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Abstract The success of a genetic improvement program is
contingent on developing genotypes with superior perfor-
mance in productivity and/or quality across varied environ-
mental conditions. In order to provide a better insight of the
dynamics of genotype-by-environment (GxE) interaction on
975 loblolly pine (Pinus taeda L.) clones, the present study
evaluated a series of six trials in the Southeast USA that were
measured for total stem volume and survival under two silvi-
cultural treatments (operational and intensive). Objectives in-
cluded the following: (1) estimate the magnitude of the GxE
and to understand its dynamics; (2) estimate and compare type
B genetic correlations and clonal genetic values based on and
one- and two-stage analyses and factor analytic analysis; (3)
obtain clonal rankings for each site, and across all sites and
calculate potential genetic gains; and (4) explore relationships
between genotypes and environments through Biplots.
Results indicate similar ranking for genotypes selected in each
of the two silvicultural treatments (clonal genetic correlations
>0.89 for volume). Important levels of GxE interaction for
volume and survival were detected for clones in the one-
stage analyses (average type B genetic correlation estimates
of 0.63 and 0.57 for VOL and SURV, respectively). The one-

and two-stage analyses provided similar genetic correlations,
rankings, and breeding values. Factor analytic error structure
was appropriate tomodel complex GxE interaction. One-stage
analyses produced higher heritabilities than two-stage ap-
proaches with these data from six sites. Biplots summarized
the GxE interaction successfully and confirmed the positive
correlation between all environments for volume and survival.

Keywords Multi-environment trials .MET . Two-stage
analyses . Factor analytic . Unstructured . Type B genetic
correlation

Introduction

The success of any genetic improvement program depends
on producing genotypes with superior performance in terms
of productivity and quality across multiple environmental
conditions. To achieve this goal, it is necessary to understand
the phenotype, which is the result of genotype performance
and environmental conditions (Malosetti et al. 2013).
Genotypes differ in efficiency to capture and convert envi-
ronmental inputs, a difference that is determined by its par-
ticular ensemble of genes. Usually, tree breeders are interest-
ed in the phenotype for a given trait at a particular age,
which is a cumulative result of casual interactions between
the plant genotype and its environment.

One of the main objectives in plant breeding is to match
genotypes to specific environments in such a way that the
response is optimized. Some genotypes can do well across
most conditions; however, there are some genotypes that do
better (or worse) than others exclusively under a specific set of
environmental conditions or managements. This adaptation is
related to an interaction denominated genotype-by-
environment (GxE) (Malossetii et al. 2013). GxE interaction
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is a differential response of a genotype in an environment and
it is important in several aspects. For most genetic improve-
ment programs, this GxE interaction is valuable information,
among others, to: (1) evaluate the stability of genotype’s re-
sponse across their deployment area, (2) define breeding strat-
egies, (3) evaluate breeding zones, (4) maximize genetic gain,
and (5) increase accuracy of predictions as GxE modeling
incorporates the structure of the data into the statistical model.

GxE interaction is one of the aspects that all breeders con-
sider before making deployment decisions, as its presence
may result in different ranking of genotypes for each site (or
environment) tested, and therefore, it is seen as a lack of per-
formance consistency. For this reason, presence of GxE inter-
actions reduces selection progress, as difficulties arise on iden-
tifying the best genotype across all environments (Comstock
and Moll 1963). However, the importance of this GxE inter-
action will depend on its specific implications for a breeding
program, where, in some cases, it might be ignored (even if
statistically significant).

The estimation of the magnitude of GxE interaction, and its
pattern, for a given trait and population can be determined by
using different statistical approaches, such as variance compo-
nent estimation (Freeman 1973; Burdon 1977; Muir et al.
1992), type B correlations of genetic values of given genotypes
for the same trait in different environments (Burdon 1977;Muir
et al. 1992), multi-environment trials (MET) analyses in one -
stage (Silva et al. 2014;Malosetti et al. 2013; Costa e Silva et al.
2006; Hardner et al. 2009; Cullis et al. 2014) or two - stages
(Mohring and Piepho 2009), principal component analysis with
combination of Biplots (Malosetti et al. 2013), and regression
models (Freeman 1973). These approaches help to investigate
GxE dynamics across all evaluated sites or environments and
assist with the selection of genotypes.

Variance component estimation, by fitting linear mixed
models (LMM) in MET analyses, is a common and powerful
statistical tool used to partition the different sources of vari-
ability in the phenotype response, which are later used to
estimate heritability and to calculate predictions of genetic
values (i.e., best linear unbiased prediction, BLUP). For these
analyses, presence of GxE interaction is often identified as a
result of a large and significant variance component associated
with the factor that models GxE; however, GxE interaction
can also be identified as different genetic variances for each
environment (Silva et al. 2014). Here, better environments
tend to have larger genetic variances than poor environments,
but the opposite can happen as well (Malosetti et al. 2013).
Type B genetic correlation is also an important measure of the
magnitude of the GxE interaction (Burdon 1977; Silva et al.
2014), ranging from −1 to 1, where values close to 0 indicate
weak agreement.

MET analyses are commonly used in forest tree breeding
programs and can be performed by using two different, but
complementary, LMMs, identified as explicit and implicit.

The explicit model provides with a predicted genetic value
for each of the genotypes (individual or clones) across all sites
evaluated; it also provides with a deviation (or interaction) of
each genotype within a site. This model assumes that type B
correlation is the same across any pair of sites limiting the
understanding of the GxE across sites. Nevertheless, this is
the most frequently fitted model, it is often easy to converge,
and is preferred whenever a large number of sites is evaluated
(Frensham et al. 1997; Smith et al. 2001).

In contrast, the implicit model, which provides predicted
genetic values for each site, contains within the linear model a
single genetic term that predicts each individual genotype
within a site, together with a variance-covariance matrix of
these genetic effects between pairs of sites. There are multiple
forms of this matrix that can be specified, where the simplest
is compound symmetry (CS). CS is completely equivalent to
the explicit model, and if this matrix is expressed as a corre-
lation matrix, it leads to be exactly the same type B correlation
value. Nevertheless, more complex forms can be fitted (see for
example, Cullis et al. 2006), where the most complex form
estimates a different genetic variance for each site and a
unique covariance for each pair of sites (often known as un-
structured). However, given the large number of parameters
that need to be estimated whenever many sites are analyzed
simultaneously, some authors have suggested other simpler
forms that approximate the unstructured matrix, such as factor
analytic (Thompson et al. 2003; Meyer 2009).

The advantage of specifying a complex variance-
covariance matrix is that it permits further understanding of
the structure of the GxE interaction by looking at individual
covariances (or correlations) between pairs of sites. In addi-
tion, other statistical tools, such as principal component anal-
ysis (PCA), can be used to decompose this matrix to facilitate
the understanding of the relationship between the genotypes
and/or sites. PCA can also be complemented with the use of
Biplot (Gabriel 1971) to help group environments and identify
specific clusters of genotypes with a similar response
(Malosetti et al. 2013). Biplot is often used in the context of
principal components but can also be used in statistical model-
ing. It is a multidimensional graphic composed by lines and
dots where the lines are variables and dots are observations
(Kohler and Luniak 2005).

Most statistical analyses of METs are computationally and
statistically challenging, as they need to combine sites with
different levels of connectivity and precision into an analysis
that accommodates the varied design structures, background
errors, and individual-site heritabilites. A one-stage analysis
approach fits a single LMM for all data simultaneously in a
single step. For situations with a limited number of sites and
simple genetic variance-covariance matrices (e.g., compound
symmetry), this can be done on a routine basis. However,
often, it is not possible to fit this model as convergence issues
arise. An alternative, particularly for large number of sites, is
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to perform a two-stage analysis that separates the evaluation in
two steps. Both one- and two-stage analyses have practical
and statistical advantages and disadvantages that depend on
the connectivity among sites, number of genotypes
considered, computational limitations, level of precision
desired, among other things. Malosetti et al. (2013) indicated
that one-stage analyses have theoretical advantages; however,
two-stage analyses are computationally and logistically easier
to fit. Two-stage analysis was originally proposed by
Patterson (1978), and it has been extended and modified by
Cullis et al. (1996) and Piepho et al. (2012). This type of
analysis involves first fitting individual linear models to each
of the sites and obtaining genotype mean predictions (i.e.,
least square means). Later, these predictions are combined,
in a second step, together with their corresponding weights
(or standard errors) into a METanalysis. Weights are expected
to be required here as the genotype mean predictions from the
first stage have different levels of precision, due to, for exam-
ple, number of replications and level of relatedness with other
genotypes present in the same trial.

In order to provide better insight of the statistical methods
used to explore GxE interaction, the present study evaluated a
series of six loblolly pine (Pinus taeda L.) clonal trials
established in the Southeast USA that were measured for total
stem volume and survival. This dataset provided a unique op-
portunity to explore both interactions between genotypes and
cultural treatments and interactions between genotypes and sites.
Furthermore, it represents an opportunity to rank a large set of
clones over many sites with reasonable replication at each site.

The main objective of this study is to explore GxE interac-
tion for this clonal population by fitting a range of LMMs.
Some of the specific objectives are as follows: (1) estimate the
magnitude and dynamics of the GxE interaction; (2) estimate
and compare type B genetic correlations and clonal genetic
values based on a one- and two-stage analyses, to contrast
unstructured and factor analytic variance-covariance struc-
tures; (3) estimate variance-covariance matrices and clonal
rankings for each site, and across all sites, and calculate po-
tential genetic gains; and (4) use Biplot analysis to explore
relationships between genotypes and environments.

Materials and methods

Genetic material and experimental layout

The dataset used in this study originates from a series of six
genetic trials established by the Forest Biology Research
Cooperative (FBRC) from the University of Florida known as
the CCLONES Series 1 (Baltunis et al. 2007). The six sites
considered were as follows: BF Grant, GA (BFG), Cuthbert,
GA (CUT), Nassau, FL (NAS), Oakfield, GA (OAK), Palatka,
FL (PAL), and Santa Rosa, FL (SNR) (Fig. 1). This study

contains 61 full-sib loblolly pine families planted in single-tree
plots as an incomplete block design with eight complete full
block replicates per site. For all but two sites, four contiguous
blocks were assigned (i.e., left and right sides) to two different
silvicultural treatments (operational and intensive manage-
ment). All sites have both silvicultural (cultural) treatments,
except for CUT which only had the intensive and SNR which
only had the operational. Here, the operational managements
represent the typical cultural practices, where the intensive en-
tails both more frequent weed control and fertilizer applications.
Unfortunately, this silvicultural treatment leads to potential con-
founding of treatment and block effects. Each site contains
∼80 % cuttings and ∼20 % seedlings from each of the tested
full-sib families. However, for this study, only measurements
that correspond to cuttings were considered, and only from
those clones that were present in at least three sites. Hence, a
total of 61 full-sib families were considered in this analysis for a
total of 975 clones, i.e., ∼16 clones per family.

The variables evaluated were total stem volume (VOL, dm3)
and survival (SURV, %). Total stem volume was calculated as
follows:

VOL ¼ π=4ð Þ � DBH2 � 13þ Ht–13ð Þ=3½ �

where DBH (dm) is the diameter at breast height and Ht (dm) is
the total height. SURV was recorded as 1 for alive trees and 0
for dead trees. For each site, the latest available measurement
was considered corresponding to 4 (CUT, OAK), 8 (BFG,
NAS, SNR), and 9 (PAL) years since planting. Additional in-
formation about these sites is presented in Table 1.

Fig. 1 Map of the geographic location of each site for the CCLONES
loblolly Pine Series 1 study. The site abbreviations are as follows: BF
Grant (BFG), Cuthbert (CUT), Nassau (NAS), Oakfield (OAK), Palatka
(PAL), and Santa Rosa (SNR)
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Statistical analyses

Initially, a single-site analysis was fitted considering a
different heritability for each of the two silvicultural
treatments (operational and intensive). Here, the objectives
were to evaluate if there are statistical differences among
treatment means based on an approximated t test and to
determine the statistical significance of the genotype-by-
silviculture interaction by using a likelihood ratio test (LRT,
Gilmour et al. 2009), where the test is against the null
hypothesis of the genetic correlation equaling 0. The fitted
model corresponded to the following:

y ¼ 1μþ Xcþ Z1r þ Z2i rð Þ þ Z3g cð Þ þ e ð1Þ

where y is the data vector (VOL or SURV); μ is the overall
mean with the first column of ones; c is the fixed vector of
silvicultural treatment effect; r is the random vector of replicate,
with r ∼ MVN(0, σ2

r Ir ); i(r) is the random vector of
incomplete-block-within-replicate effects, with i(r) ∼ MVN(0,
σ2
i I i ); g(c) is the random vector of nested effects of clone

within culture effect, with g(c) ∼ MVN(0, Ig ⊗ Gc); and e is
the random vector of error effects, with e ∼MVN(0, De). Here,
1 is a vector of ones, X and Z are incidence matrices of their
corresponding effects, the matrix Ix is an identity matrix of its
proper dimension, Gc is a 2 × 2 unstructured covariance matrix
containing a different total genetic variance for each silvicultur-
al treatment (σ2

c1, σ
2
c2 ), and a covariance between them (σc1c2),

and ⊗ denotes the Kronecker product. Also, De is a diagonal
matrix containing a different error variance for each of the two
silvicultural treatment effects (i.e., σ2

e1, σ
2
e2 ). The fitting of the

clonal effect as being nested within treatment was used to esti-
mate separate clonal variances for each treatment and its corre-
lation, and it does not imply that clones are confounded with
treatments within sites.

A clonal genetic correlation between culture effects (ρ ̂
2
c )

and a broad-sense heritability was estimated for each site ac-
cording to the following:

ρ̂2c ¼
σ̂c1c2

σ̂c1 � σ̂c2

H ̂2
c ¼

σ̂
2
c1 þ σ ̂2

c2

� �
=2

σ ̂2
r þ σ ̂2

i þ σ ̂2
c1 þ σ ̂2

c2

� �
=2þ σ ̂2

e1 þ σ ̂2
e2

� �
=2

Note that the above expression corresponds to the mean
within-treatment broad-sense heritability and should not be
confused with the across-treatment heritability.

Later, both one- and two-stage analyses were performed
using all information available to obtain the information re-
quired for a METanalysis. In both analyses, silvicultural treat-
ment effects were ignored. The one-stage analysis was done
by fitting an explicit and an implicit model. The one-stage
explicit GxE model corresponds to the following:

y ¼ μ1þ Xsþ Z1r sð Þ þ Z2i rsð Þ þ Z3gþ Z4gsþ e ð2Þ

where y is the data vector; μ is the overall mean; s is the fixed
effect of sites; r(s) is the random effect of replicate within site,
with r(s) ∼ MVN(0, Dsr); i(rs) is the random effect of incom-
plete blocks within a replicate-site combination, with
i(rs) ∼MVN(0,Dsi); g is the random effect of the total genetic
(i.e., clonal) effect, with g ∼MVN(0, σ2

gIgÞ; gs is the random
effect of genotype-by-site interaction, with gs ∼ MVN(0, σ2

gs

Ig ⊗ Is); and e is the random residual error, with e ∼MVN(0,
De). Here, the matrices Dx correspond to diagonal matrices
with a different variance component for each of the sites for
the corresponding term, and the other matrices were previous-
ly defined. Note that the above model estimates a single ge-
netic and GxE variance across sites, and therefore a type B

Table 1 Location of six sites, with establishment date, number of clones, ramets per clone and trees per each site, survival percentage, diameter at
breast height (DBH, cm), total height (HT, m), and stem volume (VOL, dm3) (means and standard deviations in parentheses)

Test BFG CUT NAS OAK PAL SNR

Location Putnam County,
GA

Cuthbert, Randolph
County, GA

Hilliard, Nassau
County, FL

Oakfield, Worth
County, GA

Palatka, Putnam
County, FL

Santa Rosa
County, FL

Latitude 33°41′N 31°48′N 30°44′N 31°74′N 29°38′N 30°83′N
Longitude 83°49′W 84°41′W 81°53′W 83°94′W 81°44′W 87°19′W
Date planted Nov. 2002 Dec. 2002 Feb. 2003 Oct. 2002 Nov. 2002 May. 2003
#Clones 940 868 940 939 941 749
#Ramets/clone 7.68 3.78 7.43 6.46 7.43 6.30
#Trees 7222 3285 6986 6066 6992 4715
Age 8 4 8 4 9 8
Survival % 95.08 96.60 92.72 90.60 96.00 93.40
DBH (SD) 11.61 (3.35) 10.32 (1.35) 13.44 (2.71) 7.24 (1.82) 11.86 (3.12) 14.02 (2.80)
HT (SD) 10.46 (1.39) 6.63 (0.64) 11.48 (1.68) 4.77 (0.74) 9.64 (1.81) 9.93 (1.36)
VOL (SD) 53.84 (24.14) 26.44 (7.77) 71.57 (31.75) 11.16 (5.80) 50.96 (29.65) 69.10 (29.25)

Site abbreviations are as follows: BFG BF Grant, CUT Cuthbert, NAS Nassau, OAK Oakfield, PAL Palatka, SNR Santa Rosa

1 Page 4 of 11 Tree Genetics & Genomes (2017) 13: 1



genetic correlation estimate ρ̂
2
g

� �
is estimated across all sites

according to ρ ̂
2
g ¼ σ ̂2

g= σ ̂2
g þ σ ̂2

gs

� �
.

The expression considered to fit the one-stage implicit GxE
model was as follows:

y ¼ μ1þ X sþ Z1sr þ Z2si þ Z3gsþ e ð3Þ

where all terms are identical to the ones presented in Eq. (2),
except that gs now corresponds to a random effect of genotype
nested within site, with gs ∼MVN(0, Ig ⊗ Gs). This factor gs
corresponds to a nested effect as a result of not including the
term g in the above model (as done in Eq. (1)), which is then
contained within the gs model term. Here, Gs is a 6 × 6
variance-covariance GxE matrix of the following form:

Gs ¼

σ2
gs1 σgs1gs2

σ2
gs2

⋯ σgs1gs5 σgs1gs6

σgs2gs6

⋮ ⋱ ⋮

⋯
σ2
gs5

σ2
gs6

2
666664

3
777775

where diagonal terms correspond to the total genetic variances
for a given site and off-diagonal terms correspond to estimated
genetic covariances between any two sites. Several structures
of the above variance-covariance matrix are possible, where
that presented above is known as the unstructured (US) matrix
and requires 21 (=6 + (6 × 5) / 2) components to be estimated,
and it can also be parameterized as the heterogeneous general
correlation (CORGH), which is defined in terms of correla-
tions and not covariances (Gilmour et al. 2009).

Unique clonal-mean heritabilities (or repeatabilities) were

estimated for each site H2
ið Þ

� �
, due to the specification of

individual-site residual variances, according to the formulae
below:

H
̂ 2

ið Þ ¼
σ ̂2
gs ið Þ

σ ̂2
sr ið Þ þ σ ̂2

si ið Þ þ σ ̂2
gs ið Þ þ σ ̂2

e ið Þ
.
k ið Þ

where (i) identifies the ith site, k(i) is the effective mean number
of ramets per clone at ith site, and all other terms were previ-
ously described.

For the two-stage MET analysis, two steps were done. The
first step performed a single-site analysis where all the design
features of each site are considered. The single-site model
fitted corresponded to the following:

y ¼ μ1þ Z1r þ Z2i þ X g þ e ð4Þ

where all the model terms are identical to the ones presented in
Eq. (1), with the difference that here g is now assumed to be a
fixed effect of the total genetic (i.e., clonal) effects. For this

step, the data were analyzed per site resulting in adjusted pre-
dicted least square means for each genotype in each environ-
ment. For the second step, these predicted means for the ge-
notypes are used as responses to fit a simple weighted LMM
of the following form:

y ¼ μ1þ X sþ Zgsþ e ð5Þ

where this model is similar to the implicit GxE model present-
ed in Eq. (3), with y corresponding to the adjusted means for
each site obtained from the single-site analysis Eq. (4), gs is
the random effect of genotype nested within site, with
gs ∼ MVN(0, Ig ⊗ Gs), and e is the random residual errors,
with e ∼ MVN(0, Ds). Here, Gs is the 6 × 6 variance-
covariance GxE matrix and Ds corresponds to the diagonal
matrix with a different fixed residual variance component ob-
tained from the models fitted in the first step.

Three types of weights, πij for genotype i in site j, were
considered for model fitting in the second step. The first
weight involved the use of the inverse of the standard error
of the predictions of SEij, as

πij ¼ 1
.

SEij
� �2 ð6Þ

The second weight, termed effective replication (ER), was
proposed by Smith et al. (2001) and uses an estimated effec-

tive error variance across sites, ~σ2
j calculated as follows:

~σ2
j ¼

1

nj

Xn

i¼1

rij
~σii
j

ð7Þ

where rij is the non-missing plot response for each genotype i
in site j, nj is the number of non-missing genotypes on site j,
and ~σii

j is the standard error of the prediction of genotype i in
site j. Hence, the weights are a function of varying level of
expression of genetic variation scale and replication according
with Eq. (7) as

πij ¼
r*ij

~σ2j
.

~σ2

ð8Þ

where r*ij = ~σii
j *~σ

2
j ; for an orthogonal analysis r

*
ij is the actual

replication for each genotype, and for a non-orthogonal anal-
ysis, it is the effective replication.

Finally, the third type is an equal weight alternative
(NONE) with πij = 1 for all genotypes in all sites.

All previously described models were fitted using the soft-
ware ASReml 3.0 (Gilmour et al. 2009) that estimates vari-
ance components using restricted maximum likelihood
(REML) (Patterson and Thompson 1971).

In addition, for both of the models fitted in Eqs. (3) and (5),
different variance structure forms of the matrix Gs were
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evaluated. The unstructured (US), heterogeneous uniform cor-
relation (CORUH), and factor analytic of order 1 (FA1) were
evaluated for one- and two-stage analysis. These structures
were compared and evaluated by contrasting log-likelihood
(logL) values and information criteria (AIC and BIC). To
compare the one-stage analysis against the two-stage analysis
and one-stage against single-site analysis Pearson’s product-
moment correlations (rPRED) and rank correlations (rRANK)
were calculated for each site, using the predictions of the fitted
one-stage implicit model using US structure as a baseline
(Eq. (3)).

To evaluate the implications of GxE interaction on selec-
tion and to compare selection efficiency between one- and
two-stage analysis and between one-stage and single-site anal-
ysis, clones were selected based on their overall (i.e., across all
sites) genetic prediction value. This selection was contrasted
with individual-site selections based on genetic predictions for
each site. Selection intensities used were 2, 5, and 10 %, cor-
responding to the top 20, 50, and 100 genotypes, respectively.

Finally, to assist in the interpretation of the estimated Gs

matrix and to evaluate the relationship between sites and ge-
notypes, a Biplot analysis was performed using the genetic
correlation matrix ofGs estimated from fitting the model from

Eq. (3) (i.e., one-stage analysis) with the US matrix together
with the clonal predictions for each of the sites. This was done
for both of the response variables VOL and SURV using the
statistical package GenStat 17th (Payne et al. 2011).

Results

The phenotypic means and its standard deviations for VOL
and SURV for each treatment together with total genetic cor-
relation (i.e., clonal) for these two silvicultural treatments and
its p value are presented in Table 2. CUTand SNR are the two
sites with only one silvicultural treatment. The phenotypic
means of each silvicultural treatment do not differ consider-
ably for either VOL or SURV with the exception of NAS for
VOL, where the intensive level was 29 % higher than the
operational. For SURV, almost no differences between the
two silvicultural treatment means were found. The results

from fitting the single-site models (Eq. (1)) show high H ̂2

values for VOL on all sites with an average of 0.31
(Table 2). Here, the lowest value was found on site OAK
(0.19) and the highest on SNR (0.46). For SURV, all sites

Table 2 Estimates for single-site analysis (Eq. (1)) for clonal data on CCLONES Series 1 sites for total stem volume (VOL, dm3) and survival (SURV,
%)

BFG (8) CUT (4) NAS (8) OAK (4) PAL (9) SNR (8)

VOL

Intensive 56.06 26.46 83.03 10.76 54.26 -

(24.90) (7.73) (31.49) (5.68) (30.18)

Operational 51.62 - 59.99 11.56 47.69 70.22

(23.14) (27.54) (5.86) (28.73) (29.72)

p value 0.37 - <0.001 0.20 0.01 -

H ̂
c
2 0.27 0.369 0.35 0.19 0.24 0.46

ρ̂
2
c

0.98 - 0.88 0.99 0.94 -

p value 0.03 - 0.03 0.50 0.04 -

SURV

Intensive 0.95 0.96 0.93 0.90 0.96 -

(0.22) (0.18) (0.25) (0.30) (0.20)

Operational 0.95 - 0.92 0.91 0.96 0.93

(0.21) (0.26) (0.29) (0.19) (0.25)

p value 0.86 - 0.58 0.74 0.72 -

H ̂
c
2 0.07 0.02 0.08 0.02 0.00 0.02

ρ̂
2
c

0.99 - 0.90 0.99 −0.28 -

p value 0.44 - 0.13 <0.001 0.10 -

Phenotypic mean values are followed by their standard deviations in parentheses, broad-sense heritability (Hc
2 ) estimates, genetic correlation estimates

between silvicultural treatments (ρ ̂
2
c ), and its p value. Site abbreviations are as follows: BFGBFGrant,CUTCuthbert,NASNassau,OAKOakfield, PAL

Palatka, SNR Santa Rosa. Values in parentheses correspond to the age of trees when they were measured
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presented low heritability values (average of 0.04) particularly
site PAL with almost null genetic control. The genetic corre-
lation estimates between silvicultural treatments were high for
VOL and SURVacross most of the sites, with averages of 0.95
and 0.65, respectively. The only exception was site PAL for
SURV, which had a value of −0.28 and, as indicated earlier,

also showed low H ̂2. Note that statistically, inferences on the
different silvilcultural treatments are limited given that these
were not replicated and that the expressions used for broad-
sense heritability includes the estimated variance of replicate
within site, which in all cases resulted of low magnitude.

The results of the explicit model analysis (Eq. (2)) provided
interesting type B genetic correlation estimates of 0.63 and
0.57 for VOL and SURV, respectively (details not shown),
reflecting moderate levels of GxE interaction. Estimates of
type B genetic correlations between any pair of sites were
obtained simultaneously from fitting the implicit model from
Eq. (3) for VOL using unstructured (US) variance and covari-
ance matrix. These values range from 0.41 (OAK-BFG) to
0.80 (PAL-NAS) (average of 0.57, Table 3). The site with
the largest interactions (i.e., lowest genetic correlations) with
any other site was OAK. As seen in Table 3, the mean clonal
heritability values are high for all sites (0.66 to 0.81). The
same model Eq. (3) but using factor analytic 1 (FA1) showed
smaller type B genetic correlation estimates than US (Table 4),
the values ranging from 0.36 (OAK-CUT) to 0.80 (PAL-NAS,
SNR-NAS) (average of 0.56). However, the heritability values
for FA1 are almost identical to the ones estimated under an US

structure (Table 3). Model comparisons indicated, as expect-
ed, better results for US based on the logL, AIC, and BIC,
where for the two-stage analysis using an implicit model with
US structure the logL was −9337 and for FA1 structure this
changed to −9362. Also, the AIC values were −18,675 (US)
and 18,725 (FA1), where the implicit model using US was
significantly different than the one using FA1.

Estimated genetic correlations for VOL obtained from the
two-stage analysis Eq. (5) using US for all weights are shown
in Table 4. The genetic correlation estimates for ER and
NONE weights were smaller than the ones obtained for the
one-stage analysis (see Table 3); however, 1/SE2 weights pre-
sented the least reduction. For ER weights, the genetic corre-
lation estimates ranged from 0.24 (PAL-OAK) to 0.60 (PAL-
NAS) (average of 0.36). However, when the 1/SE2 was used
as weights, the correlations were apparently overestimated,
the values being higher than those found for one-stage analy-
sis (Table 3). The estimated values ranged from 0.49 (SNR-
BFG) to 0.92 (PAL-NAS) (average of 0.67).

Higher estimated values of heritability were found for one-
stage when compared to the two-stage analyses, reflecting a

Table 3 Estimated clonal type B genetic correlations for total stem
volume (VOL, dm3) across all six sites using the simple GxE model for
one-stage analysis (Eq. (3)) with unstructured variance (US) and factor
analytic of order 1 (FA1)

US

Site BFG (8) CUT (4) NAS (8) OAK (4) PAL (9) SNR (8)

BFG 0.78 0.63 0.68 0.41 0.47 0.47

CUT 0.71 0.60 0.48 0.48 0.50

NAS 0.79 0.51 0.80 0.79

OAK 0.66 0.45 0.45

PAL 0.72 0.79

SNR 0.81

FA1

BFG 0.78 0.44 0.65 0.38 0.56 0.56

CUT 0.71 0.62 0.36 0.54 0.54

NAS 0.79 0.54 0.80 0.80

OAK 0.66 0.46 0.46

PAL 0.72 0.69

SNR 0.81

Values on the diagonal correspond to clonal-mean heritability estimates
within the respective sites. Site abbreviations are as follows: BFG BF
Grant, CUT Cuthbert, NAS Nassau, OAK Oakfield, PAL Palatka, SNR
Santa Rosa. Values in parentheses correspond to measurement age

Table 4 Estimated clonal genetic correlations for total stem volume
(VOL, dm3) across all six sites using the simple GxE model for two-
stage analysis (Eq. (5)) using as weights 1/(SE)2, effective replication
(ER), and no weights (NONE) for unstructured variance (US)

1/(SE)2

Site BFG (8) CUT (4) NAS (8) OAK (4) PAL (9) SNR (8)

BFG 0.65 0.75 0.74 0.55 0.54 0.49

CUT 0.43 0.68 0.68 0.57 0.55

NAS 0.68 0.66 0.92 0.80

OAK 0.28 0.69 0.56

PAL 0.50 0.86

SNR 0.70

ER

BFG 0.73 0.41 0.50 0.24 0.33 0.29

CUT 0.58 0.37 0.26 0.27 0.29

NAS 0.73 0.30 0.60 0.50

OAK 0.50 0.24 0.25

PAL 0.62 0.48

SNR 0.71

NONE

BFG 0.73 0.41 0.50 0.25 0.33 0.29

CUT 0.56 0.37 0.26 0.27 0.29

NAS 0.73 0.30 0.60 0.50

OAK 0.40 0.24 0.25

PAL 0.62 0.48

SNR 0.71

Values on the diagonal correspond to clonal-mean heritability estimates
within the respective sites. Site abbreviations are as follows: BFG BF
Grant, CUT Cuthbert, NAS Nassau, OAK Oakfield, PAL Palatka, SNR
Santa Rosa. Values in parentheses correspond to measurement age
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bias in the latter estimates. For one-stage analysis, similar
heritability estimates were found for US and FA variance.
The heritability estimates for these analyses ranged from
0.66 to 0.81, the lowest being found for OAK and the highest
for SNR. However, for the two-stage analysis, the heritability
estimates were different according with the methods of
weighting. Higher estimates were found for ER (0.49 to
0.74) and NONE (0.40 to 0.73). The method 1/(SE)2 showed
lower heritability values, ranging from 0.28 to 0.70. OAKwas
the site with lowest heritability for all methods.

To compare the performance between the one- and two-
stage analyses, Pearson product-moment correlations (rPRED)
and rank correlations (rRANK) were obtained for two-stage anal-
yses (Table 5). Even though heritability values and type B ge-
netic correlation estimates showed apparent bias, the rPRED and
rRANK values between one- and two-stage predictions were
high when all the genotypes were selected. The best rPRED
and rRANKwere found for the weight 1/SE

2. Surprisingly, given
the moderate levels of GxE interaction present for these sites,
high correlation estimates were found when comparing one-
stage with single-site analysis. When selecting either the top
20, 50, and 100 clones, the rank correlation was lower for any

weights compared with the one-stage analysis, with the lowest
values for ER and NONE weights.

Genetic gains from clonal selection at different selection
intensities provided interesting results for VOL across sin-
gle-site, one-stage, and two-stage analyses (Table 6). For sin-
gle site analysis, the estimated gain was 40.81 % when 2 % of
the genotypes were considered; however, when the datasets
were combined into a one-stage analysis, gain increased to
50.24 %. For the two-stage analysis, the estimated gain was
reduced due to the presence of bias for heritability and genetic
correlations resulting in underestimation of genetic gain
(Fig. 1).

The graphical output from the Biplot analyses using
the type B correlation matrix from the one-stage analy-
sis with the implicit model (Eq. (3)) in a two-
dimensional space for VOL and SURV is shown in
Fig. 2a, b. These Biplots are presented with only the
two main principal components which explained a total
of 86.71 % of the variation for VOL (76.18 and
10.53 % for the first and second components, respec-
tively) and 93.03 % for SURV (79.47 and 13.59 %,
respectively). In Fig. 2, the lines represent the sites
emerging from the origin, and the angle between two
lines correspond to the type B correlation between two
given sites. Also, individual genotypes are represented
by gray circles. For VOL, all environments present pos-
itive correlations (see also Table 3) where BFG and
CUT and SNR and PAL are grouped together, showing
similarity in response for these sites (Fig. 2a). There are
a few genotypes that were consistently outstanding in
all sites (see circles on the right of panel from
Fig. 2a). For SURV, most sites were highly correlated,
with the exception of OAK that was uncorrelated (angle
∼90°) to all other sites. For this trait, the genotypes
appear more clustered than for VOL, with a few geno-
types that were consistently outstanding on all sites
(Fig. 2b).

Table 5 Comparison for VOL of genotype predictions as Pearson’s (rPRED ) and rank (rRANK ) correlations between one- and two-stage (three weight
methods) and one-stage and single-site analyses

1/(SE)2 ER NONE Single-Site

rPRED rRANK rPRED rRANK rPRED rRANK rPRED rRANK

All 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99

Top 2 % 0.91 0.71 0.66 0.36 0.66 0.35 0.99
0.95

Top 5 % 0.91 0.72 0.72 0.37 0.71 0.36 0.99
0.95

Top
1-

0 % 0.94 0.87 0.80 0.63 0.79 0.62 0.98

0.92

Table 6 Average of gain (%) from genotype predictions for VOL for
one-stage, two-stage analyses (three weighing methods), and single-site
analyses

Average prediction

One-Stage 1/(SE)2 ER NONE Single-site

Top 2 % 69.9 63.9 64.9 64.8 67.3

Top 5 % 66.6 61.4 62.2 62.1 64.4

Top 10 % 63.6 59.2 59.8 59.8 61.2

Overall mean 46.6 47.0 47.0 47.0 47.8

Gain (%)

Top 2 % 50.2 35.7 38.1 37.9 40.8

Top 5 % 43.0 30.5 32.2 32.1 34.8

Top 10 % 36.7 25.9 27.2 27.1 27.9
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Discussion

The total genetic correlation estimates (i.e., clonal) between
the different silvicultural treatments (Table 2) were high for
VOL and SURVacross most of the sites, with the exception of
PAL for SURV. The approximated t tests that evaluated the
mean differences between the silvicultural treatments gave
significant results only for sites NAS and PAL on VOL, note
that their stem volume for seedlings was larger than for cut-
tings. These results are expected as there are important conse-
quences in tree size and survival in response to different silvi-
culture treatments implemented. From this analysis, it is clear
that clonal rankings do not differ significantly between the
two silviculture treatments, but there are differences in the
magnitude of the genetic effects.

The analyses performed in this study explored different
aspects of the genetic structure of loblolly pine clones planted
in the Southeast USA that are relevant for current and future
breeding strategies. A wide range of values for clonal-mean
repeatability in the single-site analysis was found for VOL as
reported for other breeding programs (Balocchi et al. 1993).
The clonal-mean heritability estimates were relatively high for
SNR, and low for OAK, which could be product of the varied
ages and environment effects that influenced the level of ex-
pression of the evaluated clones (Owino 1977).

According with Burdon (1977), one way to estimate and
understand GxE interaction is through the genetic correlation
(type B). This correlation has advantages for characterizing
the roles of environments in generating GxE, and thereby
helps breeding programs to establish the best strategies. The
explicit GxE model provided a single type B correlation esti-
mate across all sites and reflects a moderate to high level of
GxE interaction for both VOL and SURV. Particularly, for
SURV, the type B correlation was 0.57, a relatively low esti-
mate that indicates limited consistency of rankings among
sites.

Considering the implicit GxE model with US variance
structure, the different levels of heritability indicate how the

same trait is expressed in different environments (Table 3).
The different type B correlation estimates also indicate the
level of agreement on genetic values, and indirectly on rank-
ing, between the sites. OAK was the site with the lowest
genetic correlations and therefore highest GxE interaction
with respect to the others. This could be due to the young
age (4 years) of the trees at this site, as younger trees may
not fully express their genetic merit and hence, and thereby
tend to reflect environment effects more than older trees
(Balocchi et al. 1993). In contrast, NAS was the site with the
lowest levels of GxE interaction. Similar results have been
supported by Lucero et al. (2003), where they found trouble-
some genotype-by-environment interaction for VOL for some
combinations of sites.

Other MET studies using FA models for plant breeding
have shown substantial superiority, in terms of goodness-of-
fit to model variance components, when compared with sim-
pler structures (Smith et al. 2015). Piepho and van Eeuwijk
(2002) commented about computational difficulty in fitting
multiple variance-covariance structures to MET. However,
the FA structure showed computational advantages when the
study has a large number of sites. Ogut et al. (2014) also
recommend using multiplicative models with extended FA
models for forest tree MET data to address the heterogeneity
for more complex genetic variance-covariance structures.

The results from the two-stage analysis showed lower ge-
netic correlations than the one-stage analysis for all weighting
methods used, which is to be expected, as with the two-stage
analysis, some information is lost; however, the magnitude of
this loss depended on the weighting method used. According
to Mohring and Phiepo (2009), the best weighting method
depends more on the dataset than the evaluation criteria. The
heritability values for two-stage analyses were lower than one-
stage, which Ogut et al. (2014) also found when comparing
heritability values between one- and two-stage analyses.

The higher Pearson product–moment correlation found for
predictions and rankings can be explained due to the similar
performance of the genotypes across all sites, showing lower
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Fig. 2 Biplot from the principal
componet analysis of all clones
and sites for: a volume (dm3) and
b survival (%)
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GxE interactions between one- and two-stage analyses
(Mohring and Phiepo 2009). The high correlation found for
the NONE method (unweighted) for predictions and rank in-
dicates that unweighted method showed reasonable results
and the differences among weighting schemes were smaller
when larger numbers of genotypes are selected. When the
number of genotypes were reduced to 100, 50, and then 20,
the differences among weights are more pronounced and cor-
relation between predictions and ranks are reduced, as would
be expected with increasingly truncated distributions.

For the Biplot analyses, genotypes that are physically clos-
er to each other represent similar genetic responses across all
environments (Fig. 2). For VOL, the trials BFG and CUT and
SNR and PAL were grouped together and showed a similar
response trend. The perpendicular projection of the genotype
onto a given environment axis shows the performance of that
genotype in that environment (or site) (Boer et al. 2007). For
OAK, the trait SURV presented almost no correlation with all
other sites (Fig. 2b); this is probably due to site conditions that
produced the lowest average survival of all trials (90.6 %, see
Table 1). Note also that several genotypes had low SURV
values, but the majority have high SURV predictions and are
located to on the right side of the panel (see Fig. 2b).

Conclusions

Relevant levels of genotype-by-environment interaction for
individual-tree volume across the six sites studied were detect-
ed. Some sites present higher levels of interactions than could
be explained by their ages, geographical location, site prepa-
ration, and understory competition, among other factors.

The one-stage analysis unstructured model resulted in the
best analysis of genotype-by-environment interaction for
these six sites. Nevertheless, for more complex multi-
environmental trial analyses (e.g., >10 sites), a two-stage anal-
ysis is recommended, with an unstructured or factor analytic
structure, due to its minimum loss of information and its com-
putational advantages, as found in this study. Factor analytic
structure seems more appropriate when there is a large number
of sites with diverse levels of genotype-by-environment
interaction.

The one- and two-stage analyses gave different type B
correlation estimates, meaning that at least one incurred bias;
nevertheless, the correlation for rankings and breeding values
was similar. In addition, discrepancies in the genetic correla-
tion and heritability estimates were found among all three
weightingmethods, which need to be taken into consideration.
The weights based on the inverse of the variance of the pre-
dictions, 1/(SE)2, showed considerably better results than the
other weightings with minimum discrepancies in variance-
component estimates for the dataset analyzed in this study.

The use of the Biplots originating from the PCA was a
useful tool to summarize genotype-by-environment and con-
firmed the positive correlation between all the environments
detected. Also, they provide different insight on selection of
genotypes, which can be complemented with stability indexes
(e.g., superiority measure), which will yield better selections
and higher genetic gains for breeding programs.

This present study provided an opportunity to explore both
interactions between genotypes and cultural treatments and
interactions between genotypes and sites for loblolly pine in
the Southeastern USA. The statistical tools presented here can
be easily applied to other analysis for complex tree breeding
programs that evaluate a large series of trials. Here, it is rec-
ommended to implement one-stage analyses whenever possi-
ble with the use of factor analytic variance-covariance struc-
tures; however, the use of a two-stage analysis with
weightings based on the inverse of the standard error of the
prediction will lead to similar results, allowing one to evaluate
large and messy multi-environmental datasets.
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