-
fication of loci linked to mesocarp oil content (Teh et al. 2016)
and shell-to-fruit (STF) ratio (Kwong et al. 2016).

In AM, the samples investigated often include individuals
from diverse genetic backgrounds, different selection histo-
ries, and diverse geographic origins. These samples often ex-
hibit some degrees of structure or subdivision, which can po-
tentially cause false positive or false negative associations
(Pritchard et al. 2000). Even oil palm germplasm samples
collected from one country or region exhibit population struc-
ture (Ong et al. 2015). The covariates arising from the pres-
ence of subgrouping among the samples bring about bias in
estimating allelic effects in AM and, subsequently, generate
false-positive associations (Kennedy et al. 1992). Analysis
methods that include population structure in AM have been
introduced (Yu and Buckler 2006) to help minimize false pos-
itives. Principal component analysis (PCA) and the corre-
sponding Q matrix generated have been used to capture pop-
ulation structure effects in linear mixed model association
analysis. The false positive rate can be further reduced by
incorporating the relationships among individual samples,
i.e., incorporating the kinship (K) matrix into the linear mixed
model (Yu and Buckler 2006).

Genome-wide association studies (GWAS) are now con-
sidered as a routine procedure for QTL detection in wild pop-
ulations and diverse panels of agricultural species. The Q+K
mixed model introduced above is a way to alleviate heavy
computational burden when the number of markers is huge
and is not necessarily the best method. The optimal method
should be one of the multiple marker approaches (Li et al.
2011; Segura et al. 2012; Tian et al. 2011; Waldmann et al.
2013; Zhang et al. 2011) that fit multiple markers in a single
model. However, these multiple marker models cannot handle
unlimited number of markers and we are forced to use the Q+
K model if the number of markers is huge, say > 100 k, be-
cause it provides a convenient way to scan the genome by
fitting one marker in the model at a time. In reality, many
GWAS populations may not have extremely high density
marker maps. After excluding low quality markers and
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markers with rare frequencies, the number of available
markers may only be in the order of a few thousand.

The main objectives of the present work are, first, to study
the population structure of the Angola populations by means
of the SNP markers, and secondly, to carry out association
analysis using least absolute shrinkage and selection operator
(LASSO) and genome-wide efficient mixed model analysis
(GEMMA) methods. This is our first attempt in trying to de-
tect QTLs for economically important traits in oil palm using
germplasm populations as compared to previous reports on oil
palm utilizing advanced or introgressed populations.

Materials and methods

Plant materials and phenotype collection

The MPOB-Angola germplasm was evaluated for 52 pheno-
typic traits, which are divided into three categories namely,
yield recording, bunch analysis, and vegetative parameters.
Yield recording and bunch analysis (Blaak et al. 1963) were
initiated in 1997 and took up to 8 years to complete. The
vegetative measurements were conducted in 2001, seventh
year after planting based on standard procedure (Corley
et al. 1971). The phenotypic data were applied in the principal
component analysis (PCA). The results (data not shown) were
used to select the Angola populations used in this study as
they showed wide distribution in the PCA analysis. Young
unopened leaves were harvested from 422 palms originating
from six sites in Angola. The number of palms sampled per
site is summarized in Supplementary Table S1. The number
was uneven due to plant mortality during germination and
culture in the nursery (Kushairi et al. 2003).

In this study, three vegetative measurements (rachis length,
height, and height increment) and ten bunch analysis traits
were applied to association studies. The abbreviations and full
names of the traits analyzed are given in Supplementary
Table S2. Pearson correlations among all the traits were esti-
mated using the SPSS 16.0 statistical software.

DNA extraction and genotyping

Genomic DNA was extracted from young leaves using the
modified CTAB method (Doyle 1990). DNA concentration
and purity were determined using the NanoDrop spectropho-
tometer (NanoDrop Technologies Inc.). Prior to the SNP assay
using the Illumina platform, the DNAwas re-quantified using
the Quant-iT™ PicoGreen® dsDNA Reagent (Invitrogen)
and subsequently normalized to 50 ng/μl.

The oil palm OPSNP3 array (Ting et al. 2014) that
contained 4451 markers was used to genotype 422 DNA sam-
ples on the Illumina Infinium II Bead Chip platform. The
sequence information of the SNPs is available at the

Genomesawit website (http://genomsawit.mpob.gov.my).
SNP hybridization assay was carried out following the
Illumina’s protocol. The SNPs were discovered using
fluorescent staining (green and red) and detected by the
Illumina Bead Array Scanner.

SNP data preparation

The SNP genotyping data were extracted using the
GenomeStudio® Data Analysis Software (Illumina Inc.). For
our analysis, only the genotype data of the mapped SNPs were
extracted (Ting et al. 2014). Prior to any analysis, markers that
had > 10% missing data were excluded. The data were orga-
nized to allow analysis using PowerMarker (Liu and Muse
2005) and Structure (Pritchard et al. 2000). PowerMarker
was used to compute the allelic frequencies, which were then
used to discard monomorphic markers and markers with mi-
nor allele frequency < 0.05. Prior to GWAS, we tested the
population structure of the data using the Structure software
(Pritchard et al. 2000). The K value (number of components)
varied from 2 to 10, and each K value was tested using five
independent runs. For each K value, the first 10,000 Markov
chain Monte Carlo (MCMC) iterations were deleted (burn-in
deletion), and an additional 10,000 iterations were then col-
lected as observations in the posterior sample. Once the K
valuewas determined, the same software was used to calculate
the population membership for each individual. This informa-
tion was stored in a Q-matrix and included as fixed effects in
the Q+K model of GWAS. Principal component analysis and
k-mean cluster analysis were also carried out to generate de-
sign matrices to control the population structure effects. The
results using different structures were compared.

Multiple locus models for genome-wide association studies

The LASSOmethod was used and implemented in an R pack-
age called GLMNET/R (Friedman et al. 2010). Unfortunately,
the package does not have a mechanism to calculate the p
value of each marker. A newly released R package called
covTest (Lockhart et al. 2014) was particularly designed for
p value calculation. However, it only applies to situations
where the number of markers is less than the sample size,
which is not the case of this experiment. We proposed two
methods to calculate the p values for LASSO estimated marker
effects. One is the bootstrap method (Efron and Tibshirani
1994), and the other is the method of best linear unbiased
prediction (BLUP) equation (Henderson 1975). With these
methods, we estimated the variance of each estimated marker
effect and then calculated a Wald test statistic by dividing the
squared estimated effect by the variance of the estimated ef-
fect. This test is approximated by a chi-square distribution
under the null model so that the p value can be computed from
this chi-square distribution.
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For a data set with m = 1081 markers and n = 422
individuals, a multiple locus model may work better
than the genome scanning approaches. The LASSO
method (Tibshirani 1996) is the most commonly used
method for variable selection, and we investigated the
applicability of LASSO to GWAS using this data set.
The LASSO estimates of marker effects (m × 1 vector)
are defined as follows:

β̂¼ argmin
β∈Ω

y−β0− ∑
m

k¼1
X kβk

� �T

y−β0− ∑
m

k¼1
X kβk

� �
þ λ ∑

m

k¼1
jβk j

" #

ð1Þ

where y is an n × 1 vector of the phenotypic values of a
trait measured from all palm trees. Other terms are de-
fined as follows: β0 is the intercept (grand mean); Xk is
an n × 1 vector of genotype indicator variables for mark-
er k where an element of this vector is defined as 1, 0,
or − 1, respectively, for the three genotypes, say AA,
AG, or GG; βk is the effect of marker k; λ is a shrink-
age parameter determined via 10-fold cross-validation to
minimize the mean squared errors (MSEs). The first
term in Eq. (1) defines the model goodness of fit and
the second term is an L1 penalty. The GLMNET/R pro-
gram (Friedman et al. 2010) was used to perform the
LASSO estimation of parameters. Unfortunately, the
software package does not provide a mechanism to cal-
culate the estimation error for each marker effect and
thus no p value is attached to a marker. The covTest
package (Lockhart et al. 2014) is able to calculate the
p values for the LASSO estimates, but it only applies to
the situation where n > m, which is certainly not the
case in this study. We adopted two approaches to cal-

culate the estimation error for β̂k. The first approach is
the bootstrap method (Efron and Tibshirani 1994) where
1000 bootstrap samples were drawn and analyzed to
obtain an empirical variance whose square root is the
standard error of an estimated marker effect. We calcu-
late the Wald test statistic defined as

Wk ¼ β̂k
2

var β̂k
� � ð2Þ

The p value for marker k is obtained from the Wald test

pk ¼ 1−Pr χ2
1 < Wk

� � ð3Þ

which follows approximately a chi-square distribution with
one degree of freedom under the null hypothesis. The sec-
ond approach is an approximation via Henderson’s mixed
model equation (Henderson 1975). Let S be the number of
markers with non-zero effects after LASSO variable

selection, where S <m. Define the LASSO estimated effects

for these selected markers by β̂ j for j = 1 , … , S. The

Henderson mixed model equation for these selected marker
effects can be approximated by
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where X0 is an n × 1 vector of unity. These mixed model

equations assume that β̂ are the posterior means (BLUP) of
marker effects with a prior variance of each regression co-
efficient defined as σ2β j

. This prior variance is unknown but

may be replaced by β̂
2

j. In other words, we let σ2
β j

¼ β̂
2

j and

obtain the following approximate variance-covariance matrix
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where σ̂2 is the estimated residual variance. In com-

pact matrix notation, we can define var β̂
� �

¼ Cσ̂2

where C is the square matrix of Eq. (5) that excludes

σ̂2. Define the jth row and the jth column of matrix C by

Cjj, we have var β̂ j

� �
¼ Cjjσ̂

2, which facilitates a Wald test

shown in Eq. (2). This approximation may not be as good as
the bootstrap method, but it is computationally much more
efficient.

For the multiple locus models, there is no need for
Bonferroni correction because the estimated effects are al-
ready shrunken towards zero. Therefore, the critical value of
0.05 can be used to declare statistical significances for all
markers.

Simulation experiments

To investigate the powers and type 1 errors of the proposed
new multiple locus methods, we carried out replicated
simulation experiments using the linkage map constructed
by Ting et al. (2014) and genotypes of the 422 oil palms and
assigned 20 loci as QTLs. The heritability contributed by the
20 simulated QTLs was set at 50%. A random error was sam-
pled from a normal distribution with mean zero and variance
σ2, which was calculated according to the heritability and the
genetic variances. Locations and effects of the 20 QTLs are
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shown in Table 1. The QTL effect ranges from 0.5 to 8.0% of
the phenotypic variance. The simulation was replicated 200
times. The power of QTL is defined as the proportion of rep-
licates where the p value of the QTL is less than 0.05 for the
multiple locus models. For the classical GWAS models, the p
value criterion of positive detection is set as p being less than
0.05/m = 0.05/1081 = 0.00004625 (after Bonferroni correc-
tion for multiple tests). The type 1 error of a method is defined
as the proportion of false positives out of all markers not
assigned a QTL effect. In summary, we examined two new
methods, LASSO with bootstrapped error calculation
(LASSO-A) and LASSO with BLUP error calculation
(LASSO-B), and one existing method, the GEMMA (Zhou
and Stephens 2012). The three aforementioned methods were
also used for the real data analysis.

Mapping of markers on EG5 genomes build

A total of 54 markers (Supplementary Table S3) associated with
selected bunch components and vegetative traits detected here as
well as other publications (Billotte et al. 2010; Jeennor and
Volkaert 2014; Kwong et al. 2016; Teh et al. 2016) were mapped
onto the EG5 genome build (Singh et al. 2013) published in the
GenomSawit website. (http://genomsawit.mpob.gov.my/
genomsawit/). Briefly, the PCR primer sequences of simple
sequence repeat (SSR) markers were retrieved from the respec-
tive publications and CIRAD website (http://tropgenedb.cirad.fr/

tropgene/JSP/interface.jsp?module=OILPALM). Electronic
PCR (e-PCR) of these primers was carried on oil palm genome
EG5 build by allowing four mismatches and two gaps of the
primers, with 50–3000 bp amplicon size, using software e-PCR
v2.3.11. The accession number for some of these SSR markers
was retrieved from Corsat web (www.corsat.agr.ku.ac.th/doc/
oilpalm/256.xls), and their sequences were retrieved from
NCBI database. MPOB SNP marker sequences (Ting et al.
2014) were retrieved from the GenomSawit website. Due to
differences between genome sequence deposited in public data-
base and that in GenomSawit web, SNP markers that were re-
ported based on genome sequence (CM002082.1, CM002085.1,
and CM002090.1) including the 120 bp upstream and down-
stream sequences of the SNPs were retrieved from the respective
chromosomes. All sequences were BLASTn (v2.2.26+) search
against EG5 build. Coordinates of ePCR product and BLAST
search were used to identify position of these markers on EG5
build. Circos plot (Krzywinski et al. 2009) was used to visualize
the location of the markers.

Results

SNP data cleaning

Of the 4451 SNPs genotyped across the 422 samples, we
shortlisted 1210 SNPs as these SNPs were successfully

Table 1 Statistical powers and
type 1 errors of three GWAS
methods drawn from 200
replicated simulation experiments

Marker name Chr Position (cM) Effect R2 (%) LASSO-A LASSO-B GEMMA

SNPM04943 1 53.999 4.47 7.81 200 200 199

SNPM01797 1 116.752 3.16 3.90 200 148 47

SNPM02111 2 28.111 − 2.24 3.03 200 192 88

SNPM00117 2 44.114 − 1.58 1.01 198 39 2

SNPM04197 3 11.828 2.24 2.00 200 136 54

SNPM03886 3 16.609 3.16 4.27 200 137 54

SNPM00255 4 154.523 1.35 1.54 200 90 4

SNPM01134 4 175.065 − 1.35 1.78 200 34 0

SNPM02518 5 51.343 0.77 0.50 194 1 0

SNPM02024 6 105.735 1.73 1.38 199 159 73

SNPM04458 7 66.569 3.81 5.33 200 193 120

SNPM00364 8 94.567 2.25 1.86 200 47 2

SNPM00187 9 13.297 − 1.3 1.77 200 81 4

SNPM00579 10 113.663 − 1 1.08 198 78 3

SNPM03134 11 60.248 − 2.24 2.10 200 113 15

SNPM00433 11 98.5 1.58 1.96 200 109 15

SNPM03374 12 110.18 1 1.15 200 30 0

SNPM01809 12 124.434 − 1.73 3.13 200 146 16

SNPM01882 13 25.93 1.71 2.44 200 110 3

SNPM03065 14 38.035 0.89 0.73 186 17 0

Type 1 error 0.00 0.002321 8.93E−05
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mapped into genetic linkage groups described by Ting et al.
(2014). We have applied the marker positions established in
these linkage groups for AM analysis. Of the 1210 SNPs, 48
were monomorphic and 24 had > 10%missing data across our
samples. Further, the allelic frequencies revealed another 57
SNPs being rare alleles (< 0.05 frequency). As a result, a total
of 129 markers were removed while the remaining 1081 SNPs
were eventually used for structure determination and associa-
tion analysis.

Power and type 1 error analysis

The empirical powers and type 1 errors obtained from 200
replicated simulations for the 20 QTLs are listed in Table 1.
LASSO-A had perfect power for almost all QTL, even for
QTL with very small effects (explaining 0.5% of the pheno-
typic variance), while LASSO-B had lower power compared
to LASSO-A. GEMMA had the lowest power among the
three methods. The conclusion is that the multiple locus
methods (LASSO-A and LASSO-B) are more powerful than
the single marker scanning method (GEMMA). Surprisingly,
the type 1 error for LASSO-Awas zero (0.000) for all loci and
LASSO-B had the highest type 1 error (0.002). In general, all
methods have type 1 errors under control.

Population structure

We also used the 1081 markers to calculate a genetic distance
matrix between all pairs of oil palms and then draw an
unrooted phylogeny as shown in Fig. 1a. The 422 oil palms
appear to have 17 major clusters. One of the clusters can be
further divided into several subgroups. This number of clus-
ters matches closely the number of families, which happens to
be 19. We also performed k-mean cluster analysis and princi-
pal component analysis. The second principal component is
plotted against the first principal components, as shown in Fig.
1b, where three clusters appear to be evident but they do not
match the three clusters (color coded) obtained from the k-
mean cluster analysis. Figure 1c shows the plot of the percent-
age contribution of individual component against the number
of principal components. The first component only contrib-
utes about 2.75% of the total variation of the markers. The
second component contributes 2.65%. The top 18 components
cumulatively contribute about 30% of the total marker varia-
tion. This means that the population structure cannot be ex-
plained by a few principal components. Figure 1d shows the
plot of within cluster mean square error against the number of
components drawn from the k-mean cluster analysis. Again, it
takes about 15–20 clusters to significantly reduce the MSE,
implying that there are too many clusters to capture the pop-
ulation structure. We also used the BIC proposed by Fraley
and Raftery (2007) to determine the number of clusters. The
result indicated that the cluster number should be 15. Results

of the k-mean cluster analysis and phylogenetic analysis are
very consistent in a sense that the majority of the clusters from
the k-mean analysis are uniquely placed in specific clades of
the phylogenetic tree.

Correlation analysis among traits

Table 2 shows the pairwise Pearson correlations that have
reached the 0.05 significant level. Generally, negative corre-
lations were observed between the kernel factors (kernel-to-
bunch (KTB), kernel-to-fruit (KTF), and kernel yield (KY))
and oil-related components (mean fruit weight (MFW), mean
nut weight (MNW), mesocarp-to-fruit (MTF), oil-to-bunch
(OTB), and oil yield (OY)). The correlation among the kernel
factor traits was positive. Similarly, positive correlation was
attained between oil related trait components. The vegetative
traits (rachis length (RL), height increment (HI), height (HT))
showed significant positive correlations with most of the oil-
related traits (e.g., MFW, MTF, OTB, OY) but were negative
with KTF.

Association of SNPs with selected traits

Manhattan plots of all the traits for the three GWAS methods
are shown in Fig. 2 and Supplementary Figs. S1 and S2. We
identified 19 QTLs for eight agronomic traits of oil palm (HI,
HT, KTB, MTF, MFW, OTB, OY, and RL) from the three
GWAS methods. None of the methods detect any QTL asso-
ciated with the five remaining traits (FTB, KTF, KY, MNW,
and STF). LASSO-B detected the most QTLs (13), followed
by LASSO-A (10) and GEMMA, which only detected three.
Three QTLs were detected by all models while another three
were identified by LASSO-A and LASSO-B. One QTL ap-
peared to control more than one trait (pleiotropic effect), e.g.,
SNPM02805, which had a significant effect on three related
traits (OTB, MFW, and MTF). Of the 13 traits, we only pres-
ent the results for 12 and KY was omitted as it had an esti-
mated effect of zero for all markers from all the three methods
(results not shown). Detailed information on the significantly
associated QTLs is summarized in Table 3.

Of the 19 significant QTLs detected by LASSO, 13 were
associated with the bunch quality components and the remain-
ing six to the vegetative traits. The 13QTLs influencing bunch
components were detected on eight chromosomes (3, 4, 5, 6,
7, 8, 11, and 15). Six QTLs associated with vegetative param-
eters were found on five chromosomes (2, 4, 7, 10, and 16).
QTLs influencing both bunch components and vegetative
traits were detected on linkage groups (LGs) 4 and 7. We
carried out further analysis to determine the effect of marker
genotypes on the traits concerned. The results are summarized
in Supplementary Table S4. Significant effects (p < 0.05) were
attained for the different genotypes of all QTLs on their re-
spective traits. Different genotype classes of a QTL
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(SNPM02805) also showed significant effect for three traits—
MFW, MTF, and OTB. Boxplot was prepared using R pack-
age to visualize the effects of the three genotypes on the means
of these traits (Fig. 3).

Surprisingly, the largest QTL detected by LASSO-A for
trait RL only contributed 1.48% of the phenotypic variance.
The smallest QTL detected by LASSO-A for trait MFW

explained 0.063% of the phenotypic variance. QTLs with
such small effects are not detectable with the classical genome
scanning approach. For example, GEMMA only detected
three QTL from all the 13 traits. We realized that the R2 values
(proportions of phenotypic variance contributed by QTL) for
the QTL detected by LASSO-A and LASSO-B may be se-
verely biased downwardly due to shrinkage. The three largest

Fig. 1 Population structure
analysis. a Unrooted phylogeny
of the 422 accessions of oil palms.
b Principal component plot,
where the three clusters obtained
from the k-mean cluster analysis
are color coded. c Percentage
contributions of principal
components plotted against the
number of principal components.
d Within cluster mean squared
error from the k-mean cluster
analysis plotted against the
number of clusters

Table 2 Significant correlation among traits of selected oil palm bunch components and vegetative traits

RL HT HI MFW MNW MTF KTF STF FTB OTB KTB OY KY

RL 0.179** 0.179** 0.123* 0.139** − 0.109* 0.106* 0.200** 0.259** 0.125*

HT 1.000** 0.274** 0.217** 0.161** − 0.153** 0.175** 0.257** 0.315** 0.217**

HI 0.274** 0.217** 0.161** − .153** 0.175** 0.257** 0.315** 0.217**

MFW 0.935** 0.170** − 0.401** 0.280** 0.273** − 0.251** 0.250**

MNW − 0.177** − 0.262** 0.306** 0.302** − 0.112* 0.074

MTF − 0.391** − 0.917** 0.738** − 0.383** 0.509** − 0.199**

KTF − 0.350** 0.922** − 0.291** 0.530**

STF − 0.650** − 0.427**

FTB 0.405** 0.292** 0.244** 0.206**

OTB − 0.194** 0.617** − 0.116*

KTB − 0.185** 0.597**

OY 0.492**

*Correlation is significant at the 0.05 level (two-tailed); **correlation is significant at the 0.01 level (two-tailed)
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QTL detected by the LASSO methods were all detected by
GEMMA, which showed a much higher proportion contrib-
uted by each of the three QTL (> 4%).

Comparison of QTLs

The QTLs identified in this study were also compared to those
identified by other research groups. For ease of discussion and
comparison, the LGs where QTLs were detected either in this

study or other relevant publications were re-assigned based on
the EG5 genome build (Singh et al. 2013) and are illustrated in
Fig. 4.

Multiple QTLs for bunch components detected here as well
as by other research groups were found on chromosomes 3, 5,
6, 7, and 15. On chromosome 3, apart from the QTL linked to
MTF detected in this study, Billotte et al. (2010) also reported
a QTL for the same traits in nearby regions. Interestingly, the
QTL for MTF was also located close to the QTL for a related

Fig. 2 Manhattan plots of the first set of four traits resulting from three
GWAS methods. The four traits are labeled as FTB (fruit-to-bunch), HI
(height increment), HT (height), and KTB (kernel-to-bunch). The three

GWAS methods are LASSO-A, LASSO-B, and GEMMA. The dashed
horizontal line in each Manhattan plot depicts the significance threshold
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bunch quality trait, oil-to-fruit (OTF), reported by Jeennor and
Volkaert (2014). Chromosome 5 was also interesting as it

contained QTLs associated with bunch quality component
traits reported by four independent research groups. This

Table 3 Significantly associated SNPs identified by three GWAS methods for economic traits of oil palms

Trait LG Chra Position SNP Allele LASSO-A LASSO-B GEMMA

p value R2 (%) p value R2 (%) p value R2 (%)

HI 4 2 116.911 SNPM00957 A/T 0.008 0.254 – – – –

HT 6 7 39.553 SNPM02011 T/C 0.041 0.472 – – – –

4 2 116.911 SNPM00957 A/T 0.042 0.147 – – – –

KTB 6 7 7.176 SNPM02219 C/T – – 0.039 0.678 – –

MTF 1 3 92.761 SNPM02063 A/G 0.003 0.165 – – – –

14 11 104.679 SNPM01772 G/A 0.021 0.662 0.036 0.662 – –

11 4 62.574 SNPM02805 G/C 0.026 0.870 0.016 0.870 – –

6 7 113.561 SNPM00732 A/T – – 0.020 0.750 – –

16 15 2.331 SNPM02015 A/G – – 0.034 0.591 – –

MFW 10 6 39.418 SNPM01664 A/C 0.010 0.063 – – – –

11 4 62.574 SNPM02805 G/C 0.036 0.282 – – – –

12 5 7.176 SNPM03826 A/G 0.018 0.183 – – – –

OTB 11 4 62.574 SNPM02805 G/C 0.046 0.825 0.020 0.825 – –

2 8 27.183 SNPM03231 A/T 0.047 0.986 0.010 0.986 3.8E−05 4.207

2 8 33.628 SNPM00402 A/G – – 0.036 0.587 – –

OY 1 3 29.941 SNPM00995 A/C 0.036 1.343 0.003 1.343 3.9E−05 4.662

6 7 108.751 SNPM05057 A/G – – 0.023 0.708 – –

2 8 64.062 SNPM01889 A/G – – 0.035 0.609 – –

RL 11 4 127.807 SNPM00204 T/C 0.023 1.481 0.001 1.481 2.9E−05 4.376

4 2 153.196 SNPM02255 T/C – – 0.009 0.911 – –

5 16 3.545 SNPM04445 T/C – – 0.014 0.725 – –

15 10 111.64 SNPM00736 G/T – – 0.040 0.551 – –

– SNP is not detected by the corresponding method for that particular trait
a Corresponding chromosome number as assigned in Singh et al. 2013
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Fig. 3 Effects of genotypes GG, GC, and CC of SNPM02805 on MFW (mean fruit weight), MTF (mesocarp-to-fruit), and OTB (oil-to-bunch). The
means of the traits for each genotype class were significantly different at p < 0.05
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study also located a QTL associated with MFW (a bunch
quality component trait) in the same chromosome. On chro-
mosome 6, the QTLs for bunch components discovered by
three independent research groups were located at two differ-
ent regions. The QTL linked to MFW detected in this study
was in close proximity to related traits, MTF and oil-to-dry-
mesocarp (OTDM), described by Billotte et al. (2010).

Similarly, the QTLs for bunch components are also found in
two regions on chromosome 7. One of the regions contained
QTLs for OYand MTF detected in this study, together with a
QTL for FTB reported by Jeennor and Volkaert (2014). The
QTL in the second region of this chromosome is associated
with KTB detected in the current study. The QTLs for bunch
components on chromosome 15 were identified in the current

Fig. 4 Mapping of 54 QTLs associated with selected bunch components
and vegetative traits identified in the present study and those reported by
four independent groups (Billotte et al. 2010; Jeennor and Volkaert 2014;
Teh et al. 2015; Kwong et al. 2016) on EG5 genome build (Singh et al.
2013). The most outer ring are 16 chromosomes of EG5, followed by the
markers’ ID and associated traits, locations of the markers on the chro-
mosomes from five different sources, and the linkage group of the

markers. The positions of these markers (SNPM0957, SNPM00736,
and SNPM02015) could not be determined on EG5 but were roughly
estimated based on the EG8 genome build (unpublished) (filled star).
The positions of markers SNPM00995 and SNPM01889 could not be
located on the EG5 genome build (asterisk). However, these markers
were mapped on LGs 1 and 2 according to Ting et al. (2014), which
correspond to chromosomes 3 and 8, respectively
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analysis as well as that of Billotte et al. (2010). Additionally,
new QTLs associated with bunch components were detected
in the current study on chromosomes 8 and 11, which might
be specific to the Angola germplasm.

Figure 4 reveals three chromosomes (2, 4, and 7) that con-
tain QTLs for both vegetative traits and bunch components.
On chromosome 2, the QTLs are separated according to their
associated traits, each located at two different regions of the
chromosome. The first region contained QTLs for bunch com-
ponents (STF) reported by Kwong et al. (2016), whereas the
second region composed of QTLs linked to the vegetative
traits (RL) identified by Billotte et al. (2010). Our study also
identified QTL for RL in the nearby region with an additional
QTL linked to HI and HT. Billotte et al. (2010) also described
some QTLs for RL on chromosome 4, which are close to one
of the QTLs associated with MFW, MTF, and OTB detected
in this study. We also detected a QTL for RL, but it was
positioned at the opposite end of the same chromosome. On
chromosome 7, one of the regions contained QTLs for bunch
components identified in this study and Jeennor and Volkaert
(2014) while the second section composed of QTLs identified
in our study for bunch components (KTB) as well as vegeta-
tive traits (HT). The QTLs for RL found on chromosome 16
were based on the work carried out here and by Billotte et al.
(2010).

Discussion

Our 422 oil palm accessions were genotyped for 4451 SNP
makers, but only 1081 were polymorphic. In this case, a mul-
tiple marker approach can be easily applied. The most effi-
cient high dimensional multiple regression model is the
LASSO method Tibshirani (1996). We decided to adopt this
method of association studies for 13 quantitative traits of oil
palms and compare the result with the traditional Q+K mixed
model analysis implemented in the GEMMA software pack-
age (Zhou and Stephens 2012).

This study represents the first GWAS analysis of the
Angola oil palm germplasm. Although it is the most important
oil producing tree in Malaysia and Indonesia, representing an
important commodity worldwide, the crop however has not
been extensively studied. Presently, we have obtained 1081
polymorphic markers for the 422 palms.We were able to use a
multiple variate GWAS method like LASSO to test all
markers simultaneously. The genome scanning approach,
such as the GEMMA method, usually requests a multiple test
adjustment procedure to ensure overall appropriate type 1 er-
ror control. We did not apply the Bonferroni correction be-
cause LASSO is a multiple marker model where all markers
are fitted to the single model and all effects are estimated and
tested simultaneously. As a result, there is no multiple tests
issue. In addition, using the 0.05 criterion, our type 1 error

(LASSO-A) is still zero. We already had a better control of
type 1 error without multiple test correction compared with
GEMMA for the LASSO-A method. Not only does LASSO
have high power but also have low false positive rate, indicat-
ing the better performance of LASSO over GEMMA.

The traditional linear mixed model approach for GWAS
(Yu and Buckler 2006) scans the genome onemarker at a time,
not because it is the best approach but because it can deal with
millions of markers in a convenient way. In most GWAS pop-
ulations, the number of markers may be less than 10 or 20 K.
In these situations, LASSO is highly recommended.
Unfortunately, the GLMNET program for LASSO estimation
does not provide a mechanism to draw the p values for indi-
vidual markers. We presented two approaches to calculate the
p values. The bootstrap approach is very efficient compared to
the BLUP approach, but it is computationally more intensive
than the latter. Therefore, when the population size is small,
the bootstrap approach is recommended while the BLUP
method may be applied when the population size is extremely
large.

Given the fact that all detected markers have small effects
for the 12 traits analyzed, we suspected that all the traits are
typical polygenic traits. We therefore performed genomic pre-
diction using all the 1081 markers to see whether or not it is
feasible to conduct genomic selection in the oil palm samples
analyzed in the present study. We used three methods of ge-
nomic selection, LASSO (Tibshirani 1996), BLUP
(VanRaden 2008), and BayesB (Meuwissen et al. 2001), and
obtained predictabilities for all traits via a 10-fold cross-vali-
dation analysis. The predictability is defined as the squared
Pearson correlation coefficient between the observed and pre-
dicted trait values. The results are listed in Table 4. Among the

Table 4 Predictability
of 13 traits of oil palms
using three prediction
methods

Trait LASSO BLUP BayesB

RL 0.1359 0.1620 0.2142

HT 0.1482 0.2024 0.2048

HI 0.1374 0.2059 0.2081

MFW 0.0856 0.1079 0.1353

MNW 0.0632 0.0571 0.0672

MTF 0.1135 0.1578 0.1920

KTF 0.0633 0.0808 0.1053

STF 0.0533 0.0925 0.1398

FTB 0.0354 0.0439 0.0364

OTB 0.1617 0.1630 0.1772

KTB 0.0606 0.1093 0.1163

OY 0.1242 0.0988 0.1230

KY 0.0171 0.0204 0.0377

Predictability is defined as the squared cor-
relation between predicted and observed
trait values obtained from 10-fold cross-
validation
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three methods, BayesB had the highest average predictability
(0.1352), followed by the BLUP method (0.1155) and the
LASSO method (0.0922). For the BayesB method, the pre-
dictability ranged from 0.0377 for KY to 0.2142 for RL. All
three vegetative traits had predictabilities higher than 0.20,
and the bunch component traits typically had lower predict-
abilities. Although the predictabilities overall are not very
high, they are acceptable and suggest that genomic selection
can be an effective tool for oil palm breeding. Note that effi-
ciency of genomic selection depends on two factors, predict-
ability and selection intensity. We can still perform genomic
selection when the predictability is not high because we can
increase selection intensity by genotyping a large number of
seedlings as candidates of selection.

Increased mesocarp and kernel oil yields are the main tar-
gets in oil palm breeding. Mesocarp oil yield (OY) is im-
proved by increasing the fresh fruit bunch (FFB) yield and
the OTB ratio. FFB is directly measured by weighing all the
bunches produced by the palm, while OTB is measured from
three bunch components, namely, ratios of FTB, MTF, and
oil-to-wet mesocarp (OTWM). These are the major elements
determining the volume of palm oil, and they are the most
important traits considered in individual palm selection for
commercial seed production.

Significant QTLs for OY were detected on linkage groups
1, 6, and 2, which correspond to chromosomes 3, 7, and 8,
respectively. However, two markers (SNPM00957 and
SNPM01889) could not be placed specifically on chromo-
somes 3 and 8 as they fell on scaffolds that did not fit into
the genome build. On LG1 (chromosome 3), genotype AA of
SNPM00995 exhibits low OY compared to those exhibited
genotypes AC and CC (Supplementary Table S4). As for
marker SNPM01889 on LG2 (chromosome 8), palms with
genotypes AG and GG exhibited higher OY than those show-
ing AA. The GG genotype of marker SNPM05057 on chro-
mosome 7 possessed significantly lower OY than those show-
ing AA and AG genotypes. The oil palm planting materials
are hybrid seeds known as tenera, produced from crossing
between the dura and pisifera parental palms. In oil palm
breeding program, oil yield is estimated mainly to determine
the combining ability of the dura and pisifera parents. In ad-
dition, breeders also focus on measuring the subcomponents
such as OTB, MTF, and OTWM. The OTB is influenced by
another three bunch components (MFW, OTWM, and FTB).
However, the markers linked to the QTLs for OY in these
three chromosomes did not show any significant effect on
the other element influencing OY. As such, it may not be
feasible at this stage to justify the use of these markers in oil
palm breeding and selection.

Nevertheless, gains in OY can actually be achieved by
improving OTB (Soh 1999). We found significant QTLs as-
sociatedwith OTB on chromosomes 4 and 8. Individual palms
with genotype GG had higher OTB than the alternative

genotypes of marker SNPM02805 on chromosomes 4. On
chromosome 8, palms exhibiting genotype TT of
SNPM03231 gave higher OTB than those carrying the AA
and AT genotypes. We also identified another QTL for OTB,
SNPM00402, not very far from marker SNPM03231. Palms
carrying genotype AA of SNPM00402 possessed higher OTB
than palms with AG and GG genotypes.

MTF is another strong determinant of OY. QTLs signifi-
cantly associated withMTFwere detected on chromosomes 3,
4, 7, 11, and 15. Palms exhibiting the homozygous genotypes
AA of SNPM02063 (chromosome 3), GG of SNPM02805
(chromosome 4), TT of SNPM00732 (chromosome 7), AA
of SNPM01772 (chromosome 11), and GG of SNPM02015
(chromosome 15) had higherMTF (mean > 48.4%) than those
with the other genotypes. Besides the QTL for MTF detected
in this study, Billotte et al. (2010) and Jeennor and Volkaert
(2014) also reported QTLs for MTF and OTF, respectively, on
chromosome 3. Jeennor and Volkaert (2014) reported QTL for
other bunch component, namely, FTB ratio, near the QTL for
MTF identified in our study on chromosome 7 (Fig. 4). On
chromosome 15, the QTL for MTF discovered in the current
study is located near the QTL for MTF described previously
(Billotte et al. 2010). On the same chromosome, Billotte et al.
(2010) also reported another QTL for KTF, a trait negatively
correlated with MTF. This can be an interesting region to
search for candidate genes influencing MTF and KTF. The
QTLs associated with MTF detected on chromosomes 4 and
11 appear to be specific to the Angola population.

In oil palm breeding, fruit size is measured by the MFW
parameter. We found significant QTLs associated with MFW
on chromosomes 4, 5, and 6. On chromosome 4, palms car-
rying genotype GG of SNPM02805 had higher MFW com-
pared to those carrying GC and CC. Individual palms that
possessed AA genotype of SNPM03826 on chromosome 5
had significantly higher MFW. The CC genotype of
SNPM01664 from chromosome 6 exhibited higher MFW
compared to the AA and AC genotypes. Correlation analysis
showed that MFW is positively correlated with MTF, OTB,
and OY (Table 2). In addition, previous studies have also
shown that selection for high MFW may result in higher oil
content in oil palm bunches (Rajanaidu and Jalani 1994;
Sharma and Tan 1997). Selection for high MFW is expected
to generate the largest absolute quantity of mesocarp, resulting
in increased oil yield (Kushairi et al. 2003). Interestingly,
QTLs associated with MFW were also reported by Billotte
et al. (2010) and Jeennor and Volkaert (2014), located at the
opposite end of chromosome 5. These groups also described
QTLs for other bunch components such as MTF and OTDM
on chromosome 6 which significantly associated with marker
mEgCIR3826 using different mapping populations.

On chromosome 4, we found a QTLwith pleiotropic effect,
i.e., SNPM02805. The marker was associated with OTB,
MFW, and MTF. Our results also indicate positive correlation
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among OTB, MTF, and MFW (Table 2). We observed similar
effects of the genotypes on the three traits (Fig. 3). Palms with
genotype GG had significantly higher MFW, OTB, and MTF
compared to those with genotypes GC and CC (see
Supplementary Table S4 and Fig. 3), suggesting that the same
QTL is influencing the three bunch traits. Previous studies did
not report QTLs linked to bunch component on chromosome
4. As such, the QTLs uncovered in this study maybe unique to
the Angola germplasm. Similarly, the QTLs for OTB on chro-
mosome 8 and QTLs for MTF on chromosome 11 described
above were discovered only in this germplasm. These repre-
sent interesting loci for selection in breeding programs involv-
ing Angola germplasm.

Significant QTLs influencing vegetative traits, such as HI
and RL, were detected on chromosomes 2, 4, 10, and 16,
respectively. Palms with genotypes AA of SNPM00957
(chromosome 2) had lower HI than those with AT and TT.
With regard to RL, palms that showed genotype CC of
markers SNPM02255 (chromosome 2) and SNPM00204
(chromosome 4) and genotype TT of markers SNPM00736
(chromosome 10) and SNPM04445 (chromosome 16) re-
vealed significantly shorter rachis than palms having other
genotypes. Billotte et al. (2010) also reported QTLs associated
with rachis length on chromosomes 2, 4, and 16. The QTLs
for RL detected on chromosome 10 are unique for Angola
population. Blast analysis of the flanking sequences of
markers SNPM000957 and SNPM04445 did not show any
significant association to known genes. Nevertheless, the find-
ings suggest that it may be worthwhile to further investigate
these genomic regions for genes influencing vegetative traits
in oil palm.

Kernel oil earned ~ US$0.9 billion in 2015 for the
Malaysian oil palm industry. The oil, which is rich in medium
chain fatty acids, is mainly used in the oleo-chemical industry.
Thus, increasing kernel yield can be profitable. Palms produc-
ing more kernels have been identified (Rajanaidu et al. 1996)
and used in breeding for higher kernel yield. Here, we detect-
ed a QTL influencing KTB on chromosome 7. Individual
palms with the TT genotype of marker SNPM02219 produced
significantly lower KTB than palms with the CC and CT
genotypes. The correlation was negative between KTB and
OY as well as with the other oil-related components contrib-
uting to OY. As such, increasing the kernel yield will likely
decrease the mesocarp oil yield, as also observed by
Rajanaidu and Jalani (1994). This suggests that different
planting materials need to be developed to produce more ker-
nel or mesocarp oil. Development of alternative planting ma-
terials provides the oil palm industry an opportunity to diver-
sify its products.

Highest number of QTLs associated with bunch compo-
nents was observed on chromosome 5. These QTLs were
mostly reported by other groups (Billotte et al. 2010;
Jeennor and Volkaert 2014; Teh et al. 2016). Besides

chromosome 5, QTLs for bunch components that are specific
to advanced breeding populations were also observed on chro-
mosomes 2 (Kwong et al. 2016) and 10 (Billotte et al. 2010;
Jeennor and Volkaert 2014; Teh et al. 2016). As for the veg-
etative traits, QTLs specific to the advanced breeding popula-
tions were found on chromosome 6 (Billotte et al. 2010).
Previous reports mostly utilized crosses or palms derived from
advanced breeding lines (AVROS, Yangambi, La Me, Deli,
Ulu Remis, Johor Labis, and Gunung Melayu) with limited
genetic variability. As such, the above reports likely identified
alleles already available in the main breeding program, which
provide limited opportunity to improve diversity of the culti-
vated oil palms. Although there might be slight differences on
the selection methods and criteria imposed on the populations,
the ultimate objectives of oil palm breeding are similar across
the world. Thus, the selection introduced may have resulted in
preservation of similar sets of genes in these breeding
populations.

For bunch components, QTLs common in both the Angola
materials and advanced breeding populations were detected
on chromosomes 3, 5, 6, 7, and 15. Similarly, common
QTLs associated with vegetative traits were also found on
chromosomes 2, 4, and 16. These QTLs may generally be
applied for selection across a wider range of genetic
background.

From the present work, Angola-specific QTLs for bunch
components were found on chromosomes 4, 8, and 11. These
QTLs revealed significant effects on their respective traits
(MFW, MTF, OTB). We also detected a QTL significantly
associated with RL on chromosome 10. These QTLs are po-
tentially useful in introgression of desired regions from select-
ed Angola palms to advanced breeding lines for improving the
genetic diversity as well as bunch and oil yield associated
traits.

In this study, we have extensively mapped QTLs as-
sociated with bunch components and vegetative param-
eters identified by other groups on to the genome build
(Singh et al. 2013). This also allowed for comparison of
genomic loci influencing these traits across various oil
palm genetic backgrounds. Identifying QTLs close to
the genomic regions reported previously for the same
or associated traits adds confidence to the QTLs uncov-
ered in this study, despite the fact that these QTLs ex-
plain a small proportion of trait variation. Search can be
carried out for candidate genes in the regions influenc-
ing the selected traits across different genetic back-
grounds. Expression analysis of these genes will provide
a better understanding of their genetic control over the
traits. In addition, new markers can be developed using
the sequence of the candidate genes to further saturate
the QTL regions. Such effort would also increase the
confidence levels of the QTLs and lead to identification
of genes responsible for the traits under consideration.
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