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Abstract A fundamental goal of evolutionary biology is to
understand how environment shapes genetic variation through
its effect on demographic processes and through natural selec-
tion. In non-model species, transcriptome sequencing gener-
ates large single nucleotide polymorphism (SNP) panels to
disentangle these influences. Quercus lobata (valley oak) of-
fers an excellent system for such analyses because it has stably
occupied a climatically heterogeneous landscape throughout
California. We used 220,427 diallelic SNPs from 22 individ-
uals identified against a recently assembled reference tran-
scriptome to (1) quantify transcriptome-wide associations of
SNPs with climate indicative of demographic responses to
climate, (2) identify SNPs especially associated with climate
and thus potential targets of natural selection, and (3) test the
hypothesis that genetic diversity is high in climate-adaptive
candidate genes. Constrained ordinations (redundancy

analysis) and variance partitioning showed that genetic struc-
ture inQ. lobatawas explained by spatial location (49 %) and
climate (24%), especiallyminimum temperature and summer/
spring precipitation balance, suggesting that climate influ-
ences neutral demographic processes and gene flow. After
accounting for underlying structure, individual-based environ-
mental association analyses identified 79 SNPs from 49 tran-
scripts as candidates under natural selection by climate. These
candidate genes had significantly higher SNP rates per base
pair per locus (θW), nucleotide diversity (π), and gene diver-
sity (G) than non-candidate genes. These results provide pre-
liminary support for the hypothesis that balancing selection
maintains diversity in climate-adaptive genes. Climate has
likely shaped both population demography and local adapta-
tion in valley oak.
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Introduction

The environment plays a fundamental role in shaping the geo-
graphic structure of genetic variation through its effect on
demographic processes and through natural selection. In plant
populations, climate can directly affect population expansion,
contraction, and migration or alter flowering time and mating
patterns (Cleland et al. 2007; Davis 1976). As a result of these
Bneutral^ processes, genome-wide genetic variation is expect-
ed to associate with climate gradients (Eckert et al. 2010a;
Sexton et al. 2014). In contrast, natural selection by climate
would act largely on specific loci, such that associations with
climate at particular loci should be independent of those with
the background genetic structure (Eckert et al. 2010b;
Hancock and Di Rienzo 2008; Keller et al. 2011). These
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genetic variants under selection along climate gradients within
a species likely play a role in local adaptation and are of
particular interest (Endler 1986). Because different alleles
are favored in different environments (i.e., a form of balancing
selection species wide), genetic variation at these loci is ex-
pected to be higher than the typical locus, which might be
more likely to be under purifying selection (Lasky et al. 2014).

With genome-wide single nucleotide polymorphism
(SNP) data sampled across environments, it is now possi-
ble to identify genetic variation under natural selection by
local climate. One cost-effective way to identify large
numbers of SNPs in non-model organisms is to perform
whole-transcriptome sequencing (mRNA-Seq) from wide-
ly distributed samples and compare sequence variation,
ignoring transcript abundance (Cánovas et al. 2010;
Geraldes et al. 2011; Wang et al. 2009). An advantage of
this approach is that it targets coding regions of the ge-
nome, which are commonly targets of selection and likely
to underlie trait variation, and flanking untranslated re-
gions, which play a role in gene expression (Barrett et al.
2012; Schork et al. 2013). Moreover, as genome size in-
creases, enrichment for functional genomic regions can
become important. Range-wide SNP data can then effec-
tively be used in environmental association analyses to
identify putatively adaptive genetic variation that displays
exceptionally strong associations with the environment
(De Mita et al. 2013) or in phenotypic association analyses
to understand the genetic basis of trait variation (Atwell
et al. 2010; Holliday et al. 2010; Neale and Savolainen
2004).

A number of powerful environmental association
(Boutlier^) analyses have been proposed that test whether
specific loci are especially associated with a given environ-
mental variable after accounting for background associations
due to population structure (Coop et al. 2010; De Mita et al.
2013; Eckert et al. 2010b). For designs in which samples are
scattered along the environmental gradient, rather than clus-
tered in Bpopulations,^ linear mixed modeling approaches
are an excellent choice (De Mita et al. 2013; Yoder et al.
2014). These models can effectively account for population
structure using a kinship matrix of relatedness among indi-
viduals, are computationally efficient for large SNP data sets
(Kang et al. 2008; Yu et al. 2006), and have low false-
positive rates (Frichot et al. 2013), although they do not
explicitly model population history (Günther and Coop
2013). One such method, EMMAX, was developed for
genotype-phenotype associations and has been shown to
outperform other similar approaches in accounting for un-
derlying population structure (Kang et al. 2010; Sul and
Eskin 2013). When applied to climate data, rather than phe-
notypic data, significant associations can be interpreted as
candidate SNPs under natural selection by climate (Frichot
et al. 2013; Yoder et al. 2014). Using the model in this way

does not suggest that genotype causes climate, but rather it
is a convenient statistical means of assessing the expected
correlations among the variables of interest (Furlotte et al.
2011), and further, it can be assumed that adaptive pheno-
types mediate those associations between SNP and climate
(Eckert et al. 2010b). Accounting for population structure
can minimize false-positive rates; however, all environmen-
tal association approaches still suffer from elevated false-
negative rates due to some removal of true signal from the
process of accounting for genetic structure. Environmental
association analyses are especially powerful in highly
outcrossing trees, such as oaks (Quercus), because linkage
disequilibrium decays within a few hundred base pairs
(Alberto et al. 2013; Brown et al. 2004; Kremer et al.
2012; Sork et al. 2016), meaning that significant associations
are likely to be near the true target of selection (Neale and
Savolainen 2004).

Our recently assembled transcriptome assembly and large
SNP panel for Quercus lobata Née (valley oak) (Cokus et al.
2015) provides an excellent resource to disentangle how cli-
mate shapes underlying genome-wide genetic structure, pre-
sumably due to demographic processes (Gugger et al. 2013;
Sork et al. 2010), versus the effect of selection by climate on
specific SNPs (Sork et al. 2013). For comparison, several
studies of the European oaks have identified candidate genes
for climate-related traits such as timing of bud burst and re-
sponse to drought stress based on differential gene expression
experiments (Derory et al. 2006; Porth et al. 2005; Spieß et al.
2012). Some of these loci have been verified using nucleotide-
based tests for signatures of natural selection (Derory et al.
2010) and other approaches (Alberto et al. 2013).

Q. lobata exhibits structured genetic diversity at the local to
regional scales and has high potential for local adaptation
relative to oaks in eastern North America and Europe, in part
because its distribution has remained stable in a topographi-
cally complex area through recent glacial cycles unlike many
oaks elsewhere (Grivet et al. 2006; Gugger et al. 2013).
Q. lobata is currently threatened by land development and
climate change (McLaughlin and Zavaleta 2012; Sork et al.
2010). Thus, it is especially important in Q. lobata to under-
stand how climate shapes genetic variation through demo-
graphic processes, what genes are involved in adaptation to
current environments, and how changing environments might
impact adaptive genetic variation and population persistence
for effective management.

Here, we use 220,427 diallelic SNPs previously identified
inQ. lobata (Cokus et al. 2015) to (1) quantify transcriptome-
wide associations of SNP variation with climate indicative of
demographic responses to climate, (2) identify specific loci
that are especially associated with climate and thus potential
targets of natural selection, and (3) test the hypothesis that
candidate genes for adaptation to climate gradients have
higher genetic diversity than non-candidate genes.
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Materials and methods

Sampling

Poly-A-purified mRNA libraries from 22 Q. lobata samples
from throughout its natural distribution (Fig. 1) were previ-
ously sequenced for a de novo transcriptome assembly and
SNP discovery project that included other California oaks
(Cokus et al. 2015). This draft reference transcriptome in-
cludes a mixture of complete and partial gene models (gener-
ally with UTRs and introns), many of which contain Pfam
protein domains (Finn et al. 2014; Jones et al. 2014), and a
subset of which were found to be orthologous with
Arabidopsis genes from The Arabidopsis Information
Resource (TAIR) (Swarbreck et al. 2008). Inferred Gene
Ontology (GO) (Ashburner et al. 2000) associations for nu-
merous oak gene models were then available through TAIR
and Pfam. From the total panel of over one million SNPs
identified within and among the California oak species, we
retained for the present study 220,427 diallelic SNPs that are
variable within Q. lobata and for which genotype was not
called in at most 2 of 22 samples (<10 %). For some analyses,
we further restricted to those SNPs for which genotype was

not called in at most one sample (193,428) or those with called
genotype in all samples (155,465). Details on the SNP calling
methods and quality control are in Cokus et al. (2015).

Genetic structure and association with climate

To assess genetic structure and its association with spatial
coordinates and climate variables, we performed redundancy
analysis in vegan 2.0-7 (Oksanen et al. 2015) in R 3.0.0 using
the completely called SNP set. Redundancy analysis is a mul-
tivariate analog of linear regression when there are multiple
response variables (SNPs) and multiple explanatory variables
(climate and space) and makes similar assumptions as princi-
pal component analysis (Legendre and Legendre 1998; ter
Braak 1986). We further performed two partial redundancy
analyses to partition the variance into the part explained
uniquely by climate variables, that explained uniquely by spa-
tial coordinates (e.g., due to spatial autocorrelation and phy-
logeographic structure), and the joint influence of these which
could not be disentangled (Borcard et al. 1992; Økland 1999).
The analysis was repeated for each type of SNP: synonymous,
nonsynonymous, and noncoding. Statistical significances of
the full models were tested via permutations. Redundancy
analysis has been successfully applied to Arabidopsis and
oaks to address similar questions about the roles of climate
and spatial variables (Gugger et al. 2013; Lasky et al. 2012)
and has been recommended over traditionalMantel and partial
Mantel tests for its superior statistical properties (Legendre
and Fortin 2010).

Derived climate data were drawn from a U.S. Geological
Survey Spline Model designed for use in assessing plant-
climate relationships (Rehfeldt 2006) (http://forest.
moscowfsl.wsu.edu/climate/). We retained the five variables
that are thought to be important determinants of Q. lobata’s
distribution (McLaughlin and Zavaleta 2012; Sork et al. 2010)
and that were not highly correlated with each other, including
growing degree-days above 5 °C, mean maximum tempera-
ture of the warmest month, mean minimum temperature of the
coldest month, growing season precipitation, and summer/
spring precipitation balance. Spatial coordinates included lat-
itude, longitude, squared terms, cubed terms, and cross prod-
ucts to account for nonlinear associations of genetic variation
with spatial variables (Borcard et al. 1992).

SNPs under selection

To identify individual SNPs that are especially correlated (i.e.,
outliers) with any of the five climate variables, we performed
linear mixed model correlations in EMMAX (intel-binary-
20120210), as this effectively accounts for background genet-
ic structure due to Bhidden^ relatedness or shared phylogeo-
graphic history via a pairwise Bkinship matrix^ among indi-
viduals based on the Balding-Nichols method (Balding and

0 100 20050 km

Fig. 1 Distribution of valley oak (Quercus lobata) (blue) and sampling
locations (black circles: small = one sample, large = two samples). Gray
scale represents elevation (darker is higher)
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Nichols 1995; Kang et al. 2010; Sul and Eskin 2013).
Standard linear mixed models as we implemented them have
been evaluated against other individual-based environmental
association methods, showing that they have very low false-
positive rates and thus are conservative, and they have the
benefit that no parameter optimization is necessary (Frichot
et al. 2013). Although they can have high false-negative rates
(i.e., low power), we prefer to be conservative, given our small
sample size. For this analysis, we started with the 193,428
SNP set with at most one uncalled individual per locus. The
kinship matrix was estimated based on a subset of 32,551 loci
that were at least 500 bp apart when located on the same
contig to ensure high likelihood of freedom from dependence
mediated by linkage disequilibrium (and a version based on
all SNPs was also tried, with similar results and hence omit-
ted) (Alberto et al. 2013; Brown et al. 2004; Sork et al. 2016).
Because redundancy analyses did not reveal any distinctions
among types of SNPs (i.e., coding or noncoding; see
BResults^), SNPs for the kinship matrix were randomly cho-
sen with respect to type. The 70,639 SNPs with a minor allele
frequency of at least 4 (≥10 %) of the total 2×22=44 alleles
were tested for associations with climate variables. Consistent
with common practice, this threshold serves as an additional
filter to reduce the false positives due to potential high-
leverage data points from rare alleles. Multiple testing was
adjusted using the false discovery rate (Q) method of
QVALUE 1.1 (Benjamini and Hochberg 1995; Storey and
Tibshirani 2003). Finally, as a Bvalidation^ of the results for
significant climate-associated SNPs from EMMAX, we per-
formed partial Mantel tests of climate distance with genetic
distance controlling for geographic distance. Relative to
EMMAX, the partial Mantel tests essentially reverse the de-
pendent and independent variables to be consistent with their
hypothesized causal relationship. Geographic distance was
calculated assuming a spherical model (WGS84) of the earth,
climate and SNP allele frequency distance were calculated by
Euclidean distance, and partial Mantel tests were performed in
the vegan package in R.

Candidate genes from literature and functional
annotations

We searched our data set for previously published climate-
related candidate genes to determine whether SNPs from those
genes were also among the top associations from EMMAX.
We first examined our dataset for candidate genes reported
elsewhere for oaks, specifically 213 drought and osmotic
stress genes (Porth et al. 2005), 144 bud burst and flowering
genes (Alberto et al. 2013; Derory et al. 2006) (http://www.
evoltree.eu/), and 26 other climate-related genes (Sork et al.
2016). We searched for these genes in the reference tran-
scriptome using USEARCH 7.0 (Edgar 2010) with thresholds
of 92 % nucleotide identity and E value 10−10.

We also searched the Q. lobata transcriptome GO associa-
tions (Cokus et al. 2015) for keywords suggesting roles in
responses to the tested climate variables. These included re-
sponse to osmotic stress or homeostasis (GO IDs: 0006970,
0006972, 0009270, 0009992, 0030104, 0047484, 0071470)
or water stimulus/deprivation (0009270, 0009414, 0009415,
0009819, 0042631, 0071462, 2000070), which might be re-
lated to growing season precipitation or summer/spring pre-
cipitation balance; response to heat (0034605, 0009408), heat
acclimation (0010286, 0070370), or heat shock protein bind-
ing (0031072), which might be related to mean maximum
temperature; response to cold or freezing (0050826,
0070417, 0009409) or cold acclimation (0009631), which
might be related to mean minimum temperature; and flower/
floral or leaf development or morphogenesis (0009908,
0009965, 0010093, 0010150, 0010338, 0010358, 0048366,
0048437, 0048438, 0048439, 0048444, 0048449, 0048464,
0048833), flower photoperiodism (0048573–0048575), or
regulation of these processes (0009909, 0009910, 0009911,
0010080, 0048579, 0048577, 0048578, 0048586, 0048587,
0060860, 0060862, 2000024, 2000025, 2000028), which
might be associated with a variety of climate variables, includ-
ing growing degree-days, temperature, and precipitation
(Hunter and Lechowicz 1992; Nizinski and Saugier 1988;
Vitasse et al. 2011). We grouped flower and leaf
development-related candidate genes together because
flowers and leaves emerge from the same buds at almost the
same time in Q. lobata.

We used hypergeometric tests (equivalent to one-tailed
Fisher exact tests in this context) to determine whether SNPs
from candidate genes from the literature and GO functional
annotations were enriched in the top 5 % of associations from
EMMAX with their respective climate variable. We also used
one-sided Wilcoxon rank-sum tests to ask whether SNPs in
those same candidate genes had stronger associations with
their respective climate variables than non-candidate gene
SNPs, as indicated by the P values from EMMAX.

Genetic diversity in candidate genes

We tested the hypothesis that genetic diversity is higher in
climate-adaptive candidate genes than non-candidate genes
using one-sided Wilcoxon rank-sum tests. We quantified ge-
netic diversity with θW or Watterson’s theta, which is a mea-
sure of SNP rate per bp per locus (Watterson 1975); π or
nucleotide diversity, which is a measure of SNP rate per bp
per locus weighted by frequency in the population (Begun et
al. 2007; Nei and Li 1979); and G or Weir’s gene diversity,
which is the average expected heterozygosity across all SNPs
within a locus (Nei and Roychoudhury 1974; Weir 1996).
These measures capture a range of concepts of genetic diver-
sity from SNP rate irrespective of population allele frequency
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(θW) to allele frequency in the population irrespective of SNP
rate (G), and the combination of the two (π).

Genetic diversity measures were calculated based on the
220,427 SNP set with up to two uncalled genotypes per locus
(as well as those with all genotypes called, but results were
highly similar and thus omitted). We performed these tests
separately for candidate genes from the literature, for those
identified via GO associations, and for those identified in this
study as top candidates associatedwith climate. For the former
two tests, we restricted the non-candidate set to the 28,261
contigs with at least one gene model to avoid a downward
bias of diversity estimates because many contigs without gene
models are of low coverage and variant discovery power is
reduced. As an additional control, we also did the same test
omitting contigs with no SNPs. For the latter test, we restricted
the non-candidate set to only the contigs that had SNPs that
were tested in EMMAX because these were already a subset
intentionally chosen to have at least a certain population allele
frequency, which upwardly biases allele frequency-based
diversity measures.

Results

Genetic structure and association with climate

Samples from southern California sites (Malibu Creek State
Park and Fort Tejon State Historic Park) are differentiated
from other sites as shown by the redundancy analysis
(Fig. 2a). Spatial and climate variables together are signifi-
cantly associated with genetic variation (P<0.005), and the

variables most strongly associated with genetic structure are
mean minimum temperature of the coldest month, summer/
spring precipitation balance, growing degree-days, latitude,
and longitude. In the partial redundancy analysis of climate
with SNP variation controlling for spatial location, minimum
temperature is most strongly associated with axis 1 and
summer/spring precipitation balance is most associated with
axis 2 (Fig. 2b). Climate variables explained 26 % of the total
explainable genetic variance, spatial variables explained 53%,
and their joint effect explained the remaining 21 %. These
results (not shown) are nearly identical whether considering
all relevant SNPs or broken down by nonsynonymous,
synonymous, and noncoding SNPs (Procrustes test: r>0.98,
P<0.001).

SNPs under selection

The strongest association of SNPs with any of the climate
variables, after factoring out the underlying genetic structure
via kinship, is with minimum temperature and growing season
precipitation, and 12 of those SNPs from 10 contigs were
statistically significant after adjustment for multiple testing
(Q<0.1) (Fig. 3 and Table 1). Given the large number of tests
and small sample size, we also investigated the 67 other SNPs
with associations of P<0.0001, even if less than 500 bp apart.
These include 10 SNPs from 6 contigs associated with grow-
ing degree-days, 20 additional SNPs from 12 contigs associ-
ated with growing season precipitation, 2 SNPs from 2 contigs
associated with mean maximum temperature, 27 additional
SNPs from 21 contigs associated with mean minimum tem-
perature, and 7 SNPs from 6 contigs associated with summer/
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Fig. 2 a Full redundancy analysis model for association of climate and
spatial variables with transcriptome SNPs. Black points display
ordination based on genetic variation and represent the underlying
genetic structure. The two isolated sets of points are the southern sites
of Malibu Creek State Park (right) and Fort Tejon State Historic Park
(bottom). Vectors give the direction and magnitude of association of
climate and spatial variables with the genetic structure along

redundancy axes (RDA) 1 and 2. b Partial redundancy analysis for
association of climate variables with transcriptome SNP variation after
partialling out the association of spatial variables with SNP variation.
This represents the Bpure^ effect of climate on genetic structure and
suggests that minimum temperature and summer/spring precipitation
balance are the most important factors of those studied here in
structuring transcriptome-wide SNP variation
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spring precipitation balance (Table 1). Of the resulting total of
79 distinct SNPs from 49 distinct contigs, 31 are
nonsynonymous, 39 are synonymous, 2 are in 3′ untranslated
regions (3′-UTRs), 3 were in 5′-UTRs, and 2 are undeter-
mined. Nonsynonymous SNPs are not overrepresented in this
list compared to the number in the overall sample of SNPs
analyzed (hypergeometric test, P=0.8). Of the 49 contigs, 4

are orthologous to A. thaliana genes, and 5 contained Pfam
protein domains or TAIR annotations with GO annotations
indicating their involvement in response to stimulus or stress
(Table 1). All these climate-associated SNPs are also signifi-
cantly associated in Mantel tests, providing a Bvalidation^ of
the associations that considers the climate as the independent
variable and genotype as the dependent variable
(0.43 < r< 0.79, P< 0.008). Furthermore, QQ plots of the
EMMAX results suggest that the false-positive rate is well
controlled and thus the significant results are not likely
spurious (Fig. S1 in Online Resource 1).

Candidate gene enrichment

Searches of the GO associations yielded 280 water-related
genes, 128 heat-related genes, 127 cold-related genes, and
252 flower or leaf development-related genes. In addition,
298 of the 383 candidate genes from the oak literature
(Alberto et al. 2013; Derory et al. 2006; Porth et al. 2005;
Sork et al. 2016) are identifiable in our reference tran-
scriptome and 233 of them have at least one SNP.
Combining the candidate genes from GO with those from
the oak literature, we observed from 27 to 122 candidate gene
SNPs in the top 5 % of EMMAX associations with their re-
spective climate variable (Table 4), but none have P<0.0001
and thus none of these genes overlap with those identified as
candidates in our EMMAX analyses. Specifically, SNPs from
flower/leaf development-related genes are enriched in the top
5 % of EMMAX associations with growing degree-days,
growing season precipitation, and minimum temperature
(P<0.003) (Table 4), but significant enrichment is not found
for drought, heat, or cold gene SNPs in association with pre-
cipitation, maximum temperature, or minimum temperature,
respectively (P> 0.26). Furthermore, Wilcoxon rank-sum
tests show that SNPs from flower/leaf development-related
genes have significantly lower P values for associations with
growing degree-days and growing season precipitation com-
pared to other genes (P<0.037) and marginally significantly
stronger associations with minimum temperature (P=0.061)
and summer/spring precipitation balance (P = 0.089)
(Table 5). SNPs from cold genes also have stronger associa-
tions with minimum temperature (P=0.012), and SNPs from
heat genes have marginally significantly stronger associations
with maximum temperature (P=0.064).

Genetic diversity in candidate genes

Genetic diversity is higher in contigs containing SNPs that
were from the top associations in EMMAX (i.e., those with
P<0.0001) compared to the other contigs tested in EMMAX,
whether measured by θW (P=0.001), π (P=0.00012), or G
(P= 0.061) (Tables 1, 2, and 3). Genetic diversity is also
higher for all measures in candidate genes from the oak
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literature and from the GO associations search when com-
pared to all other contigs containing gene models
(P<2.2×10−16). However, this latter effect disappeared when
only variable candidate genes (i.e., those containing SNPs)
and variable non-candidate genes were considered
(P>0.132).

Discussion

Demographic response to climate

The transcriptome-wide genetic structure of oaks was shaped
by climate. A substantial amount of SNP variation was ex-
plained by climate after controlling for spatial location (26%),
suggesting that climate shapes genomic variation independent
of any association of climate with geographic location.
Specifically, minimum temperature and summer/spring pre-
cipitation balance have the strongest association among those
factors investigated. These associations likely reflect the ef-
fects of climate (especially minimum temperature) on demo-
graphic processes, such as population expansion, contraction,
and establishment (James et al. 2011), and the influence of
climate (especially temperature and precipitation balance) on
gene flow through its influence on flowering phenology
(Knight et al. 2005; Ortego et al. 2012).

Similar analyses of microsatellite variation in Q. lobata
from 65 sample sites also support this role of minimum tem-
perature and precipitation seasonality in shaping genetic var-
iation and, in fact, suggest a potentially even larger role for
climate than this study (Gugger et al. 2013; Sork et al. 2010).
In the transcriptome data, the genetic distinction of two

southern populations is pronounced (Fig. 2a), suggesting re-
stricted gene flow among them and between other popula-
tions, possibly due to geographic barriers. Here, we do not
observe the clear east–west structure (i.e., coast versus Sierra
Nevada) that we did with microsatellites. Further, another
study focusing on a subset of candidate genes from different
localities also did not find east–west structure (Sork et al.
2016). However, the fact that three separate studies found
genetic associations with similar climate variables provides
strong evidence that environment is shaping genome-wide
genetic structure through processes other than natural
selection.

Natural selection by climate

Despite the genome-wide association with climate, we found
strong evidence that natural selection by climate is important
in local adaptation of valley oak. Even with a relatively small
sample size of 22 individual trees, we identified 12 SNPs from
10 contigs significantly associated with climate variables after
multiple testing adjustment (Q<0.1) and an additional 67
SNPs from 39 contigs with very strong support (P<0.0001)
after factoring out background association of genetic structure
with climate. Thirty-one of the 79 top SNPs are
nonsynonymous and lead to amino acid substitutions, and 5
are in UTRs and thus could be involved in regulation of ex-
pression (Barrett et al. 2012); both of these types are consistent
with functional significance.

A few of the SNPs are in genes with known roles in re-
sponse to stimulus or stress (e.g., SAUR-like auxin-respon-
sive protein family), cold shock protein binding (zinc knuckle
family protein), light response or photosynthesis (e.g.,

Table 3 P values for Wilcoxon rank-sum tests of whether diversity measures are higher in candidate genes than non-candidate genes

Comparison θW π G

Top associations from EMMAX Tested in EMMAX 0.001** 0.0001*** 0.060*

Candidate genes from literature (all) Contigs with gene model (all) 2 × 10−16*** 2 × 10−16*** 2 × 10−16***

Candidate genes from literature (variable only) Contigs with gene model (variable only) 0.220 0.265 0.625

Candidate genes from GO (all) Contigs with gene model (all) 2 × 10−16*** 2 × 10−16*** 2 × 10−16***

Candidate genes from GO (variable only) Contigs with gene model (variable only) 0.132 0.472 0.969

*0.05≤P< 0.10, **0.001≤P< 0.01, ***P< 0.001

Table 2 Mean genetic diversity
measures for candidate genes and
non-candidate genes

No. of contigs No. of SNPs θW π G

Top associations from EMMAX 49 1485 0.0039 0.0031 0.200

Tested in EMMAX 11,802 208,285 0.0025 0.0019 0.188

Candidate genes from GO 685 11,342 0.0018 0.0013 0.142

Candidate genes from literature 298 3666 0.0016 0.0012 0.136

Contigs with a gene model 28,261 208,697 0.0010 0.0007 0.081

All contigs 83,644 220,427 0.0004 0.0003 0.031
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cryptochrome 1), and trichome development (myosin family
protein with Dil domain) (Table 1). The latter is especially
interesting because trichomes are thought to be important in
drought tolerance in plants (Karkkäinen et al. 2004).

Some of the SNPs with significant climate associations
follow a north–south gradient orthogonal to the neutral genet-
ic structure suggested in other studies based on microsatellite
variation from more sites than this study (Gugger et al. 2013;
Sork et al. 2010) (e.g., Fig. 3). Overall, these candidate SNPs
showed especially strong correlations with growing season
precipitation and minimum temperature, which are variables
that also seem to be important shapers of the underlying ge-
netic structure, presumably through their influence on demog-
raphy and mating patterns. Given that Q. lobata occupies
largely water-limited environments with frequent droughts,
finding compelling evidence for natural selection by precipi-
tation is not surprising.

The climate-associated SNPs from the EMMAX analyses
also tend to have especially strong associations with the first
axis in the partial redundancy analyses of climate with SNPs
conditioned on spatial variables (Wilcoxon rank-sum test,
P=5×10−8), although only 1 of 79 SNPs was in the top
5 % of associations (m01oak05422cC, nucleotide 1044).
This partial redundancy analysis could be considered another
means of controlling population structure while testing for
SNP-climate associations, and there is a growing interest in
applying multivariate ordination approaches to identify spe-
cific loci of interest in environmental association tests (Sork
et al. 2013). Although our data do not allow for a rigorous
assessment of the ability of the redundancy analysis model to
effectively account for population structure, and while a num-
ber of factors could lead to differences between these
methods, it is encouraging that the SNPs identified in
EMMAX also tend to be strongly associated in the partial
redundancy analysis (Sork et al. 2016).

Finally, candidate genes for climate adaptation that were
identified in other studies are among the top associations with
climate in our analyses. These especially include flowering
and leaf development genes associated with growing degree-
days and growing season precipitation; cold genes with min-
imum temperature; and heat genes with maximum tempera-
ture (Tables 4 and 5), lending additional support to their role in
climate adaptation in oaks.

Future studies will consider a larger sample of localities
that will increase the ability to detect specific SNPs varying
along climate gradients.

Genetic diversity in candidate genes

We find preliminary support for the hypothesis that climate-
adaptive genes have elevated levels of genetic diversity. The
most compelling evidence comes from the candidate genes
identified here as the top associations with climate variables

in EMMAX (Table 1). These genes had θW and π over 50 %
higher than other genes that were tested in EMMAX (Table 2).
Moreover,Gwas 0.200 in candidate genes compared to 0.188
in non-candidates, providing support for the main hypothesis
across a range of types of diversity measures. The elevated
genetic diversity summarized across all top associations
should be statistically robust (Lohmueller et al. 2013), despite
the possibility of occasional false positives at any particular
SNP or gene. On the other hand, our analysis does not control
for the fact that loci with more SNPs were subjected to more
tests in EMMAX, thus increasing the chance of finding a SNP
significantly associated with climate. Choosing only one ran-
dom SNP per locus led to too small a sampling of climate-
associated SNPs to test for differences with the background.

Table 5 Wilcoxon rank-sum tests of whether P values from EMMAX
climate associations for SNPs in oak literature candidate genes are lower
than for non-candidate genes

Gene class Climate variablea P

Flower/leaf DD5 0.037**

GSP 0.00005***

TMAX 0.910

TMIN 0.061*

SMRSPRPB 0.089*

Drought GSP 0.999

SMRSPRPB 0.219

Heat TMAX 0.064*

Cold TMIN 0.012**

*0.05≤P< 0.10, **0.01 ≤P< 0.05, ***P< 0.001
a Same abbreviations as Table 1

Table 4 Hypergeometric tests for enrichment of SNPs from oak
literature candidate genes in the top 5 % of climate associations from
EMMAX

Gene class Climate
variablea

No. of SNPs
in top 5 %
of climate
associations

Total no.
of SNPs

P

Flower/leaf DD5 115 1795 0.003*

GSP 122 1795 0.0003**

TMAX 95 1795 0.260

TMIN 112 1795 0.008*

SMRSPRPB 79 1795 0.870

Drought GSP 75 2122 0.999

SMRSPRPB 91 2122 0.932

Heat TMAX 27 671 0.860

Cold TMIN 34 744 0.668

All EMMAX 3531 70,639

*0.001 ≤P< 0.01, **P< 0.001
a Same abbreviations as Table 1
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Candidate genes from the oak literature as well as candi-
date genes identified by GO associations had higher diversity
than non-candidates on average (Table 2). However, when
only variable candidate and non-candidate genes from GO
or the literature were compared, the difference was not signif-
icant (Table 3), suggesting that those candidate genes were
more likely to be variable than non-candidate genes, but not
more variable than other genes with variation. It is possible
that the candidate genes from the literature and GO consist of
many conserved genes involved in global responses to envi-
ronmental perturbation that are not necessarily involved in
local adaptation.

High diversity and significant associations with climate
gradients are patterns that are consistent with balancing selec-
tion and/or disruptive selection maintaining diversity in
climate-adaptive loci by favoring different alleles in different
climate contexts. Although our study provides mixed support
for elevated diversity, similar conclusions have been drawn for
candidate genes for locally adaptive abiotic stress responses
first identified using differential gene expression analyses in
Arabidopsis (Lasky et al. 2014). Alternatively, soft selective
sweeps that lead to increased adaptive allele frequencies in
different parts of the distribution have been observed in
Medicago (Yoder et al. 2014). Future studies with the ability
to ascertain haplotypes will further clarify this possibility.

Conclusions

Climate has likely shaped both demographic and adaptive
evolutionary processes in valley oak. Even with small sample
sizes, we were able to disentangle candidate SNPs underlying
climate adaptation from the background association of geno-
mic variation with climate. As a result, we find some support
that putatively climate-adaptive genes may have unusually
high genetic variation, which we hypothesize is the result of
natural selection leading to local adaptation that maintains
diversity. Our study further highlights that large sequencing
data sets and individual-based SNP analyses offer powerful
means of identifying genes important in adaptation and the
overall influence of climate on the genome.
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