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Ancient split of major genetic lineages of European Black Pine:
evidence from chloroplast DNA
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Abstract The European Black Pine (Pinus nigra Arn.) has a
long and complex history. Genetic distance and frequency
analyses identified three differentiated genetic groups, which
corresponded to three wide geographical areas: Westerns

Mediterranean, Balkan Peninsula and Asia Minor. These
groups shared common ancestors (14.75 and 10.72 Ma). The
most recent splits occurred after the Messinian Salinity Crisis
(4.37 Ma) and the Early–Middle Pleistocene Transitions
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(0.93Ma). The posterior ancestral population size (Na) is 260,
000–265,000 individuals. Each pool is further fragmented,
with evidence of a phylogeographic structure (Nst > Gst) typ-
ically observed in some natural populations from the Western
Mediterranean region and the Balkan Peninsula. The labora-
tory analysis was performed by fragment analysis—i.e. elec-
trophoretic sizing of polymerase chain reaction fragments,
combined with the sequencing analysis of 33 % of all individ-
uals as a control. Intense sampling of chloroplast DNA poly-
morphisms (3154 individuals and 13 markers: SNPs and
SSRs) over the full area of the species’ natural distribution
indicated moderate among-population variabil i ty
(Gst(nc) ≤ 0.177) in various parts of its range. These results
indicate that the natural populations have long migration his-
tories that differ from one another and that they have been
strongly phylogeographically affected by complex patterns
of isolation, speciation and fragmentation. Long and varying
climatic fluctuations in the region of the principal genetic
group have been the probable cause of different forest com-
munity associations with different successional patterns
resulting in interglacial refugia vs. macro long-term refugia.

Keywords Chloroplast DNA . Phylogeography . Pinus
nigra . Population structure . SNP . SSR

Introduction

Forest trees are major components of the ecosystems in large
geographical regions. Consequently, they are essential for the
maintenance of both mountain and lowland biodiversity be-
cause many organisms depend on the habitats provided or
shaped by woody plants. Past population dynamics may be
used to improve the conservation and management of genetic
resources, and numerous studies have focused on populations
(past and present) of tree species in the southern European
region where the main glacial refugia of biodiversity in
Europe is believed to have occurred. The refugia are hotspots
that appear to have allowed the survival of many species, with
strong persisting effects on the distribution and diversity of
current flora and fauna (Taberlet et al. 1998; Petit et al.
2003; Provan & Bennett 2008).

Conifers are the major components of many ecosystems,
and many populations also have considerable economic im-
portance (Farjon 2008; Eckenwalder 2009). Hence, the popu-
lation demographics, genetic structures, migration patterns,
and systematic relationships of conifers have been intensively
studied, especially in the Northern Hemisphere (Naydenov
et al. 2007; Godbout et al. 2008; Jaramillo-Correa et al. 2008).

In conifers, mitochondrial DNA (mtDNA) is maternally
inherited and chloroplast DNA (cpDNA) is generally pater-
nally inherited (Powell et al. 1995a, b; Vendramin et al. 1996).
These differences can be highly valuable for tracing patterns

of gene flow via seeds and pollen, respectively, and mtDNA
and cpDNA have been widely used in analyses of the genetic
structure of conifer populations (Naydenov et al. 2007;
Bonavita et al. 2015). Because wind-dispersed plant seeds
are thought to have a smaller effective radius of distribution
than pollen (Wright 1979; Grant 1980), markers in these ge-
nomes have widely differing rates of gene flow. Additionally,
the syntheses of multiple analyses of plants, birds and insects
suggest that there is generally a negative correlation between
the rates of intraspecific gene flow and introgression in the
absence of selective pressures under a null neutral model
(Petit & Excoffier 2009). This negative correlation indicates
that the effective delimitation of species’ (or subspecies’)
complexes will be more congruent with low mutation rates
(i.e. long signal/memory of the population history) and high
levels of variation in markers, such as cpDNA variations in
coniferous species (Provan et al. 1999). This phenomenon is
particularly important for analyses of the genetic structure of
collective specieswith the following: (i) incomplete reproduc-
tive barriers; (ii) retained ancestral polymorphisms; (iii)
fragmented distributions (e.g. by mountains); and (iv) a long
history of anthropogenic pressure. Such is the case for the
European Black Pine according to Fukarek (1958a, b),
Dobrinov et al. (1982), and Vidakovic (1991). The meaning
of collective species used by the authors is closer to the defi-
nition of a species complex and cryptic species of the present
day.

The European Black Pine (Pinus nigra Arn., subgenus
Diploxilon) is one of the most intensively studied conifers
after the Scots Pine, Maritime Pine, and Norway Spruce. It
is considered to be a Tertiary relict (i.e. 2.6–66.0 Ma; Mirov
1967) and has been one of the most economically important
forest species in the Mediterranean region for at least
200 years. Its natural area of distribution is in southern
Europe, northwestern Africa and Asia Minor. It is present in
all of the main European glacial refugia, including the Iberian,
Apennine, and Balkan Peninsulas, Turkey and some
Mediterranean islands. Currently, its distribution is highly
fragmented in its marginal regions and west of the Balkans
(i.e. west of the Adriatic and Ionian Sea basins); however, it is
more contiguously distributed in the Balkans and Asia Minor
(Turkey). It occupies exposed sites with southern aspects and
well-drained, poor soil at altitudes ranging from 100 to
1800 m above sea level according to Dobrinov et al. (1982).

The species was first taxonomically described by Miller
(1768), and since then, several authors have identified more
than 20 sub-species based on morphological and anatomical
data (Fukarek 1958a, b; Vidakovic 1991). This delineation is
of particular interest because the long-term fragmentation and
persistence of individual populations has given rise to extreme
adaptation to the local environment, which is expressed as
high morphological variability among populations.
Consequently, several authors consider it an example of a

68 Page 2 of 18 Tree Genetics & Genomes (2016) 12: 68



collective species (Fukarek 1958a, b; Dobrinov et al. 1982;
Vidakovic 1991). During the last 30–40 years, several at-
tempts have also been made to analyse the genetic and
chemical-phenotypical population and subspecies structures
of the Black Pine in geographic regions of varying sizes using
karyology, terpene and allozyme analyses (Fineschi 1984;
Bojović 1995; Naydenov et al. 2003). The first molecular
analysis of the species’ genetic structure was based on
cpDNA fragment SSR analyses of 324 individuals from nine
Black Pine populations in Bulgaria (Naydenov et al. 2006).
This analysis was followed by two studies using the same
molecular markers in populations from the western
Mediterranean in Europe (Raffi & Dodd 2007; Soto et al.
2010; Bonavita et al. 2015). The proposed structures have
been generally linked with the species’ geographic distribu-
tion, but not the full area of its natural distribution was
analysed. Thus, the global genetic dynamics and structure of
the Black Pine remain unclear despite multiple publications on
its biogeography and population genetic variation (Dobrinov
et al. 1982; Vidakovic 1991; Bojović 1995).

Therefore, in the present study, we analysed sequence var-
iation in 13 regions of the cpDNA of P. nigra individuals from
across its entire natural range. Then, we evaluated the acquired
data using several statistical methods to more thoroughly elu-
cidate the Black Pine diversity and genetic structure. We
hypothesised that the acquired data would indicate a strong
phylogeographic structure in all studied populations and a
high level of among-population differentiation.

Material and methods

Sampling and laboratory analysis

A total of 3154 individuals from 106 natural populations (29.7
trees per population on average) were sampled from the entire
area of the species’ natural distribution from 5.1° N to 48.1° N
latitude (from Morocco to Austria) and 4.7° W to 39.1° E
longitude (from Morocco to Turkey, Fig. 1). Total DNAwas
extracted from megagametophytes or green needle tissues
using the Plant Elute Genomic Mini Kit (Sigma-Aldrich,
USA) following the manufacturer’s instructions. cpSSRs
primer pairs that were tailed, modified and fluorescently la-
belled with FAM-6, NED or VIC as described by Vendramin
et al. (1996) (synthesized by Applied Biosystems) were ini-
tially used to determine size variations at six microsatellite loci
following the PCR protocol of Naydenov et al. (2006).
MapMarker 1000-ROX (Bio Ventures) size standards, an
ABI-3130 Genetic Analyzer and the Run3130 DATA
Collection v. 3.0 and GeneMAPPER v.3.7 software (Applied
Biosystems) were used. The six-tailed modified cpSSR
primers were Pt-30204, Pt-36480, Pt-45002, Pt-71936, Pt-
79951 and Pt-87268. The length variations for each

chloroplast fragment were classified by size and population
geographic origin. Then, for accuracy, both strands of the
samples from a third of the individuals (i.e. 1051) were se-
quenced after purification using CleanSEQ and AMPure
(Agencourt Bioscience) SPRI paramagnetic beads using the
same six (non-labelled and non-modified) primers, a BigDye
Terminator v. 1.1 Sequencing Kit (Applied Biosystems), and
the same Genetic Analyzer. The obtained sequences were as-
sembled by the SEQUENCHER v.4.8 software (Gene Code
Corp.). Variations in 13 regions were investigated: seven
SSRs (single sequence repeats) and six flanking regions with
single nucleotide polymorphisms (SNPs). The seven SSRs
were from six primer sets because the region sequenced with
Pt-30204 had two independent repetitive sequences. The se-
quencing was performed to minimize homoplasy and false-
positive signals in the basic data and to substantially increase
the power of the statistical analysis.

Statistical analysis of the population structure

The six chloroplast region sequence analyses for the 1051
individuals were interpolated for fragments of the same size
and from the same population (i.e. the same length fragments
from sequenced and non-sequenced individuals were
interpreted as identical if they were from same population);
one third of the samples were sequenced as an additional
control. We obtained the sequence for the six chloroplast re-
gions from all 3154 analysed individuals with less possibility
of homoplasy (i.e. electromorph size homoplasy) due to the
intensive sequence analysis and interpolation within the limit
of each population (Table S2 in the Appendix). The sequences
obtained from the 3154 individuals by interpolation from the
six chloroplast regions were used for all of the statistical anal-
yses. Chloroplast DNA diversity was calculated for each nat-
ural population in terms of the number of haplotypes
expressed as Nhap/Nind (the number of haplotypes detected
divided by the total number of analysed individuals from each
population) and the nucleotide diversity. These results were
compared to the Hcp chlorotype diversity (expected heterozy-
gosity) estimated from 103 random permutations using
ARLEQUIN v. 3.1 (Excoffier et al. 2002). We estimated an
unbiased size variant number in the chloroplast SSR variable
regions for each population with the HP-RARE v.1.0 program
(Kalinowski 2005).

The population structure was studied using both distance-
based (I) and model-based (II), i.e. frequency-based ap-
proaches. We used two distance-based methods with the ob-
tained results interpreted as principals; the model-based meth-
od was used as a complementary approach. For the distance-
based approach (I), we calculated pairwise genetic distances
according to the method of Rogers (1972) based on the as-
sumptions of no mutations and no selection. To avoid the risk
of mutations in the models changing between populations and
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group of populations in the large area of the Black Pine’s
natural distribution, we choose the non-mutation distance in
the among-population analyses. The unweighted pair group
method with arithmetic mean (UPGMA) algorithm for tree
building was preferred to the neighbour joining (NJ) method
after preliminary testing using the TreeFIT v.1.0 software
(R2

av = 0.94; Kalinowski 2009). The Kalinowski’s R2
av is

the average proportion of variation in the matrix of genetic
distances between populations that is explained by the trees at
different scenarios of migration rates (m: 0.01; 0.001; 0.0001;
0.00001; 0.000001) and divergence times for the populations
in the generations before sampling (t: 100; 500; 1000; 5000;
10,000; 50,000; 100,000), data not shown. The distances were
calculated using PowerMarker v. 3.0 (Liu &Muse 2005) with
103 bootstrap replicates. The pairwise genetic distances, i.e.
distance-based method have been used with success with
cpSSRs for multiple species (Terrab et al. 2006; Wang et al.
2011; Vinceti et al. 2013). Monmonier’s maximum difference
algorithm implemented in BARRIER v. 2.2 (Manni et al.
2004) with 103 bootstrap replications and 1000 distance ma-
trices from Rogers (1972) was used as a second strategy to
study the natural population structure determined here using
genetic distances combined with geographic data. The
BARRIER program has often been successfully used for uni-
parental markers (Dzialuk et al., 2009; Hohn et al., 2009;
Hodel & Gonzales 2013).

The geographic distribution of the haplotype frequen-
cies was analysed using a Bayesian clustering algorithm
(BYM) from two different programs for additional veri-
fication: STRUCTURE v.2.2 (Pritchard and Wen 2003;
Falush et al. 2003a) and TESS v. 2.1 (Chen et al. 2007).
The STRUCTURE program was successfully applied to
linked loci to define bacterial populations (Falush et al.
2003b) and to plastid DNA (uniparental markers) to as-
sess the population structure of plants (Pico et al. 2008;
Delplancke et al. 2012; Perdereau et al. 2014). We used

the chloroplast haplotype frequencies to perform the
model-based methods (i.e. a single locus with multiple
alleles) as described in Coart et al. (2006) and Bonavita
et al. (2015). The results of the model-based methods
were used if they agreed with the results from the
distance-based methods.

Initially, we expected that the STRUCTURE program
would be better adapted for the cpDNA data; however,
TESS was a better choice for the spatial population genetic
analyses because it used the hierarchical MRF model from
Voronoi and Dirichlet tessellation (François et al. 2006) that
was suitable for species with fragmented and large natural
distribution areas, such as the European Black Pine. We used
two models (without admixture and with admixture) of natural
populations and individuals. For the without admixture mod-
el, the maximal number of clusters (Kmax) was initially set to
range between 2 and 33 (i.e. approximately one third of the
population numbers). At higher numbers of clusters
(Kmax > 33), the likelihood history was unstable and the ob-
tained data were considered unusable. For the with admixture
model, the Kmax was initially set to range between 2 and 8 (i.e.
close to the result of the BARRIER program). At higher num-
bers of clusters (Kmax > 6), the likelihood profile was unstable
and the obtained data were considered unusable. The true
number of clusters (Ktrue) was determined by two methods:
(1) an estimate of the posterior probability of the data for a
given K by calculating Pr(KjX) and Pr(XjK) as described by
Pritchard et al. (2000) and (2) K true determined by
ΔK = m(|L″(K)|)/s[L(K)], i.e. the mean likelihood L(K) values
and a second-order rate of change of the likelihood (ΔK)
calculated for three values of the interaction parameter ψ
(0.6, 1.2 and 2.4) from 100 runs of 6 × 104 MCMC sweeps
with 104 burn-in sweeps as recommended by Evanno et al.
(2005). The Ktrue was compared to the results of the
BARRIER program and the Rogers (1972) distance as de-
scribed by Pritchard et al. (2000).

Fig. 1 The studied natural populations of Pinus nigra (Arn.) and the principal edges of genetic diversity determined by the BARRIER program (dashed
line), and the model-based method of STRUCTURE/TESS programs (solid line)
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Additionally, the Nst and Gst indices were calculated from
104 permutations by the SPAGEDI v. 1.2 software (Hardy &
Vekemans 2002) and GENETIX v. 4.05.2 (Belkhir 2000). The
comparison between Nst vs. Gst was used to determine the
presence of the phylogeographic structure (at Nst > Gst) con-
ceived by the SSRs in the different groups of natural popula-
tions from the without admixture and with admixture models.
The indices are calculated by 104 permutations by the
SPAGEDI software and GENETIX. The population structure
analyses were completed by hierarchical tests using AMOVA
(with 105 permutations) in ARLEQUIN. To detect the spatial
edges of differentiated groups of populations, we used
BARRIER v. 2.2 (Manni et al. 2004) with 103 bootstrap
replications.

Coalescence analysis

The coalescence process was used tomodel the ancestry of the
samples and the variability-reducing events (Kingman 1982;
Hudson 1990). Two sets of groups (AA-BB and BB-CC) were
analysed with the BATWING v.1.03 software (Wilson et al.
2003); the principal Black Pine formations: AA (western
Mediterranean), BB (the Balkan Peninsula) and CC (Asia
Minor), were determined from the admixture model of the
spatial population genetic analyses (BYM algorithm).
BATWING’s algorithm is Bayesian, which is adapted for hap-
lotype data and assumes that the effect of selection is negligi-
ble. The population size, time of most recent common ances-
tor (TMRCA) and divergent time among the groups of popu-
lations were calculated by the Markov chain Monte Carlo
(MCMC) algorithm to generate random samples from the
posterior distribution of the population genetic parameter.
The BATWING program has often been successfully used
for uniparental markers (Kayser et al. 2006; Raffi & Dodd
2007; Balaresque et al. 2010; Duminil et al. 2010). The priors
of the mutation per generation mu (μ) range varied from
3.2 × 10−5 to 8 × 10−5 (average 5.6 × 10−5) according to
Provan et al. (1999), and the priors of the effective population
size was v1 = 4 and v2 = 250,000 in a pure linear growth
population size model with a burn-in of the MCMC algorithm
(105) and number of sample output equal to 104 interactions.

The number of years for one generation is very difficult to
determine for forest trees and depends on many factors. Thus,
reproductive activity, period of intensive body growth and
longevity are more important. These factors have a strong
relationship and determine the effective capacity of one indi-
vidual to transmit its genome to the next generation (Pianka
1978; Lande et al. 1999, 2003; Spellman & Klicka 2006). For
the European Black Pine, we calculated the TMRCA and
more recent split time with three different generation ranges
(20, 68 and 100 years). The first range (20 years per genera-
tion) corresponded to the average age of the starting reproduc-
tive activity. The second range (68 years per generation)

corresponded to the average age of the limit of the period of
intensive body growth from the timber harvesting growth ta-
ble. The third range (100 years per generation) corresponded
to the average age of the Black Pine’s life limit. We expect that
this question is broadly disputable. The number of years per
generation depends on many ecological conditions and can
vary at different times and different natural distribution areas.
For this reason, the time calibration in the present publication
is treated with caution.

The results of the coalescence analysis are presented by
three different quantiles (5, 50 and 95 %), three different mu-
tation rates per generation (3.2 × 10−5, 8 × 10−5 and average)
and three different numbers of years per generation (20, 68
and 100). This approach generated nine different scenarios for
the posterior ancestral population size (Na) and the relative
sub-cluster size and 27 different scenarios for the TMRCA
and time of the most recent split. To make the choice closer
to reality, we calibrated the results, i.e. we compared the ob-
tained time from different scenarios with climatic records
timed from the same region as the Last Glacial Maximum
(LGM; 0.01–0.02 Ma), the Early–Middle Pleistocene
Transitions (0.892–1.2 Ma) and the Messinian Salinity Crisis
(5.33–5.96Ma). Mediterranean region tectonic history studies
are used as a complementary method (i.e. from southern
Europe, northern Africa and Asia Minor). The scenario ob-
tained from the TMRCA and time of the most recent split
calibration is used for the posterior ancestral population size
(Na) and relative sub-cluster size calculations. This scenario is
based upon three guiding principles: (1) focus on the quantiles
95 %—i.e. high confidence scenario; (2) the period of most
recent split must be from the same period (or after it) of im-
portant climatic records timed from the same region; (3) if
there are no matches, the analysis must be performed with
modification of the sample size and mutation rate (μ).

Results

A total of 272 distinct haplotypes were detected within
the 13 examined cpDNA microregions (seven SSRs and
six SNPs; Table S1 in the Appendix). We used the max-
imum number of chloroplast markers that were similar to
other Black Pine studies. The region sequences with Pt-
30204 have two independent repetitive sequences, where-
as the remaining primer sets had one. The GenBank
numbers of the sequences were doi:10.1007/s11295-
016-1022-y (Data Accessibility-1). SNPs were detected
by chance in the flanking regions of the SSRs. We
integrated the SNPs to increase the power of the
statistical analysis due to their low mutation rates, i.e.
two haplotypes with the same SSR length, but different
SNPs in the flanking regions were interpreted as two
different haplotypes (Table S2 in the Appendix). The
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method applied here has a missed interpolation error of
33–50 % less than that of published results without the
sequencing analysis control.

A total of 48.9 % of the haplotypes were detected in
less than three individuals. The number of distinct hap-
lotypes specific for different geographic regions ranged
from 4 to 136 (Fig. S1 in the Appendix). The gene di-
versity at these size-variant loci ranged from 0.123 (Pt-
36480) to 0.716 (Pt-71936). We performed rarefactions
to measure the size variant richness in the population and
showed that 30 (at p ≤ 0.05) and 50 (at p ≤ 0.01) indi-
viduals per population (or groups of populations) were
sufficient to accurately estimate the size variant frequen-
cies (Data Accessibility-2). This parameters varied be-
tween natural populations and regions, but there was no
evidence of a clear east-west divide. The average number
of distinct haplotypes per population was 12.8, with a
range from four to 27, a mean diversity index (Hcp) of
0.288 (0.192 to 0.442) and an average nucleotide diver-
sity of 0.029 (Table 1). The average level of association
between the number of haplotypes (Nhap) and the total
number of analysed individuals per population (Nind) is
0.42. Both parameters—Nhap and Nind—are independent
according to results of the T test (t = 504.6 with 208
degrees of freedom at p = <0.001), with weak correlation
between them (r2 = 0.187; at p = 0.05).

Present population structure

The present population structure was investigated using two
approaches based on the following: (1) genetic distances irre-
spective of geographic distances using Rogers (1972) geomet-
ric distances (both genetic and geographic distances) in the
BARRIER program and (2) combined distance and geograph-
ic parameters from the model-based methods (STRUCTURE
and TESS programs).

The result of the first approach using UPGMA clus-
tering with Rogers (1972) geometric distances indicated
the presence of three large clusters (with ≥50 % boot-
strap support) and an association of the haplotypes with
the geographical regions (Figs. S1 and S2 in the
Appendix). Each of the large UPGMA clusters contained
at least four sizeable sub-clusters with bootstrap support.
Finer geographical structuring was also apparent in the
clusters or sub-clusters in several geographic regions.
The first UPGMA cluster included most natural popula-
tions from west of the Adriatic and Ionian Sea basins
France, Italy, Morocco and Spain (FR, IT, MA and ES)
and three natural populations located in the western
Balkan Peninsula (BA-11 and GR-2) and Asia Minor
(TR-24). The second and third cluster generally repre-
sented natural populations from the Balkan Peninsula
and Asia Minor, respectively. The misclassified

populations in the three principal clusters were most of-
ten observed in the Asia Minor formation, followed by
the Balkan Peninsula and Western Europe. These
misclassified populations are indicators of a limit of this
algorithm for a large number of populations; thus, it was
necessary to complete the analysis with different methods,
and the presence of admixing (i.e. an admixture of a
significant number of local and universal haplotypes;
Figs. S1 and S2 in Appendix). The hierarchical AMOVA
analyses also showed substantial genetic variation among
groups (clusters) with ΦCT = 0.081 and among populations
with ΦSC = 0.066 (Table S3 in the Appendix). The calcu-
lated Fst and Gst values suggested that migration and genet-
ic drift contributed significantly to the genetic natural pop-
ulation structure.

The BARRIER results indicated the presence of six bar-
riers with more than 50 % bootstrap support that were clearly
consistent with the UPGMA, no admixture and admixture
clusters (Fig. 2). The highest rate of change (0.80) was found
at the barriers ii-iv and iii-iv between the Black Pine admixture
clusters AA and BB, and (0.76) at the barrier v-v between
admixture clusters BB and CC, followed by the barrier (i-i)
coinciding with the Rhone valley (0.65). The other barrier (vi-
vi) appeared to be less important (0.61) and was located in the
extreme eastern part of the distribution area of P. nigra. The
AMOVA results confirmed the relative significance of the
barriers with a ΦCT of 0.018–0.020 for the strong barrier vs.
0.003 for the less pronounced edges of the combined genetic/
geographic rates of change (Table S3 in the Appendix).

The UPGMA distance analysis of the population structure
did not consider prior geographic data. Therefore, we
complemented this analysis with an allele frequency test of
the group-individual-population structure combined with geo-
graphic data in space via Bayesian analysis using two scenar-
ios: without admixture (no-admixture) and with admixture
(STRUCTURE and TESS programs). The with-admixture
scenario indicated that the optimal number of clusters (Ktrue)
was three for all trends (data not shown). The numbers of
natural populations in the with-admixture clusters were ap-
proximately proportional to the present natural distribution
area of the Black Pine, with 19, 53 and 34 populations in the
three formations (designated AA—western Mediterranean,
BB—the Balkan Peninsula, and CC—Asia Minor, respective-
ly; Fig. 3). The population/individual membership was deter-
mined by estimating the admixture proportions at 90 % prob-
ability intervals.

Two large edges of the admixture were identified: (AB)
in the Adriatic and Ionian Sea basins and (BC) in the
basins of the Aegean, Marmara and Black Seas. The first
with admixture cluster (AA) was predominantly com-
prised of individuals from regions west of the Adriatic
and Ionian Sea basins. The second (BB) included individ-
uals predominantly from the Balkan Peninsula and
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Table 1 The studied natural populations of Pinus nigra (Arn.) along with details on genetic diversity

Country Population name Lat.N/ Long. N Nhap/Nind Nuc. div (SE) Hcp (SE)

AL-01 Laithiza 42.083/20.167 36 0.39 0.034 (0.019) 0.308 (0.020)

AL-02 Belgaj 41.583/20.183 20 0.45 0.032 (0.018) 0.339 (0.029)

AT-01 St. Margarethen 47.769/16.609 20 0.30 0.031 (0.018) 0.326 (0.022)

AT-02 Stopfenreuth 48.143/16.863 36 0.28 0.033 (0.018) 0.275 (0.018)

AT-03 Wiena 48.133/16.100 30 0.37 0.039 (0.021) 0.262 (0.024)

BA-01 Visegrad 43.806/17.423 36 0.47 0.031 (0.017) 0.261 (0.020)

BA-02 Bugojno 44.026/17.413 22 0.32 0.026 (0.015) 0.331 (0.032)

BA-03 Olovo 44.188/16.572 36 0.61 0.030 (0.017) 0.281 (0.022)

BA-04 Zepce 43.367/18.000 20 0.40 0.032 (0.018) 0.307 (0.025)

BA-05 Vran 43.694/17.470 36 0.39 0.027 (0.015) 0.247 (0.023)

BA-06 Sjemec 43.817/19.250 22 0.45 0.030 (0.017) 0.328 (0.030)

BA-07 Bosansko Grahovo-1 44.250/18.417 36 0.75 0.024 (0.014) 0.223 (0.023)

BA-08 Borja 43.533/18.150 36 0.56 0.030 (0.017) 0.252 (0.018)

BA-09 Konjic 43.533/18.133 22 0.45 0.026 (0.015) 0.267 (0.028)

BA-10 Kladanj 44.269/18.584 20 0.40 0.033 (0.019) 0.269 (0.027)

BA-11 Bosansko Grahovo-2 44.200/16.567 20 0.40 0.033 (0.019) 0.286 (0.029)

BA-12 Donji Ugar 44.467/17.233 20 0.50 0.025 (0.015) 0.257 (0.031)

BG-01 Bansko 41.800/23.500 36 0.47 0.031 (0.017) 0.285 (0.018)

BG-02 Devin 41.900/24.667 36 0.69 0.034 (0.019) 0.201 (0.022)

BG-03 Hvoina 41.600/24.500 36 0.67 0.025 (0.014) 0.228 (0.028)

BG-04 Mesta 41.700/23.667 36 0.36 0.032 (0.018) 0.278 (0.022)

BG-05 Nevestino 42.250/22.600 22 0.36 0.026 (0.015) 0.267 (0.028)

BG-06 Panagurichte 42.500/24.200 20 0.35 0.023 (0.014) 0.328 (0.029)

BG-07 Pazardjik 42.012/24.359 36 0.44 0.023 (0.013) 0.301 (0.030)

BG-08 Sandanskii 41.500/23.333 36 0.42 0.032 (0.018) 0.297 (0.020)

BG-09 Smolian 41.500/25.326 36 0.47 0.020 (0.012) 0.362 (0.025)

BG-10 Trigrad 41.667/24.417 36 0.53 0.028 (0.016) 0.257 (0.028)

BG-11 Velingrad 42.083/24.000 30 0.63 0.025 (0.015) 0.304 (0.027)

BG-12 Zlatograd 41.417/25.083 36 0.53 0.025 (0.015) 0.267 (0.027)

CP-01 n.i. 44.665/33.834 18 0.56 0.028 (0.016) 0.367 (0.033)

CP-02 Pionerskaja 44.833/34.238 36 0.42 0.025 (0.014) 0.282 (0.020)

CP-03 Kyzylivka 45.000/34.688 20 0.50 0.028 (0.016) 0.367 (0.031)

CY†-01 Amargeti 34.833/32.583 36 0.33 0.039 (0.021) 0.316 (0.023)

CY†-02 Salamiou 34.834/32.697 36 0.28 0.032 (0.018) 0.265 (0.020)

ES-01 Huerta del Rey 41.799/−2.833 36 0.36 0.026 (0.015) 0.273 (0.020)

ES-02 Isérico 40.250/−1.833 36 0.19 0.026 (0.015) 0.286 (0.018)

ES-03 Sierra Majiuz 37.749/−2.664 36 0.33 0.027 (0.015) 0.259 (0.025)

ES-04 La Pobla de Denifassa 42.101/−0.331 15 0.33 0.019 (0.012) 0.343 (0.031)

ES-05 Antoli 40.800/−0.350 36 0.28 0.037 (0.020) 0.283 (0.022)

ES-06 Sur de Cuencia 42.199/1.183 24 0.38 0.022 (0.013) 0.288 (0.029)

FR†-04 Vallée de la Restonica 42.286/9.124 36 0.50 0.028 (0.016) 0.271 (0.027)

FR†-05 Col de Vizzavona 42.150/9.150 36 0.53 0.032 (0.018) 0.258 (0.027)

FR†-06 Fotêt de Bonifatu 42.442/8.858 37 0.49 0.033 (0.018) 0.266 (0.026)

FR-01 Montpellier 43.750/3.517 34 0.32 0.014 (0.009) 0.283 (0.026)

FR-02 St.Guilhem le desert 43.735/3.541 35 0.49 0.029 (0.016) 0.277 (0.027)

FR-03 Vallée de la Buége 44.167/3.683 36 0.53 0.030 (0.017) 0.273 (0.023)

GR†-01 Tasos 40.700/24.570 36 0.28 0.028 (0.016) 0.295 (0.025)

GR-02 Kolokithia 38.800/22.083 36 0.50 0.030 (0.017) 0.293 (0.027)

GR-03 Grevene 40.080/21.436 36 0.61 0.027 (0.015) 0.207 (0.022)
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Table 1 (continued)

Country Population name Lat.N/ Long. N Nhap/Nind Nuc. div (SE) Hcp (SE)

HR†-01 Vela Grablje, Hvar 43.159/16.616 36 0.28 0.039 (0.021) 0.281 (0.015)

HR†-03 Brac 43.300/16.600 20 0.35 0.037 (0.021) 0.283 (0.020)

HR-02 Rijeka 42.867/17.500 15 0.33 0.035 (0.020) 0.429 (0.023)

HR-04 Podgorje, Peljesac 45.427/14.468 20 0.35 0.040 (0.022) 0.276 (0.027)

IT-01 San Pietro Apostolo 39.000/16.500 24 0.38 0.023 (0.014) 0.337 (0.027)

IT-02 Castelluccio Superiore 40.004/15.999 20 0.40 0.023 (0.014) 0.342 (0.029)

IT-03 Monteverde 41.001/15.499 18 0.33 0.022 (0.013) 0.244 (0.033)

IT-04 Avezzano 42.051/13.418 36 0.53 0.030 (0.017) 0.254 (0.025)

IT-05 Fara 42.248/13.968 36 0.39 0.032 (0.018) 0.225 (0.023)

MA-01 Talassemtane 35.166/−4.635 36 0.42 0.031 (0.017) 0.316 (0.022)

MA-02 Chefchaonen 35.133/−4.767 36 0.39 0.026 (0.015) 0.268 (0.028)

MK‡-01 Karadzica 41.787/21.323 15 0.33 0.029 (0.017) 0.331 (0.021)

MK‡-02 Gostivar 41.692/21.034 36 0.36 0.032 (0.018) 0.248 (0.022)

MK‡-03 Kucevo 41.467/21.297 36 0.44 0.033 (0.018) 0.255 (0.025)

MK‡-04 Kriva Palanka 42.323/22.325 15 0.47 0.034 (0.020) 0.334 (0.036)

MK‡-05 Resen 41.199/21.063 15 0.40 0.036 (0.021) 0.336 (0.023)

MK‡-06 Stip 41.786/22.419 15 0.40 0.026 (0.016) 0.297 (0.034)

MK‡-07 Valandovo 41.285/22.502 15 0.47 0.025 (0.015) 0.289 (0.028)

RO-01 Scrovistea Dis. 47.200/25.083 36 0.47 0.032 (0.018) 0.259 (0.022)

RO-02 Dobra seed 45.669/23.250 36 0.44 0.027 (0.016) 0.245 (0.025)

RO-03 Bihor Country 44.750/26.167 36 0.39 0.033 (0.018) 0.315 (0.017)

RO-04 Domogled Mountain 45.470/22.715 36 0.31 0.027 (0.015) 0.322 (0.025)

RO-05 Cerna Mountain 44.924/22.446 36 0.39 0.029 (0.016) 0.262 (0.027)

RS-01 Zlatibor 43.853/19.623 36 0.56 0.028 (0.016) 0.275 (0.028)

RS -02 Pljevlje 43.358/19.457 36 0.56 0.035 (0.019) 0.284 (0.030)

RS -03 Kanjon Tare 43.151/19.294 36 0.69 0.034 (0.019) 0.268 (0.028)

RS -04 Kanjon Pive 43.301/18.848 36 0.69 0.026 (0.015) 0.192 (0.025)

RS-05 Zlatar 43.498/19.896 24 0.83 0.030 (0.017) 0.311 (0.022)

RU-01 Beregovoe 44.417/38.417 36 0.33 0.024 (0.014) 0.276 (0.018)

RU-02 Osipovka 44.400/38.517 36 0.31 0.025 (0.015) 0.269 (0.023)

TR-01 Cifteler 39.290/31.192 20 0.55 0.044 (0.024) 0.308 (0.034)

TR-02 Cumra 37.300/32.508 36 0.19 0.041 (0.022) 0.283 (0.027)

TR-03 Akcakent 39.745/34.094 36 0.36 0.030 (0.017) 0.207 (0.025)

TR-04 Tausanli-Balikoy 39.484/29.119 36 0.53 0.026 (0.015) 0.229 (0.027)

TR-05 B. Gamurlu 39.722/27.186 36 0.33 0.048 (0.025) 0.303 (0.023)

TR-06 Jezirkopru-Golkoy 36.850/36.383 35 0.46 0.034 (0.019) 0.220 (0.024)

TR-07 Osmaniye 41.167/35.050 36 0.28 0.041 (0.022) 0.261 (0.027)

TR-08 Kastamonu 37.628/35.244 36 0.58 0.025 (0.014) 0.239 (0.023)

TR-09 Balikesir 39.925/29.367 22 0.32 0.028 (0.016) 0.346 (0.030)

TR-10 Manisa 37.721/31.238 20 0.30 0.024 (0.014) 0.350 (0.031)

TR-11 Denizli 37.456/30.204 36 0.36 0.028 (0.016) 0.291 (0.025)

TR-12 Bursa 38.680/30.056 20 0.60 0.034 (0.019) 0.222 (0.031)

TR-13 Afyon 41.042/34.367 36 0.44 0.024 (0.014) 0.367 (0.025)

TR-14 Ankara 37.681/29.072 36 0.42 0.026 (0.015) 0.269 (0.023)

TR-15 Bolu 40.824/32.656 36 0.36 0.024 (0.014) 0.314 (0.018)

TR-16 Tota 40.956/32.283 18 0.28 0.018 (0.011) 0.320 (0.021)

TR-17 Tesildag 37.036/29.486 20 0.35 0.023 (0.014) 0.308 (0.025)

TR-18 Orenkoy 37.503/30.254 20 0.20 0.014 (0.009) 0.337 (0.000)

TR-19 Koyduzu 38.108/31.222 20 0.20 0.018 (0.011) 0.355 (0.020)
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neighbouring islands, whereas the third (CC) included a
high proportion of individuals from Asia Minor, the east-
ern Black Sea coast and the eastern Mediterranean Sea
islands (Fig. 3 and Table 2). The partitioning of genetic
variance among the formations was ΦCT = 0.054 and
within the formations was ΦSC = 0.119. The optimum
number of clusters (i.e. groups) detected assuming no ad-
mixture (BYM algorithm) was 22 (Ktrue) with a median
interaction coefficient (ψ) of 1.2 and an estimated poste-
rior marginal probability (tau) >88 % (data not shown).
Between one and 15 natural populations were present in
each no admixture cluster (Fig. 2). Six clusters (no admix-
ture) were located in the region west of the Adriatic and
Ionian Sea Basins (clusters 1, 2, 3, 4, 5 and 6); 11 in the
Balkan Peninsula (clusters 8 to 17) and the neighbouring
islands of Thasos (cluster 21) in the Aegean and Adriatic
Seas; one in the region bordering the Eastern Black Sea
coast in Russia, Turkey and the Crimean Peninsula (clus-
ter 7); one on the eastern Mediterranean Sea islands
Cyprus and Turkey (clusters 18, 19 and 20); and three
in Asia Minor (clusters 18, 19 and 20). Hierarchical
AMOVA indicated among-group and within-group
ΦCT = 0.079 and ΦSC = 0.081 of the variation, respective-
ly. The partitioning of genetic variance among the forma-
tions according to the with-admixture hierarchical analy-
sis model was less pronounced than with the no admixture
model. Strong phylogeographic patterns were detected in
clusters 1, 2, 3, 5, 11, 20 and 22 of the no admixture
model, (i.e. Nst > Gst(nc) at p < 0.05 and 2 × 104 permu-
tations; Table 2). The phylogeographic structure has been
observed clearing physical barriers, such as the Adriatic

Sea (IT/HR), the Straits of Gibraltar (ES/MA), the western
Alps (FR/IT) and lowlands with highly competitive flora
in different regions. No significant differences were ob-
served in the Fst (RH or RH′) and Nst among any of the
clusters identified by the admixture model (AA, BB and
CC formations) and among some of the natural popula-
tions identified by the no admixture model (p < 0.05;
Table 2). These findings indicate that the mutation rate
is negligible compared to the effects of migration and
genetic drift.

The differences between the results obtained using all
of the analytical strategies reflect the differences in the
methodological algorithms, i.e. population vs. individual
assessments, distance-based vs. model-based methods
and non-model vs. model-based methods. The results
of the model-based methods STRUCTURE and TESS
agreed (full or partial match) with the results of the
distance-based methods (Roger’s geometric distances
and the BARRIER program). Approximately 25 % of
the clusters from the no admixture model did not match
Roger’s geometric distances. All clusters from the
BARRIER program matched all clusters from the no
admixture model with one partial exception (cluster 3).
All clusters and their individuals (approximately 80 %)
from Roger ’s geometric distances and from the
BARRIER program matched clusters from the admixture
model (Figs. 1, 2 and 3; Appendix-Fig S2). The pres-
ence of misclassified populations in Roger’s geometric
distances showed the limit of this method for a large
population number. The best distance-based method was
the Monmonier’s algorithm from BARRIER program.

Table 1 (continued)

Country Population name Lat.N/ Long. N Nhap/Nind Nuc. div (SE) Hcp (SE)

TR-20 Sanli 37.691/31.044 20 0.20 0.025 (0.015) 0.442 (0.022)

TR-21 Y-Gokdere 37.431/31.053 20 0.35 0.025 (0.015) 0.329 (0.025)

TR-22 K-Belentepe 37.669/30.844 36 0.42 0.032 (0.018) 0.216 (0.027)

TR-23 Erikli 40.447/30.724 24 0.54 0.026 (0.015) 0.312 (0.029)

TR-24 Ercekbasi 37.564/31.131 18 0.39 0.023 (0.014) 0.305 (0.024)

TR-25 Aktas 37.756/31.082 30 0.23 0.027 (0.016) 0.301 (0.020)

TR-26 Sindirgi 39.142/28.432 36 0.47 0.028 (0.016) 0.274 (0.028)

TR-27 Trabzon 40.540/39.122 36 0.53 0.029 (0.016) 0.206 (0.027)

Mean 30 0.42 0.029 (0.000) 0.288 (0.000)

Latitude and longitude are in decimal

Abbreviation for populations (alphabetic list*) are as follows: AL Albania, ATAustria, BA Bosnia, BG Bulgaria, CP the Crime Peninsulas, CY† Cyprus
island (SW-Cilician Sea), ES Spain, FR France, FR†Corsica island (SW-Ligurian Sea),GRGreece,GR† Thasos island (N-Aegean Sea or Thracian Sea),
HR Hrvatska, HR† Hvar and Brac islands (E-Adriatic Sea), IT Italy, MA Morocco, MK‡ Macedonia (all utilization of BMacedonia^ should have been
understood as short mentions of BFYROM^ for Bthe Former Yugoslav Republic of Macedonia^), RO Romania, RS Rep. Serbia, RS Montenegro, RU
Russia, TRTurkey, † all islands are inMediterranean Sea,N sample size,Nhap/Nind the ratio between the number of haplotype of total number of analysed
individual per population,Hcp chlorotype diversity (average haplotype per population is 12.77 (min/max: 4/27)), Nuc. div. nucleotide diversity is used to
measure the degree of polymorphism from sequence data; SE standard error (and standard deviation is SD = SE√n)
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Analysis of historic population demographics

The more recent coalescence events, i.e. time of the most
recent split and time of the most recent common ancestor
(TMRCA), were analysed for the populations of the three
main admixture clusters (AA, BB and CC formations) deter-
mined by the Bayesian assignment test (Table 3). The results
show that none of the 27 coalescent event scenarios were
associated with the LGM (i.e. less than 20–25 thousand years
ago). The best fit was observed for one scenario with 95 %
quantiles, an average mutation rate of μ = 5.6 × 10−5 per
generation and a 68-year lapse of time per generation, i.e.
calibration with the timing of the Early–Middle Pleistocene
Transitions and the Messinian Salinity Crisis. All data

interpretation and the following discussion are based on this
scenario. We interpreted the time of the paleo-climatic and
tectonic events with caution because the different methodolo-
gy used for the time calculation from the paleoclimatology
and tectonic dynamics might vary to some extent. The most
recent splits appear to have occurred between the natural pop-
ulations of the Balkan Peninsula and Asia Minor (BC:
0.93 Ma the Early–Middle Pleistocene Transitions) and the
natural populations of the Balkan and Apennine Peninsulas
(BA: 4.37 Ma after the Messinian Salinity Crisis). The
TMRCA follows the same pattern: 10.72 Ma for BB/CC and
14.75 Ma for AA/BB (i.e. from the early Pleistocene-
Pliocene-late Miocene; former Tertiary period; Table 3). The
posterior ancestral population size (Na) is 26.0–26.5 × 104

K=21

K=22

K=20

iii
i

Cluster
-1-IT-01,02;

-2-IT-03, HR-01;

-3-ES-05, FR-01, MA-01,02;

-4-ES-01,02,03,04,06;

-5-FR-02,03, IT-05;

-6-FR†-04,05,06, IT-04;

-7-RU-01,-02, TR-27, UA-01,02,03;

-8-BA-06,07,10, BG-01,02,06,07,09,11,12, RS-01,02,05;

-9-BG-03,04,10, GR-03;

-10-AL-01,02, BG-05,08, MK‡-01,02,03,04,05,06,07;

-11-AT-01,02, RO-02,03,04,05;

-12-RO-01;

-13-BA-01,02,04,05,08,09, HR-02,03, RS-03,04, 

-14-BA-03,11;

-15-AT-03, BA-12;

-16-HR-04;

-17-GR-02;

-18-TR-01,03,06,09,10,12,14,15,17,18,19,20,21,22,25;

-19-TR-04,08,11,13,16,23,24,26;

-20-TR-05,07;

-21-GR-01;

-22-CY-01,02, TR-02; 

i

ii

iv

v

v

vi

viK=22

Fig. 2 Bayesian clustering (coloured polygons) of European Black Pine
populations based of Bnone admixing^ clusters algorithm implanted in
STRUCTURE v.2.2 (Kmax = 21 and Ktrue = 22) and TESS v.2.1

(Kmax = 20 and Ktrue = 21). The bold lines are the genetic barriers
detected with Monmonier’s maximum difference algorithm of Manni
et al. (2004; BARRIER v. 2.2 program)
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individuals, and the relative sub-cluster size varies between
17.5 and 20.0 × 104 individuals.

Discussion

Population demographic history

Our study showed a moderate level of association between
the number of haplotypes and the total number of
analysed individuals per population (Nhap/Nind = 0.42),
which was close to the results obtained using the same
chloroplast microsatellites for Mediterranean pines (Pinus
pinea and Pinus halepensis) by Gomez et al. (2002,
2005), Pinus pinaster by Bucci et al. (2007), Pinus mugo
by Heuertz et al. (2010) and P. nigra by Bonavita et al.
(2015) and Naydenov et al. (2006). The number of hap-
lotypes per population is generally ≤0.50 for many pines
worldwide, including Pinus banksiana and Pinus resinosa
from North America (Walter & Epperson 2005; Naydenov
et al. 2005) and Pinus krempfii from Asia (Wang et al.

2014). In the Iberian Peninsulas, slightly greater than av-
erage Nhap/Nind = 0.61 (Table 2; nhp15 = 9.16) were re-
ported for P. nigra by Soto et al. (2010). We and others
using the same chloroplast microsatellites could not con-
firm the high level of Black Pine haplotypes per popula-
tion (av. 0.91; Table 1) reported by Raffi & Dodd (2007).

The homoplasy is a phylogenetic phenomenon resulting
from some cause other than common ancestry. In evolu-
tionary studies, this phenomenon is of two main types:
convergence and reversion. Homoplasy is contrasted with
homology. For molecular analysis, the homoplasy is the
presence of identical microsatellite electromorphs with het-
erogeneous DNA sequence (Doyle et al. 1998; Hale et al.
2004). In phylogeography studies, homoplasy has not been
a substantial problem for low mutation rates (μ < 10-4) of
microsatellites as chloroplast according Navascués &
Emerson (2005), and it depends on species, molecular
marker type, sample size and the used statistical method
(Estoup et al. 2002; Adams et al. 2004). The population
genetic studies here are less affected by homoplasy as
compared to studies without sequencing control.

CP

CP
Fig. 3 Map of the natural distribution range of P. nigra (top) according
Critchfield & Little (1966).Dashed black lines indicate the two big edges
of Badmixture^, AB (left) and BC (right), according the algorithm
implanted in STRUCTURE v.2.2 (Ktrue = 3) and TESS v.2.1 (Ktrue = 3).
The average proportion of individual membership (bottom) for each

Badmixture^ cluster AA (brown; Westerns Mediterranean Formation),
BB (green; the Balkan Peninsula Formation) and CC (rose; Asia Minor
Formation) and the regions of admixture AB (brown/green; IT-W.Balkan)
and BC (green/rose; Balkan-CY-TR-CP-RU); ΦCT—among formations;
ΦST—within formations
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The level of differentiation among populations found in our
study (ΦSC = 0.07–0.13) was similar to the level reported for
the Stone and Aleppo Pines by Gomez et al. (2002, 2005), the
P. pinaster by Bucci et al. (2007), the Mountain Pine by
Heuertz et al. (2010) and the Black Pine by Bonavita et al.
(2015) for the same geographic region. Generally, the results
for paternally inherited DNA (cpSSR) from coniferous spe-
cies (Abies, Picea and Pinus) showed ≤0.15 among-
population variability, including Picea abies by Scotti et al.
(2006) from Europe, Pinus sylvestris by Semerikov et al.
(2014) from Siberia-Asia and Abies balsamea by Cinget

et al. (2015) from North America. It seemed that the best
strategy is using the BARRIER program (distance-based
method) as the principal method, combined with the comple-
mentary model-based method of STRUCTURE and TESS
programs as necessary.

Genetic analyses identified three differentiated genetic for-
mations that were consistent with the European Black Pine’s
natural geographic distribution. The ancestors of the principal
formations began diverting relatively recently (14.75 Ma for
AB and 10.72 Ma for the BC edges) compared with the
TMRCA results from theHaploxylon andDiploxylon sections

Table 3 Posterior ancestral population size (Na) in 104 individuals,
most recent common ancestor in 104 years at generation time 20 , 68$

and 100¥ years (TMRCA years); relative sub-cluster size in 104

individuals, time in 104 years at generation time 20, 68 and 100 years
of the most recent split at prior (μ) mutation rate 3.2 and 8.0 × 10−5 per

generation and sample size (4 up to 250,000 individuals) for coalescent
analysis with Splitting Model at 11 × 104 interaction performed using
Wilson et al. (2003). The AA, BB and CC are formation (Badmixing^)
cluster from the haplotype frequency geographical distribution Bayesian
method (BYM)

Parameter Quantiles

5 % 50 % 95 %
Min-max (Av.)

Na

×104 individuals

(AA),(BB) 8–21 (14.5) 11–28 (19.5) 15–37 (26.0)

(BB),(CC) 8–21 (14.5) 11–28 (19.5) 15–38 (26.5)

TMRCA

×104 years

(AA),(BB)

49–116 (82) 103–243 (173) 262–606 (434)
$ 167–394 (280) 350–826 (588) 891–2060 (1475)
¥ 245–580 (412) 515–1215 (865) 1310–3030 (2170)

(BB),(CC)

42–102 (72) 84–206 (145) 183–448 (315)
$ 143–346 (244) 285–700 (492) 622–1523 (1072)
¥ 210–510 (360) 420–1030 (725) 915–2240 (1577)

Time of most recent split

×104 years

AB

6–18 (12) 19–53 (36) 62–195 (128)
$ 20–61 (40) 65–180 (122) 211–663 (437)
¥ 30–90 (60) 95–265 (180) 310–975 (642)

BC

3–9 (6) 7–18 (12) 15–40 (27)
$ 10–31 (20) 24–61 (42) 51–136 (93)
¥ 15–45 (30) 35–90 (62) 75–200 (137)

Relative sub-cluster size

×104 individuals

AA 3–8 (5.5) 6–14 (10.0) 10–25 (17.5)

BB 5–12 (8.5) 8–19 (13.5) 11–29 (20.0)

CC 3–8 (5.5) 6–15 (10.5) 10–26 (18.0)

The data in italics in the table for the quantile 95 % from the Btime of most recent split^ indicate a calibration match with the Early–Middle Pleistocene
transitions (0.892–1.2 Ma) and the Messinian Salinity Crisis (5.33–5.96 Ma)
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of pines (89–90 Ma; He et al. 2012). None of these scenarios
from Table 3 showed a population demographic signal from
LGM. Paleobotanical research confirmed the presence of
P. nigra (i.e. its ancestor) in the Balkan Peninsula during the
Tertiary (Stefanov 1941/42, 1943; Palamarev 1989). In the
period from 10–35 Ma, the Mediterranean region tectonic
structure was different from the current structure (Gealey
1989; Stampfli et al. 2002), and a significant part of the
Balkan Peninsula and Asia Minor and probably one very
small part of Calabria in southern Italy were located in a mas-
sive long topographic structure known as the Balkan-Pontides
microplate between theWestern Tethys and the Paratethys Sea
(Fig. 4). The region had multiple moderate elevations, includ-
ing mountains, latitude variations and a stable tectonic struc-
ture for a 25-My period that was favourable for the speciation
process. We speculate that the principal Black Pine ancestral
populations were located in this area during this period
(Fig. 4). In contrast to the Balkan Peninsula, Iberian
Peninsula and Asia Minor with their relatively stable tectonic
history, the Apennine Peninsula’s tectonic history is a puzzle
(i.e. non-monolith, unstable and collective over the last
25 My). The period of the speciation process was not suffi-
cient for the Black Pine ancestor to evolve into multiple dis-
tinct species; this probably explains the lack of reproductive
barriers between different Black Pine sub-species. In contrast
to P. nigra, some ancestors of the Pinus species from Mexico
and the western USA exhibit evolution into multiple separated
species in the present day (more than 44 according Critchfield
& Little 1966) in regions that have been tectonically stable for
a very long period (>80 Ma). This stability has resulted in
more pronounced isolation between separated populations in
the large ecological gradient determined bymountain tops and
large latitudinal ranges, i.e. species response with strong

glacial/interglacial cycles from oceanic-continental latitude-
altitude gradients over a very long time.

The results of the population structure analysis discriminate
between the natural populations of P. nigra along the edges of
the Adriatic and Ionian Seas (AB), i.e. between the Apennine
and Balkan Peninsulas. This edge (AB) divides the
Mediterranean basin into two topographically and climatically
distinct regions. Ancient climatic fluctuations most likely re-
sulted in different migration histories and forest community
associations with different successional patterns (i.e. intergla-
cial refugia vs. macro long-term refugia). The refuge termi-
nology and classification used here are based on the theory of
Stewart et al. (2010).

Many non-pine tree genera are often present in Black Pine
forest associations (including Quercus, Acer, Fraxinus and
Carpinus), and their associated fauna follow similar phylo-
geographic patterns. The AB and BC edges seem to be a
complementary edge of east/west admixing for multiple spe-
cies with large distributions (i.e. not limited to the
Mediterranean region). For example, Petit et al. (2002a, b)
and Lumaret et al. (2005, 2009) used chloroplast DNA to
illustrate the presence of eastern and western lineages of
eight different species of oaks; similar results were published
for hornbeam by Grivet & Petit (2003) and for three species of
European ashes by Heuertz et al. (2006). The edge BC
(Aegean and Marmara seas) between the Balkan Peninsula
and Asia Minor (Turkey) determined here was ignored for
many years because these areas have been sampled less in-
tensely. The east/west phylogeographic structure was reported
by Emerson & Hewitt (2005) using mtDNA for animals such
as Erinaceus europeus/concolor and Ursus arctos, insects
such as Chorthippus parallelus in Europe, and P. sylvestris
(Naydenov et al. 2007). Interestingly, similar edges are

13Ma 25Ma

Fig. 4 The Balkan-Pontides microplate region of the most probable
Black Pine ancestor distribution (ellipses) from the Paleogene and
Neogene periods. This microplate today is fragmented and shared
between the European and Anatolian tectonic plate. The
Mediterranean’s basin Paleogeographic reconstruction map from

Miocene (left) up to the Oligocene epoch (right) are according to
Gealey (1989) and Stampfli et al. (2002) and re-designed by Dr. Ron
Blakey from Colorado Plateau Geosystems, USA. The Western Tethys
and Paratethys Seas (i.e. Mediterranean Tethys and Paratethys) are in the
southern and northern portion of the ellipse
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marked by the distribution limits of other Mediterranean
pines, such as P. pinaster and P. brutia (Critchfield & Little
1966).

The timing of the Black Pine’s most recent split and the
TMRCA occurred during the Pleistocene-Pliocene-late
Miocene epochs during which there were multiple significant
temperature fluctuations not typical of a warm period (Joos &
Colin 2004). The maximal value of time of the more recent
split was the Messinian Salinity Crisis (late Miocene epoch:
4.37 Ma) that occurred in the Mediterranean Basin between
the Apennine and Balkan Peninsulas. This period resulted in
the formation of a natural migration bridge between the
Apennine and Balkan Peninsulas (and the continents and
islands). The older split (4.37 Ma) between the Apennine
and Balkan Peninsulas explained the more pronounced phy-
logeographic edge (AB) and indicated the beginning of sig-
nificant fragmentation of the Black Pine’s natural area.

The time of the most recent split and TMRCA between the
Balkan Peninsula and Asia Minor do not predate those from
the AB edge. The younger split (0.93Ma) between the Balkan
Peninsula and Asia Minor explains the less pronounced phy-
logeographic edge (BC) and indicates the relatively recent
beginning with the significant fragmentation of the Black
Pine’s natural area. The timing of the younger split was a
period of global climatic change and significant ice
accumulation on both poles due to increasing climatic cycle
duration that was described by Maslin & Ridgwell (2005) as
the Early–Middle Pleistocene transitions (0.892–1.2 Ma).
This ecological condition was most likely unfavourable for
the Black Pines in this region (eastern Mediterranean) and
contributed to a significant reduction in the species’ distribu-
tion, fragmentation, isolation and the split between the Balkan
Peninsula and Asia Minor. This hypothesis has been support-
ed by the presence of severe bottlenecks a long time before the
first human civilization developed in the region, or agricultur-
al use of the land (Naydenov et al. 2011, 2015). We hope to
obtain more information from future complementary mtDNA
analyses.

The coalescence analysis did not show any signal from the
LGM (BATWING program) in contrast to the results reported
by Raffi & Dodd (2007). These authors reported Black Pine
postglacial recolonisation (i.e. expansion); however, multiple
independent paleobotanical studies have reported opposing
data, i.e. Black Pine postglacial compression from the same
region and time (García-Amorena et al. 2011; Roiron et al.
2013). The P. nigra natural populations from the western
Mediterranean formation but not the Balkan Peninsula and
Asia Minor formations are in habitats identified by fossil re-
cord from LGM as interglacial refugia (cryptic southern
refugia). This hypothesis was supported by modern paleobo-
tanical studies from the western area of the natural distribution
ofP. nigrawhich showed this species was one of the dominant
forest trees in the LGM period in the Iberian Peninsula and

southern France (García-Amorena et al. 2011; Roiron et al.
2013). Only 4–7 °C was required to transform the western
European Black Pine natural area from a dominant to an en-
dangered species over a very short period of time (less than
10 thousand years).

The among-population structure of the Black Pine on the
Balkan Peninsula and Asia Minor observed in the present
study was generated by principal topographic structures, such
as mountains and watersheds, and the repeated in situ survival
of the populations during cool periods with little altitude mi-
gration as suggested by Naydenov et al. (2006, 2015). We did
not find any fossil records for significant P. nigra area size
fluctuations for either region during the LGM period (and
before/after). Thus, the Balkan Peninsula and Asia Minor
may be areas of endemism or macro long-term refugia rather
than glacial or post-glacial refugia for the Black Pine natural
populations according to the theory of Stewart (2003) and
Stewart & Dalen (2008). Our phylogeographic and
coalescence-based results support the hypothesis of individual
spatial and temporal responses of different Black Pine forma-
tions (i.e. interglacial refugia vs. macro long-term refugia).
Similar longitudinal species adaptation for contrasting climat-
ic and soil conditions was observed for the sea buckthorn
(Hippophae rhamnoides), which naturally persisted in the
Asiatic step and the Atlantic seaboard (Iversen 1973). The
phylogeographic structure of P. nigra revealed by cpDNA is
the result of a long evolutionary history shaped by very long-
term (15–16 Ma) climatic/ecological changes and tectonic
historic structure changes. The obtained results show that
chloroplast DNA is a very useful tool for phylogeographic
studies with long historical imprints to present population
structures.

Perspectives

Generally, isolated populations are believed to be capable of
rapid evolutionary changes due to the high chance of random
genetic drift, which generates variations on which selection
can rapidly act (Lehman 1998). Mediterranean vegetation is
considered to be very resilient because it has experienced in-
tense and abrupt climatic changes. As a result, these taxa are
very stable over time and consequently they have retained
their ancestral characteristics. Furthermore, the vegetation
tends to not fill its climatic range (Svenning & Skov 2004;
Petit et al. 2005). The Black Pine fulfils the principal charac-
teristics of Mediterranean taxa. Consequentially, it is neces-
sary to mount a collective effort (national and international) to
protect biodiversity in the region, and to manage the ecosys-
tem with a better understanding of its genetic, morphological
and physiological characteristics.

Much effort has gone into different meta-genomic forest
tree projects (i.e. ProCoGen, EvolTree, TreeBreDex and
NovelTree) over the last 10–15 years in Europe (EU) and
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has achieved very good results. New genomics/epigenetics
projects and collective effort are necessary to elucidate the
sub-species structure of the Black Pine for future selection,
management and conservation practices. The present results
concerning the phylogeographic structure are complimentary
and would have been very expensive and difficult to obtain
using other techniques. In the near future, we will use mito-
chondrial DNA to complement the results reported here. This
approach will help us develop a better understanding of the
natural population structure and history of the Black Pine and
confirm the importance of using large sampling areas for mo-
lecular analyses of periods of climatic change and anthropo-
genic pressure.
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