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Abstract Core collections are nowadays widely employed in
diverse studies on plant genetics. The more extensively used
method to build core collections (maximization strategy) is
based on the selection, from a global collection, of those ac-
cessions which maximize the number of different alleles and
phenotypic classes (classes’ richness). However, different core
collections should be created for different types of studies, and
though several years ago most of core collections were devel-
oped to make the characterization and use of germplasm col-
lections easier with a smaller sample size, for either conserva-
tion or breeding purposes, today, they are widely employed
for association studies that are broadly applied in plant genetic
improvement. Following the M strategy, some alleles or phe-
notypic classes often appear in a very low frequency, which
may reduce the power of the analysis, avoiding the detection
of real associations (false negatives). In this work, we propose
and evaluate a new way to build core collections using the
maximization strategy in several sequential steps, tomaximize
the frequency of minority classes, thus increasing the statisti-
cal power of the association study.

Keywords Associationmapping . Germplasm collection .M
strategy .Minor classes . Statistic power

Introduction

The maintenance of plant species in germplasm collections is
of great importance to conserve their genetic diversity, which
in many cases has suffered deep genetic erosion due to differ-
ent social and agriculture factors, such as the importation of
more productive foreign varieties. Given the high number of
accessions integrating some collections, it is difficult to char-
acterize them completely, so the establishment of smaller col-
lections representing the genetic diversity of the large collec-
tion is very useful to carry out certain studies. Such collections
are called core collections (CCs) and contain a much lower
number of accessions than the initial collection; so most of the
published CCs contain between 5 and 20 % of the global
collections (van Hintum et al. 2003).

Since Frankel (1984) proposed the concept of core collec-
tion, a body of literature on the theory and practice of core
collections has accumulated. Many approaches for selection
and evaluation of CCs have been proposed and used (see
Odong et al. (2013)). The different methods to build CCs
depend on several factors, and the level of stratification of
the collection is among the most important ones. In stratified
collections criteria like the size of each group (Brown 1989),
the phenotypic Gower distance (D strategy) (Franco et al.
2005) or the genetic diversity in each group (H strategy)
(Schoen and Brown 1993) have been used. The selection of
accessions for the core collection in non-stratified collections
(or in each group of stratified collections) may be at random
(R strategy), but nowadays, the allelic maximization is the
more used criterion (M strategy) (Schoen and Brown 1993).
The M strategy examines all possible core collections and
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singles out those that maximize the number of observed dif-
ferent classes (richness) at the markers used, which may be
molecular, morphological, phenological, etc. (Gouesnard et al.
2001). Bataillon et al. (1996) observed that M strategy is able
to capture the allelic richness both in neutral and selected loci,
which usually present large frequency differences. This meth-
od not only defines the number of accessions needed to cap-
ture the desired variability but also identifies each individual
accession that must be included in the CC. From a practical
point of view, searching throughout all possible core collec-
tions is unfeasible when the collection to be sampled is large,
because the number of possible combinations grows
factorially with the sizes of the core and of the whole collec-
tion (Gouesnard et al. 2001). For that reason, the software
used for establishing core collections implement algorithms
to improve results while keeping the calculation time needed
in reasonable terms. Because of this, and especially if the
whole collection is very redundant, different runs of a soft-
ware may provide different outcomes regarding the composi-
tion of the core collection and the frequency distribution of the
classes within each trait.

Besides, it is important to take into account the purpose of
the core collection, since different phenotypic distributions
could be required for different applications, and so, distinct
methods for building them should be used. So far, many CCs
have been built in different ways for conservation or breeding
purposes, but currently, genetic association studies are prolif-
erating (Khan and Korban 2012), and they have specific
requirements.

Association mapping, or linkage disequilibrium (LD) map-
ping, has been applied in numerous plant species and essen-
tially involves searching for genotype-phenotype correlations
in a population, which is commonly a collection of individ-
uals. Compared with traditional quantitative trait loci (QTL)
linkage analysis, association mapping has several advantages:
It provides better genome coverage of marker polymorphisms
than any biparental population, it has a higher mapping reso-
lution and the possibility to detect multiple allelic effects, and
it does not require the development of segregating popula-
tions. Several research groups have successfully performed
association analyses of multiple traits using core collections
(Bordes et al. 2013; Carpio et al. 2011; Fernandez et al. 2014;
Holbrook and Anderson 1995; Kwon et al. 2012; Li et al.
2011; Soto-Cerda et al. 2013, 2014; Upadhyaya et al. 2012,
2013; Vargas et al. 2013a, b; Wang et al. 2011; Zhao et al.
2010; Zorić et al. 2012).

Association studies in plants show generally problems re-
lated to the collection used. The main problem is genetic re-
latedness among individuals in the collection. This may cause
a genotype-phenotype covariance, and many genetic markers
across the genome will appear to be associated with the phe-
notype, when in fact, these genetic markers simply capture the
genetic relatedness among individuals (Myles et al. 2009).

The use of mixed linear models (MLMs) that correct for re-
latedness through incorporating population structure and/or
kinship information has reduced the rate of false positives
(Weir 2010; Zhang et al. 2010).

Another problem of association studies are the false nega-
tives, related to the power of the association test. The statisti-
cal power for identifying markers associated with quantitative
traits depends on several factors, including heritability, the
number of causal variants, and their frequency (Shin and
Lee 2015). For instance, Gonzalez-Martinez et al. (2008) ob-
served that the power to detect association decayed rapidly for
low frequency (0.1<MAF<0.2) and rare alleles (MAF<0.1).
Whitt and Buckler (2003) recommended excluding polymor-
phisms with a frequency less than 5 % from the analyses,
partly because there is rarely enough statistical power to test
for association at these low frequency polymorphisms. This
problem may be even raised in complex traits associated with
population structure, because the correction of structure and
kinship in MLM also weakens the real associations (Atwell
et al. 2010; Liu et al. 2016). Although this issue is normally
considered regarding the genotypic part, it affects in the same
way the phenotypic one. Certain classes of interesting
agronomical or commercial traits are represented in low fre-
quency in the global collections, and traditional core collec-
tions built over the basis of maximizing the total diversity can
decrease even more the frequency of these minority classes. In
this work, we propose a new approach based on theM strategy
to obtain core collections more suitable for association map-
ping, which could improve the power of these analyses to
detect associations by reducing false negative results for traits
with classes at low frequency.

Material and methods

Three different methods for building core collections were
tested using two datasets of two plant species (rice and grape-
vine) for which traits of different characteristics had been
described.

Rice data

A phenotypic dataset for 1000 rice accessions available at
http://www.genebank.go.kr/eng/PowerCore/ (Kim et al.
2007) was used. It contains values for 39 phenotypic traits
(28 qualitative and 11 quantitative traits) (Online Resource 1).

Grapevine data

The grapevine plant material consisted in 246 unique geno-
types of a table grape collection maintained at the germplasm
bank of El Encín (IMIDRA, Spain), which was characterized
for 37 morphological and phenological descriptors (17
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qualitative and 20 quantitative traits) and for 20 nuclear simple
sequence repeats (SSRs) (Ibáñez et al. 2009) (Online
Resource 2).

Generation of core collections

Core collections were generated with the software MStrat 4.1
(Gouesnard et al. 2001). This software considers each value of
a qualitative variable or marker allele as an individual class,
while values of quantitative variables are binned into a series
of discrete classes of identical size along the variable range of
variation, and which number is chosen by the user. We split
each quantitative variable into ten classes (except for a few of
them, with a limited range of variation, for which we used five
classes). This arbitrary number was chosen to give the quan-
titative variables a similar weight to that of a microsatellite
marker (10.1 alleles in average in the grapevine set) and to
minimize the number of classes appearing only once in the
global collection.

Firstly, redundancy of each collection was examined to
know the number of accessions necessary to represent a high
percentage of the total collection. Random (R) and maximiza-
tion (M)methods were used. In order to allow for comparisons
between the different methods in the two species, the sizes of
the final CCs were not determined from the redundant data,
but arbitrarily fixed at 96 entries (the term Baccessions^ refers
to elements that constitute the whole collection and Bentries^
are elements of the core collection).

Three core collections of 96 entries were built using the
Maximization strategy (Schoen and Brown 1993), implement-
ed inMStrat 4.1 (Gouesnard et al. 2001). The software was set
to use 100 iterations to generate each of 100 potential core
collections (CC replicates) in every run. The primary criterion
used to select any CC was classes’ richness, defined as the
sum, across all the variables or markers, of the number of
different classes or alleles represented among the entries. In
case of tie between two CC replicates for richness, Shannon
Index was used as secondary criterion of optimization or se-
lection. Each CC was built according to the three following
methods, two of which comprise different sequential steps:

Method 1 Core collection obtained in one step. Procedure:
Generation of 100 CC replicates of 96 entries with MStrat
→ Selection of the CC with the highest classes’ richness,
and, in case of ties, with the highest Shannon Index (CC96).

Method 2 Three subcollections, each one obtained in one
step. Procedure:Generation of 100 CC replicates of 32 entries
with MStrat→ Selection of the subcollection with the highest
classes’ richness, and, in case of ties, with the highest
Shannon Index→ Removal of the accessions included in this
subcollection from the total collection and repetition of the

process twice more → Union of the three core subcollections
of 32 entries to obtain a CC of 96 entries (CC32Sx3).

Method 3 Three subcollections, each one obtained in four
steps. Procedure: Generation of 100 CC replicates of 32 en-
tries→ Selection of the accessions more frequently represent-
ed in the 100 replicates and set them in the kernel (compulsory
entries) for the next step → Repetition of the process twice
more (the objective is to set the accessions more represented in
each 100 replicates along three steps, trying to avoid acces-
sions that could be included in the core collection by random)
→ Generation of 100 new CC replicates of 32 entries, all of
which will include the accessions set in the kernel in the three
previous steps → Selection of the subcollection with the
highest classes’ richness, and, in case of ties, with the highest
Shannon Index→ Removal of the accessions included in this
subcollection from the total collection and repetition of the
whole process twice more → Union of the three core subcol-
lections of 32 entries to obtain a CC of 96 entries (CC32Fx3).

Evaluation of core collections

The three core collections built from each dataset with differ-
ent methods were compared and their quality was evaluated
according to the searched goal. CCs generated for both
datasets were analyzed for Shannon Index and total and mi-
nority classes’ frequencies. Besides, a genetic structure anal-
ysis was done on grapevine data, for which microsatellite data
were available, to evaluate the possible differences in genetic
structures obtained by the different methods proposed. It was
done using 19 non-linked SSRs (all those included in Online
Resource 2, but VVMD25), and software Structure 2.3.2.1
(Pritchard et al. 2000). A model with a putative number be-
tween one and ten populations and correlated allele frequen-
cies (Falush et al. 2003) was assumed. Monte Carlo Markov
Chain run-length period of 1,500,000, with 500,000 burn-in
steps, and 10 iterations for each number of putative popula-
tions were used. Evanno criterion (ΔK)was used to decide the
number of populations (Evanno et al. 2005). A threshold of
0.8 for the membership coefficient (Q) was fixed for popula-
tion assignment.

In addition, in order to evaluate the effect of eachmethod in
association analysis, specifically in the rate of false negatives
(Type II error), simulations were done in the grapevine global
collection to test against the phenology trait BTime of
Budburst.^ Data was simulated to create an association be-
tween the class Bvery late^ (numerically 9, Online Resource
2) and the recessive allele (C) of a biallelic locus with com-
plete dominance (TT and CT with no effect on the trait).
Genotypic data was generated with a priori frequency of
0.325 for allele C. Genotypes were first assigned to the acces-
sions presenting class 9, considering three degrees of linkage
disequilibrium: correlations between class 9 and genotype CC
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of 1.0, 0.8, and 0.6 respectively (Online Resource 3). Then,
genotypes were assigned to the remaining accessions
using the expected frequencies at Hardy-Weinberg equi-
librium as assignment probabilities. Data for 5 different
markers were simulated for a priori correlations of 0.6
and 0.8 and 1 marker for total correlation, and all these
11 markers were used in association analyses in the
global and the 3 core collections.

Association analyses were done using amixed linear model
(MLM) implemented in TASSEL v3.0, applying an optimum
level of compression and the P3D approach for variance com-
ponent estimation (Zhang et al. 2010). A Q matrix for each
collection was obtained with Structure 2.3.2.1 as detailed
above and kinship coefficients were calculated using the same
19 non-linked SSRs used in Structure and the estimator of
Ritland (1996) implemented in SPAGeDi 1.3 (Hardy and
Vekemans 2002).

Results

Three methods were used for building core collections on two
different datasets with the objective of establishing a new ap-
proach to maximize in the core collections the representation
of minority classes, what we hypothesize that would improve
association analyses through reducing false negatives. MStrat
software, developed by Gouesnard et al. (2001), was used to
evaluate the redundancy of datasets and to build the core
collections.

Redundancy in the collections and efficiency ofM strategy

The rice dataset contained 1000 accessions and 182 different
classes, while grapevine dataset included 246 accessions and
461 classes (Online Resources 1 and 2). The maximum
numbers of classes were 191 (rice) and 464 classes
(grapevine), as determined by the number of classes in
the qualitative variables and molecular marker alleles,
and the number of classes arbitrarily established for
the quantitative variables. The redundancy analysis de-
termined that 37 accessions (4 % of the total number)
and 54 accessions (22 %) were enough to account for
the total classes’ richness existing in rice and grapevine
datasets, respectively. A core collection of 32 entries
represents up to 97.2 % of the diversity existing in
the rice whole collection and 93.9 % in the case of
grapevine.

The variability captured by theM strategy was, on average,
32 % superior to that obtained using the R strategy (random
selection of accessions) in rice, while in grapevine, collections
obtained using M strategy contained 14 % more classes than
those obtained using R strategy.

Generation of the core collections

The three core collections of 96 entries (CC96, CC32Sx3, and
CC32Fx3) obtained with the three different methods (1, 2, and
3 respectively) are shown in Online Resource 1 (rice) and
Online Resource 2 (grapevine).

All the 100 CC replicates obtained with Method 1 included
all the classes existing in the whole collections (maximum
richness), and so the selection of CC96 was based on the
Shannon Index. In both species, rice and grapevine, only
one collection replicate was obtained with the highest
Shannon index and was selected. This was also the case of
the 3 subcollections of 32 entries (CC32S) obtained using
Method 2 with the 2 species data.

Each CC32F was obtained in four steps with Method 3.
The first three steps were used to select those accessions
which appeared more frequently in the 100 replicates obtained
with MStrat software. The selected accessions were set in the
kernel file, and so, they were always included in the subse-
quent collection replicates obtained. In the second and third
steps, new accessions were selected on the same basis and
added to the kernel file. The number of selected entries includ-
ed in the kernel in each step varied between 4 and 11, depend-
ing on the frequency of the more repeated accessions (Online
Resource 4). So, in the case of rice data, for the building of the
first core collection of 32 entries, the first kernel included
accessions appearing in 100 % of replicates, the second kernel
was formed by accessions appearing in at least 95 % of repli-
cates, and 82 % was the threshold frequency for the inclusion
in the third kernel. For the successive core subcollections of
32 entries, those percentages were lower (Online Resource 4).
For grapevine data, the percentages used to include entries in
the kernel were lower than for rice in every step: for instance,
82, 71, and 61 % in the first core subcollection of 32 entries
(Online Resource 4). The fourth step consisted in the selection
of the corresponding CC32F based on the highest richness,
and, if needed, on the highest Shannon Index. Using these two
criteria, only one of the collection replicates was obtained for
each of the three CC32F in rice. In grapevine, two replicates
showed identical number of classes and Shannon Index in the
generation of the first subcollection and differed in only two
entries. One replicate was chosen, and it was noted that the
two excluded accessions were incorporated in the following
subcollection. For the second and third grapevine subcollec-
tions, only one replicate was obtained with the maximum
richness and Shannon index.

Composition of the core collections

As regards the entries shared by the different core collections
obtained from rice data, only 38 entries appeared in the three
CC (40 % of the 96 entries included) (Fig. 1). Forty entries
(42 %) were common between CC96 and CC32Sx3 and
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between CC96 and CC32Fx3, while 78 entries (81 %) were
common in CC32Sx3 and CC32Fx3. In grapevine, 53 entries
were present in the 3 core collections (55 %). The common
entries between CC32Sx3 and CC32Fx3 were 82 (85 %),
while they shared 65 and 57 % of their entries with CC96
(62 and 55 entries, respectively).

Evaluation of the diversity included in the core collections

The core collections obtained with Method 1 for both datasets
accounted for 100 % of the classes existing in the whole col-
lections, while the percentage of classes represented in the
core collections built with methods 2 and 3 was always above
99 % (Table 1). In rice global collection, 23 unique classes
were detected and distributed in 23 accessions; while in grape-
vine set, 32 unique classes were distributed in 24 accessions.
The number of unique classes was raised in CC96 with respect
to the whole collection by 82 (rice) or 112.5 % (grapevine). In
the case of CC32Sx3 and CC32Fx3, the raise in the number of
unique classes was much lower in rice (1 and 2 unique classes
more respectively) and intermediate in grapevine (15 and 8
unique classes more, respectively, Table 1).

The frequency distribution of the classes was also different
in the CC96 and the two CC32x3 (Fig. 2). The low frequency
classes (left sides of the figures and small windows) showed a
higher frequency in CC32x3. For instance, in rice, there were
128 classes present in at least 4 entries (absolute frequency ≥4)
in both CC32x3 against 108 classes in CC96. On the contrary,
CC96 were enriched in classes with high frequency (right
sides of the figures). In grapevine, more evident differences
were detected in the number of classes with absolute frequen-
cy ≥3, with 380 and 382 classes in CC32Sx3 and CC32Fx3,
respectively, against 352 classes in CC96.

This different frequency distribution of classes in each core
collection type was also revealed by Shannon Index (H).
Large differences were found between grapevine and rice data
used, but within each dataset, both CC32x3 showed similar
values and higher than their corresponding CC96 (Table 1).

Minority or low frequency classes are especially important
for the purpose of this work. Figure 3 shows the pairwise
differences between the CCs in the number of classes with
minimum absolute frequencies between 2 and 10. There were
few differences in the number of classes when comparing
CC32Sx3 and CC32Fx3, and these differences were positive
or negative. Nevertheless, for these minority classes, there

Fig. 1 Venn diagram showing
the common entries in the three
core collections: CC96 (Method
1), CC32Sx3 (Method 2), and
CC32Fx3 (Method 3). a Rice
collections; b grapevine
collections

Table 1 Description of diversity
in the global and core collections
obtained in rice and grapevine

Global CC96 CC32Sx3 CC32Fx3

Rice Shannon Index 23.40 29.33 34.00 33.85

Richness (total number of classes) 182 182 180 182

Number of minority classes (freq < 10) 58 100 95 99

Number of unique classes (freq = 1) 23 42 24 25

Number of minority classes with freq < 4 39 74 52 54

Grapevine Shannon Index 85.65 88.54 90.57 90.25

Richness (total number of classes) 461 461 459 457

Number of minority classes (freq < 10) 156 247 244 231

Number of unique classes (freq = 1) 32 68 47 40

Number of minority classes with freq < 4 81 136 111 117
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were clear differences between any of the CC32x3 and CC96.
In all the range considered, the difference was positive in favor
of the CC32x3. For instance, in rice there were 20 classes
more in both CC32x3 than in CC96 which were present in
at least 4 entries.

Structure analysis in grapevine

Genetic structure was evaluated only in grapevine core collec-
tions since this dataset included molecular data. Results ob-
tained for the CCs were compared with those observed in the
global collection of 246 accessions (C246), for which two
possible structures were obtained: one with two populations
(C246-K2-Q1 and C246-K2-Q2) and another one with four
populations (C246-K4-Q1 to Q4) (Online Resource 5a).
These structures are related to the geographical origin and
breeding history (Vitis International variety catalogue, www.
vivc.de) of the varieties. The population Q1 is maintained in
the two structures, while Q2 in C246-K2 was split into C246-
K4-Q2 and C246-K4-Q3, and C246-K4-Q4 was formed es-
sentially by accessions considered admixed (membership

coefficient Q below 0.8) in the C246-K2 (Online Resources
5b, 6 and 7).

Regarding the CCs, a structure with two possible popula-
tions was obtained for CC96, while three possible populations
were identified for both CC32x3 (Online Resource 5a). The
CC96 structure was similar to C246-K2, with 59 entries in
equivalent populations (Online Resources 5b, 6 and 7). The
three CC32Sx3 populations essentially corresponded to Q1,
Q2, and Q3 populations in C246-K4, with 38 entries in equiv-
alent populations of C246-K4. In the case of CC32Fx3, the
situation is similar, with 42 entries in equivalent populations
of C246-K4. The frequencies of admixed entries in the struc-
tures obtained for CC32x3 were similar to that found in C246
and higher than the frequency obtained in CC96 (Online
Resource 7), ranging from 17 % in CC96 to 45 % in
CC32Sx3.

Association analysis on grapevine data

Biallelic data were simulated for 11 markers to test associa-
tions with the phenology trait Time of Budburst, where the
class very late (numerically 9) had a frequency of 0.105 in the
global collection, 0.063 in CC96, 0.115 in CC32Sx3, and
0.125 in CC32Fx3. Frequency for allele C was set a priori in

Fig. 2 Representation of the number of classes against absolute
frequencies in the different core collections. The small windows are
zoomed presentations of the classes with low absolute frequency. a
Rice; b grapevine

Fig. 3 Pair-wise differences between the three methods regarding the
gain of minority classes. a Rice; b grapevine
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0.325, corresponding to an expected CC genotypic frequency
of 0.11 (in HWE), to allow testing for a total correlation with
class 9. Data was simulated for different degrees of linkage
disequilibrium, using a priori correlation coefficients between
class 9 and genotype CC of 1.0 (SNP0), 0.8 (SNP1 to SNP5),
and 0.6 (SNP6 to SNP10). Results of the simulation are shown
in Online Resource 8 with the allele frequencies and correla-
tions obtained for each marker in the global collection.

Association analyses were done for each of the markers
with the MLM+Q+K model, using as cofactors the genetic
structures described above (C246-K4 was used for the global
collection). P values obtained for the phenology trait Time of
Budburst were higher (less association) in CC96 than in the
two CC32x3 in 8 of the 11 simulated markers (Fig. 4a), and
only for SNP3, P value in CC96 was lower than in CC32Fx3.
Using a significance threshold of 0.05, five different SNPs
were not associated in CC96, and one in CC32Sx3, corre-
sponding to false negatives, while all the SNPs were associat-
ed in CC32Fx3 (Fig. 4a). In all the five non-associated SNPs

in CC96, the absolute frequency of entries with genotype CC
and class 9 was below 5. Using a significance threshold of
0.01, seven SNPs were not associated in CC96, three in
CC32Sx3, and two in CC32Fx3. The fraction of variance
explained by the tested SNPs was also different in the different
core collections. It was lower in CC96 than in the two CC32x3
for 7 of the 11 SNPs. Only for SNP3 it was higher in CC96
than in CC32Fx3 (Fig. 4b). The highest fraction of variance
explained by the marker in CC96 was 0.19, lower than those
found in CC32Sx3 (0.30) and in CC32Fx3 (0.31).

Discussion

In wide germplasm collections, the cost of certain molecular
approaches can be high and carrying out a complete pheno-
typic and molecular characterization may be very difficult, so
it is necessary to reduce the number of the accessions to ana-
lyze while keeping the maximum amount of variability. This
is normally done through the construction of core collections,
a small representative sample of the whole collection. There
are different methods that can be used to achieve this, depend-
ing on the purpose of the core collection and the availability of
data collected in the whole collection. For association studies,
the collection should be representative of the existing diversity
for the traits under study, but moreover it is important that
every phenotypic class is represented several times to increase
the power of the test. This increased power contributes to
diminish spurious associations and lack of association detec-
tion with low frequency data. Thus, for this type of studies,
some redundancy is convenient, and so, a compromise is
neededwhen constructing these core collections betweenmin-
imizing the number of accessions and accounting for the max-
imum representation of the less frequent classes.

In this paper, a new approach was used to build core col-
lections with the objective of increasing efficiency and maxi-
mizing the representativeness of minority classes/alleles. For
this purpose, two alternative methods were used to build in-
dependently three subcollections that were then joined. The
core collections obtained in this way (CC32Sx3 and
CC32Fx3) were compared with another core collection
(CC96) obtained using a standard one-step method (Le
Cunff et al. 2008).

Collections redundancy

Redundancy evaluation constitutes a previous step to deter-
mine the number of entries needed to capture the required
diversity, or, if the number of entries is predetermined (like
in this case), to know the diversity that is possible to capture.
The idea under the alternative approach proposed here, by
creating the CC in three steps, is to have each class represented
by a minimum of three entries, for most of the classes. This

Fig. 4 a Plot of P values obtained in the association analyses of the trait
BTime of Budburst^ and each of the 11 SNPs with simulated data;
horizontal line indicates the threshold for significance at 0.05. b
Fraction of variance of the trait BTime of Budburst^ explained by each
of the 11 SNP markers with simulated data in the association analyses
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requires that the size of each subcollection is large enough to
account for most of the richness of the whole collection. Thus,
the redundancy analysis also helps to determine the number of
entries to be included in each core subcollection. In the exam-
ples studied here, 32 entries included 97 % of total richness in
rice and 94 % in grapevine. Ideally, each subcollection should
include the highest possible richness, but below 100 %, to
avoid unnecessary redundancy (new entries which do not con-
tribute with additional classes). In this work, a number of 96
entries was predetermined for the core collections, because it
is a number already used for association studies (Vargas et al.
2013a), it allows for a three-step method with a number of
entries for each subcollection (32) that accounts for more than
90 % of classes’ richness, and, from a practical point of view,
it is appropriated to work with 96-well plates.

A large difference in redundancy was found between rice
and grapevine because two very different datasets were cho-
sen to illustrate the approach: rice dataset has a much larger
number of accessions (1000 vs. 246) and a much smaller
number of classes (182 vs. 461). This is probably influenced
by the fact that rice is inbred, while grapevine is outbred,
causing a very different partitioning of diversity. The 96 en-
tries included in the core collections represented 9.6 % of the
total number of accessions in rice and 39 % in grapevine.

Twomethods were used to select accessions throughout the
redundancy analysis: a random selection of accessions (R
method) and a selection of accessions using the
Maximization strategy. In both datasets, M (maximization)
method was superior in gain of diversity compared to R
(random)method. The results obtained here for grapevine data
are similar to those obtained by McKhann et al. (2004), who
observed a diversity gain of 10 % in A. thaliana, or by Le
Cunff et al. (2008), who observed a diversity gain of 15 % in
V. vinifera. Nevertheless, a gain of diversity more than twice
higher (32 %) was obtained in rice with M against R method,
probably because of the high redundancy existing in this col-
lection. Unlike these results, Ronfort et al. (2006) did not
detect a clear difference between both strategies in Medicago
truncatula, maybe due to the low redundancy and linkage
disequilibrium present in their collection.

Method comparison

The efficiency of the different strategies to establish core col-
lections is evaluated in deep in several studies (Bataillon et al.
1996; Escribano et al. 2008; Franco et al. 2006; Gouesnard
et al. 2001; Schoen and Brown 1993), and M strategy is gen-
erally the most efficient in the exclusion of redundancy. M
strategy is nowadays widely used, and it is implemented in
two publicly available programs, at least. In this work, MStrat
(Gouesnard et al. 2001) was chosen because it allows to pre-
determine the number of entries to be included in the CC,
while PowerCore (Kim et al. 2007) does not.

The different purposes of core collections make necessary
additional approaches to obtain the more appropriated collec-
tion for each use. In this sense, different criteria to evaluate the
quality of distinct types of core collections have been recently
discussed (Odong et al. 2013). These authors stated that the
choice of criteria for evaluating core collections depends on
the objectives of the core and propose different ways accord-
ing to the aim. In this work, we focused in a concrete applica-
tion of core collections widely used nowadays: association
studies, which was not considered in that work, and for that
reason, we evaluated the obtained CCs in a distinct way. Our
measure of quality is the increase in the frequency of minority
classes, and the decrease in the number of unique classes in
the resulting CCs, which we hypothesize that will improve the
suitability of the CCs for this particular aim.

In this kind of studies, avoidance or reduction of spurious
positive associations due to unique or minority classes could
be an important save of time. Even more important is to avoid
false negatives due to the low frequency of certain classes
within interesting commercial traits, which could prevent de-
tecting of real associations explaining certain variation of the
trait.

Two methods to build core collections were used to try to
increase the frequency of minority classes and were compared
with another standard method (Method 1). Methods 2 and 3,
based on the merge of three independent subcollections to
constitute the definitive core collection, showed a clear de-
crease in the number of unique classes (useless for association
analyses) and a raise in the frequency of minority classes
compared to Method 1 (Table 1). In both datasets, the largest
raise was found in the number of classes present in, at least, 3
entries (absolute frequencies ≥3); in rice, there were 27 more
classes with this frequency in CC32Sx3 than in CC96 and in
grapevine, there were 30 more classes in CC32Fx3 than in
CC96.

Shannon Index accounts for both abundance and evenness
of the classes present, and it was also higher in the collections
CC32x3. Methods 2 and 3 against Method 1 worked better on
rice data than on grapevine data, due to the higher redundancy
(more accessions, less richness) existing in the rice dataset.

Method 3 consisted of fixing the accessions more frequent-
ly represented in 100 replicates along 3 steps, trying to favor
those accessions that are more often included in the core sub-
collection. Their frequent presence indicates not only that they
contribute with a high variability but also that they comple-
ment better with the diversity provided by other entries to
maximize the richness of the core subcollection. In the case
of the rice dataset, the frequency thresholds used to select
entries for the kernel were higher than in grapevine in every
step (Online Resource 4), because of the presence of certain
entries that clearly contribute more than others to the core
collection variability. The high heterozygosity and diversity
of grapevine dataset allows for a larger number of possible
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combinations of accessions with high variability and Shannon
Index, giving place to a larger diversity of entries in the core
collection replicates. Thus, the threshold used in each case for
the selection in the kernel was empirically established from
the results obtained, aiming to include around eight entries in
every step.

Unlike Method 3, Method 2 requires a single step for the
construction of each subcollection. No clear differences were
observed between methods 2 and 3, indicating that the two
methods similarly favor both the representation of classes and
the evenness of their frequencies. In fact, the number of com-
mon entries in both collections was high: 78 in rice and 82 in
grapevine.

Structure evaluation in grapevine CCs

It is well known that other factors can influence association
studies, such as population structure, parentage relationships,
and linkage disequilibrium (Whitt and Buckler 2003), which
are characteristic of each species, even each collection, and
association mixed models may take them into account to re-
duce spurious results. In this work, the genetic structures ob-
tained in the grapevine global collection and in the different
corresponding CCs have been evaluated using a Bayesian
algorithm.

The structures obtained for C246-K2 and CC96 are similar,
as are those obtained for C246-K4 and CC32x3.These results
are consistent with that previously published by Vargas et al.
(2013a) and Vargas et al. (2013b), who obtained 2 populations
for a collection of 96 table grape entries and 3 populations
using a collection of 127 table grape entries, very similar to
those obtained for CC96 and CC32x3, respectively. Bacilieri
et al. (2013) used the same set of microsatellite markers for a
genetic structure analysis in a large collection of 2096
V. vinifera genotypes and observed two possible structures
of 3 and 5 populations. Among the five populations, three
with table cultivars were included: (a) wine and table—
Iberian Peninsula and Maghreb, (b) Table—East, and (c)
Italy and Central Europe, that would be equivalent to the
Q2, Q3, and Q1, respectively, detected in the two CC32x3.
Though Bacilieri et al. (2013) suggested that K4 and K6 are
not appropriate clustering levels for grapevine, it must be not-
ed that only table grape accessions were included in this work.
The similarity between the different structures obtained indi-
cates that V. vinifera subsp. sativa has a well-defined stratifi-
cation, which effects can be corrected in association studies.

CC96 showed the lowest proportion of admixed entries
(Online Resource 7). Moreover, a significant raise was ob-
served in the proportion of entries assigned to CC96-Q2, com-
pared to C246-K2-Q2, indicating a strong bias in the repre-
sentation of ancient cultivars. CC32x3 collections showed
higher percentages of admixed entries, similar to C246, and
a more evenly distributed number of entries in each

population. These characteristics point out to a better distribu-
tion of entries in CC32x3 than in CC96 for association studies.

Here, the genetic structures have been evaluated after
obtaining the CC, but the use of information about the existing
stratification may also be considered before starting the build-
ing of the core collection. In case the available number of
accessions in the global collection is large enough, the core
collections may be created independently in each subpopula-
tion using any of the alternative methods proposed here.

Association analysis

The examples tested on virtual data showed that the frequency
of minority classes may be crucial for association analysis.
Using biallelic data simulated for the grapevine collection,
with different degrees of linkage disequilibrium between the
marker and the trait, several clear examples of absence of
association detection (false negatives) are provided. The re-
sults showed that the effect of the minority classes’ frequency
is more critical as the linkage disequilibrium is lower, and it
affects both the P value (association detection) and the frac-
tion of variance explained by the marker.

In base to the results obtained, a proposal is made for the
construction of core collections for association studies: first, to
study the global collection with molecular markers (data are
frequently available because they are used for accession iden-
tification), and ideally, for phenotypic characteristics, at least
those related to the trait/s of interest. The aim is to have
enough richness to avoid having excessive redundancy.
Second, to study redundancy to establish the size of the core
subcollections, they should account for 90–99 % of the total
richness. Third, to establish the size of the whole core collec-
tion, which will depend on several factors, including the ge-
netic complexity of the trait of interest and the power required
for the association study, but it should be, at least, three times
the size of the core subcollections, to take advantage of the
proposed approach. Finally, to build the core subcollections
according to methods 2 or 3 proposed here, and merge the
subcollections generated to render the whole core collection.
It is convenient to study the possible stratification existing in
the global collection to consider the possibility of creating
core subcollections independently in each of the populations
observed.

Conclusions

Association analysis is a strategy widely used in crop genetics
at present, but it faces serious problems regarding the detec-
tion power and spurious associations due to diverse factors.
One of them is the low frequency of certain classes of pheno-
typic traits in the collections used to this purpose. In this work,
we propose twomethods (2 and 3) to generate core collections
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in several sequential steps using M strategy, which could in-
crease the representation of minority classes in the core col-
lection and improve association results, reducing the rate of
false negatives related to this problem. Method 2 is preferen-
tially proposed because it is simpler than Method 3 and con-
sists in the merge of several subcollections, each accounting
for 90–99 % of richness and with the highest Shannon Index.
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