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Abstract A network of 92 pedigreed ex situ conservation
plantings of Pinus tecunumanii, established as replicated
progeny within provenance trials, is used to present a principal
components-based analysis that illustrates the climatic prefer-
ences of 23 populations from the species’ native range. This
meta-analysis quantifies changes in the relative productivity,
assessed as individual-tree volume, of populations across
climatic gradients and associates the preference of a popula-
tion with increased volume production along the climatic
gradient. Clustering and ordination on the matrix containing
estimates of change in productivity for each population sum-
marise differentials in productivity associated with climatic
gradients. The preference of populations along principal com-
ponents therefore reflects the adaptive profiles of populations,
which may be used with breeding-value estimates from rou-
tine genetic evaluations to assist with the development of
deployment populations targeting different environments. As
well, the approach may be used to test whether the preference
of a population, estimated as population loadings for growth
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differentials, is affected by the climate in the native range of
the population. This relationship may be interpreted as an
estimate of how much local climate shapes the adaptive pro-
files of populations. The amount and seasonality of precipita-
tion most clearly differentiate the adaptive profiles of popula-
tions, with less variation in the population responses explained
by temperature differentiation. As expected from type-B cor-
relation estimates, most populations exhibited small changes
in relative productivity across climatic gradients. However,
patterns of similarities in adaptive profiles among populations
were evident using spatial orientation to display population
responses to the climatic variables experienced in the prove-
nance trials. Clustering and ordination of population responses
derived from empirical data served to identify populations that
responded positively or negatively to climatic variables; this
information may help guide conservation genetics efforts,
direct the deployment of germplasm, or identify seed sources
that are sensitive to changes in climatic variables. Linking
response patterns to the climatic data from the native range
of each population indicated little effect of local climate
shaping adaptive profiles.

Keywords Genotype by environment interaction -
Provenance - Response profiles - Climatic adaptation - Genetic
conservation - Forest genetic resources

Introduction

Pinus tecunumanii is a medium to large tree that is native to
most of Central America and Chiapas, Mexico (Perry 1991).
Seeds collected from more than 1,500 individual trees within
the species’ native range by the Camcore program (Dvorak
et al. 2000) have been established in ex situ genetic
conservation areas in the form of pedigreed provenance
trials in Argentina, Brazil, Colombia, Kenya, Mozambique,
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South Africa and Venezuela. These trials are used to evaluate
the productivity of different populations, families and
individuals within populations. Results of provenance
performance as related to overall productivity were
summarised by Hodge and Dvorak (1999; 2012) in order to
guide conservation and breeding strategies. In the present
study, productivity data from a subset of well-tested popula-
tions were extracted and analysed to identify patterns of
productivity change across the climate gradients sampled by
the various field trials in order to develop adaptation profiles
for populations of this pine.

The species is widely distributed and includes populations
that are vulnerable to over-exploitation or loss from natural
disasters. These populations have been evaluated in field trials
established across a wide range of environments; however,
there is uncertainty about which population will perform best
when planted into production forests on contrasting sites or
when reintroduced into the species’ native range. This uncer-
tainty arises because of changes in the performance of popu-
lations and families across trials due to genotype by environ-
ment interactions (GxE). While traditional genetic analyses
are used to identify which populations or families are best
across sites, understanding changes in performance across
environmental gradients is of increasing interest (Hodge and
Dvorak 2004; Costa e Silva et al. 2006; Baltunis and Brawner
2010; Cullis et al. 2010; Brawner et al. 2012; Dutkowski and
Potts 2012).

The paper describes a process for identifying the environ-
mental variables that are associated with changes in the pro-
ductivity of P. fecunumanii that may be useful for directing the
deployment of germplasm, identifying patterns in population
responses to climatic variables, informing the development of
species distribution models and guiding gene conservation
efforts. An important feature of the method is that it abstracts
performance away from the specific trials that have sampled
the target planting environment so that changes in productivity
are associated with the environmental variables used to clas-
sify the trials. This allows for the portrayal of changes in
productivity across climatic variables that classify the land-
scape rather than changes in productivity across a specific to
sets of trials. This facilitates an alternative portrayal of GXE
that is associated with the environmental variables used to
characterise all planting locations rather than individual trial
environments. Presentation of results may have to be carried
out across grossly imbalanced data sets, and care must there-
fore be taken in the interpretation of the results of this type of
meta-analysis. A clear understanding of the distribution of
populations across trial networks and genetic connectivity
across trials is required if results are used to assist with the
interpretation of species distribution models (Estes et al. 2013)
or understanding how the impact of environmental drivers
differs within physiological models of plant growth
(Almeida et al. 2010). Concisely describing similarities in
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how populations perform across climatic gradients relative
to one another using a set of P. tecunumanii provenance trials
is the primary objective of this work.

A highly condensed summary of analysis results typically
generated for comparison of populations across environments,
such as for average productivity, is produced with clustering
and ordination in the form of a preference analysis (Carroll
1972). Climate data of trials included in this study is used with
estimates of the relative productivity of populations in these
trials to produce an alternative form of the traditional biplot
that is typically used to classify patterns of GXE in terms of
differences in performance across trials (Gabriel 1971;
DeLacy et al. 1996; Hardner et al. 2010). Data from many
trials is used to place well-tested populations within the space
of the environmental variables driving the interactions rather
than the space of the trial network describing the
environmental variables. The main contrast with GXE biplots
that place field trials within the space of variable populations
is the use of environmental variables to define the space that
classifies changes in population productivity. The clustering
and ordination methodology described below has been
detailed in Brawner et al. (2013) along with the strengths
and weaknesses of the process.

Materials and methods

This study extends the results derived from the provenance
trial network described by Hodge and Dvorak (2012), which
provides detailed descriptions of the populations sampled
from these provenances, the trials involved in the network,
data standardisation processes and the statistical methods.
Briefly, data were standardised by dividing all observations
by the individual tree phenotypic standard deviation, followed
by adding a constant (100 %) and multiplying by another
constant (coefficient of variation) prior to generating least-
square estimates for each population in each trial where effects
were estimable (Eisen and Saxton 1983). Estimates from an
across-sites analysis of standardised trial data removed the
environmental main effects in order to isolate the genetic
and GxE effects used to illustrate productivity differentials
among populations with respect to climatic variables. Species
distribution models with maps encompassing the testing
environments presented by Leibing et al. (2009) provide
background for the discussion of potential productivity in
present and alternative climate scenarios.

Populations and field trials

Ofthe 48 P. tecunumanii populations established in field trials,
the 23 populations described in Fig. 1 were assessed for
diameter and height 5 years after planting and were also
present in eight or more of the field trials where at least three
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native-range population samples were evaluated in each trial.
Particulars of these populations are shown in Table 1. Data
from all P. fecunumanii trials represented in Fig. 2 were
combined to produce the least-square estimates of individual
tree volume for each population at each location as detailed in
Hodge and Dvorak (2012). Subsequent to the original collec-
tions of P. fecunumanii in Mexico, the Juquila source was re-
classified as an atypical form of Pinus pringleii/ Pinus
herrerae possibly resulting from historic introgression of sev-
eral closed-cone pines (Dvorak et al. 2001) but was still
included in the study for demonstrative purposes.

P tecunumanii may be subdivided into broad ecotypes
based on morphological and molecular information which is
apparently influenced by the altitude of their occurrence in
Central America and Southern Mexico (Dvorak 1986), i.e.
high- and low-elevation populations. The two ecotypes are
conceptually treated as separate breeding populations with
high- and low-elevation ecotypes described in Dvorak et al.
(2000). These populations were planted in disconnected sets
of field trials. Differences in the testing environment experi-
enced by high- and low-elevation ecotypes are demonstrated
in Supplementary Figs. 1, 2, 3, 4 and 5, and the impact on
inferences that may be made across high and low populations
are discussed below.

In this study, climatic data for the native-range populations
described in Fig. 1 and trials described in Fig. 2 were derived
from the Bioclim global climate data set (Hijmans et al. 2005).
No environmental data on soil, aspect, or pest or disease
occurrence were used, largely due to the difficulty of
obtaining consistent information. Environmental variables
were compiled from the high resolution (30" or approximately
1-km resolution) Bioclim dataset using R (Bivand et al. 2013).

The Bioclim dataset, generated by interpolation of long-term
climate data, is described with the environmental variables
listed in Table 2 to clarify abbreviations used in figures.

Preference analysis, methodology and interpretation

Climatic variables associated with trials were used to examine
changes in the productivity of each population across climate
gradients. For any specific experiment, the estimate of pro-
ductivity for any population is interpreted as a deviation about
the overall mean, related to population (G) and population by
environment interactions (GXE). The extent of change in each
population’s estimate of productivity across the range of the
variables sampled by that population in these trials is defined
as the correlation () between the population estimates and the
climate variables that were used to describe the growing
conditions of each trial environment. A separate correlation
was estimated for each population using the population’s
productivity estimate as the dependent variable and the
Bioclim variables associated with each trial as independent
variables. These correlations (Supplementary Table 1) were
then subjected to clustering and ordination to describe patterns
in change across the Bioclim-derived environmental gradi-
ents. Cluster analyses used Ward’s minimum variance meth-
od, while ordination used conventional principal component
analysis of unscaled and centred variables to produce rotated
variables for presentation of loadings and scores. Clustering
and ordination was completed using the matrix comprised of
the population preferences (Supplementary Table 1) using the
hclust and prcomp function, respectively, in the Stats package
of the R statistical software environment (R Development
Core Team 2013). Clusters were considered to be different if
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Table 1 Populations selected for estimation of change in productivity across Bioclim-derived climate gradients with data on population location, mean

annual precipitation at that location, high- or low-elevation classification and number of trials used in the meta-analysis

Code Population Longitude (decimal) Latitude (decimal) Precipitation (mm) Ecotype Trials
1 Cabricéan —91.63 15.58 1,010 High 8
2 Celaque —88.67 14.55 1,273 High 9
3 Chanal —92.38 16.70 1,238 High 16
4 Chempil —92.42 16.75 1,146 High 9
5 El Carrizal —92.30 15.40 2,000 High 10
6 Esquipulas del Norte —86.50 15.25 1,067 Low 11
7 Jitotol —92.85 17.03 1,701 High 9
8 Jocon —86.88 15.27 1,166 Low 10
9 Juquila -97.21 16.25 1,325 High 10
10 La Esperanza —88.22 14.27 1,363 Low 12
11 Las Piedrecitas —92.58 16.70 1,252 High 10
12 Locomapa —87.33 15.50 1,167 Low 12
13 Montebello —91.75 16.10 1,909 High 9
14 Mountain Pine Ridge —88.91 16.88 1,558 Low 13
15 Rancho Nuevo —92.58 16.68 1,238 High 16
16 San Esteban —85.63 15.25 1,071 Low 20
17 San Francisco —86.12 14.95 1,491 Low 15
18 San Jer6nimo —90.30 15.05 1,200 High 40
19 San Lorenzo —89.67 15.08 1,700 High 12
20 San Rafael del Norte -86.13 13.23 1,366 Low 15
21 San Vicente —90.12 15.08 1,700 High 11
22 Villa Santa —86.28 14.20 1,302 Low 23
23 Yucul —85.78 12.92 1,394 Low 19

the percent of variation explained by an additional cluster

accounted for more than 50 % of the unexplained variance
using the k-means algorithm. Clustering results are included in
the preference analysis-based biplot by altering font and
colour for clusters of environmental scores and altering line

types for clusters of population loadings.

Fig. 2 Location of

P, tecunumanii provenance trials
included in this study showing the
92 trials used for this meta-
analysis out of the 110 trials
established in the network
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Table 2 Description of Bioclim-derived climate variables and codes
used in figures

Code Bioclim descriptor Units®
TAvg Annual mean temperature °C
TDR Mean diurnal range °C
Iso Mean diurnal range/temperature annual range %
TSeas Temperature seasonality (standard deviationx10)  °C
MaxM Max temperature of warmest month °C
TMinM Min temperature of coldest month °C
TAnnR Temperature annual range °C
TWetQ Mean temperature of wettest quarter °C
TDryQ Mean temperature of driest quarter °C
TWarmQ  Mean temperature of warmest quarter °C
TColdQ Mean temperature of coldest quarter °C
PAnn Annual precipitation mm
PWetM Precipitation of wettest month mm
PDryM Precipitation of driest month mm
PSeas Precipitation seasonality (coefficient of variation) %
PWetQ Precipitation of wettest quarter mm
PDryQ Precipitation of driest quarter mm
PWarmQ  Precipitation of warmest quarter mm
PColdQ Precipitation of coldest quarter mm

#Units of temperature are reported as ten times degrees Celsius

et al. 1996; Yan and Hunt 2002). The biplot presented herein
provides an indication of preference for higher levels of the
certain environmental variables with populations spanning
different environmental gradients depending on what environ-
ments were experienced in field trials (see Supplementary
Figs. 1, 2, 3, 4 and 5). The method uses replicated field trials
to isolate genetic responses rather than using phenotypic re-
sponses in natural stands so that the environmental main effect
may then be removed from the population comparisons.

@) that indicate
change in productivity (v) across a climate gradient (x) makes
references to changes in population productivity across cli-
mate gradients possible. However, this also means no
information on the absolute genetic merit of the popu-
lations or the effect of environmental variables is con-
veyed in the resulting biplot; other types of genetic
analyses readily provide that information.

Within the biplot, objects (populations) are compared with
respect to variables (Bioclim environmental variables) so that
provenance loadings are displayed as vectors from the origin
to the population code, and scores are displayed as Bioclim
variable names (Kroonenberg 2008). The relative proximity
of populations and environmental variables in this presenta-
tion provides an intuitive way to associate descriptors with
population loadings located near each other implying similar-
ity of preferences or tightly clustered environmental scores
representing variables that elicit similar preference patterns

Classification based on correlations (r =

TColdQ 15
TDryQ 12
TMinM g
TWarmQ 16
TMaxM 20
TAvg 21
TWetQ 13
PWarmQ \6 10
PSeas 11
TANNR 17
TSeas 7
TDR 3 \
PColdQ 6
PANN 22
PDryQ 13
PDryM 3
PWetQ ;4
PwWetM \< 8
Iso 1

Fig. 3 Clustering of changes of P. fecunumanii productivity elicited by
changes in Bioclim-derived environmental variables showing similarities
in environmental variable (Table 2 code) effects on populations (/eff) and
similarities in population (Table 1 code) responses induced by environ-
mental variables (right). The green line delineates clusters of populations
(numbered in Table 1) differentiated by line type and clusters of environ-
mental variables differentiated by font and greyscale in Fig. 4 (Colour
figure online)

across populations. Using this categorisation of scores and
loadings, the length of the species’ vectors indicates the extent
of principal component (PC) fit, and the direction of the vector
indicates the preference of a given population for the environ-
mental variables associated with this PC. Preference (as
reflected by increased individual tree volume) increases as
the vector moves from the origin towards any given environ-
mental score. The score for each environmental variable may
be orthogonally projected onto any population vector, and the
environmental variable that projects furthest along a vector in
the direction in which it points is the variable which the
population prefers most.

Quantifying among-population comparisons in terms of
productivity changes across climatic variables from this prin-
cipal component analysis provides greater precision in de-
scribing adaptive patterns. For among-population compari-
sons, the cosine of the angle between two vectors approxi-
mates the correlation between the response patterns of the two
populations across all environmental gradients. The dot prod-
uct of the PC1 and PC2 loadings for two populations provides
an estimate of correlation with the cosine of the angle between
the two vectors in degrees equal to the correlation coefficient
(). An acute angle between two vectors implies similar pref-
erences while a 90° angle implies a correlation of zero or no
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Fig. 4 Biplot depicting
relationships between

P, tecunumanii populations’
(Table 1 codes) responses
(vectors) elicited by changes in
Bioclim-derived environmental
variables (Table 2 codes) (centre
of climate variable name) with
four clusters of population scores
distinguished by style of line,
populations from the low-
elevation ecotype in boldface and
three clusters of environmental
loadings distinguished by
greyscale

1.0
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PColdQ
18Ang,

10

preference. To facilitate presentation, scores and loadings
were rescaled by multiplying each point by the reciprocal of
the maximum score or loading so that each point is presented
as a percentage of the maximum score or loading.

To gain insight into the ability to predict populations’ sensi-
tivity to changes in environmental variables using climate data
from their native habitat, linear models were used to relate
populations’ loadings for growth differentials to the climatic
conditions in that populations’ native range. The significance of
the correlation (r; where i indexes 19 Bioclim variables) be-
tween the native range climate, and the PC loadings for growth
differentials may be formally tested. This was undertaken for
both PC1 and PC2 axes represented in the biplot as PC1 was
primarily associated with precipitation variables, and PC2 was
primarily associated with temperature variables.

Results

Interpretations of the preference analysis are described to
clarify the inferences that may be made using the cluster
diagrams of Fig. 3 and the biplot of Fig. 4, which depict
similarities of the regression of population relative productiv-
ity across Bioclim variables. The cluster diagram presented in
the right of Fig. 3 identifies Jocon (8) and Cabricéan (1) as the
least dissimilar populations, followed by a larger cluster con-
taining Mountain Pine Ridge (14) and El Carrizal (5).
Interestingly, Jocon, Cabrican and Mountain Pine Ridge
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appear to have higher levels of introgression with Pinus
oocarpa than the other populations evaluated in this study
(Dvorak and Raymond 1991). Similar inferences may be
made using the cluster diagram for environmental variables
presented on the left of Fig. 3. In the case of climate variables,
isothermality and the precipitation of the wettest month and
wettest quarter are readily partitioned.

The groupings in these cluster diagrams are annotated in
the biplot (Fig. 4), with shades of grey differentiating climatic
variable clusters and line types differentiating population clus-
ters. As 84 % of the variation in productivity changes across
the climatic variables explained by the first two principal
components, little is to be gained from interrogating additional
principal components (PC3 explained 9 % of the variation,
details not shown). Differences in results from Ward’s clus-
tering algorithm and the PCA analysis are evident; for exam-
ple, Jocon and Cabrican cluster closely together but occupy
different spaces in the biplot.

Figure 4 allows for inference about the impact of climatic
variables on changes in population performance as well as the
responses of populations to climatic variables. The clearest
finding is the separation of environmental scores related to
precipitation along the first principal component axis, show-
ing the strongest contrast between seasonality of precipitation
and precipitation in the driest month. The proximity of the
environmental variables that explain the greatest changes in
rankings (precipitation in the driest quarter and precipitation in
the driest month) demonstrates the similarity in their impact
on changes in population performance and the ability of PCA
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to display co-linearity in descriptors. The climatic scores
related to temperature variables are somewhat less clearly
differentiated along the second principal component
axis. As well, a relationship between the temperature
and precipitation variables is apparent, where variables
associated with lower rainfall are also associated with
higher temperatures. In addition to the proximity of
climatic variables to one another, the proximity of
climatic variables to the origin is informative.
Climatic variables near the origin produce smaller
changes in the relative performance of population than
those that are located at a greater distance from the
origin, such as precipitation in the wettest quarter or
precipitation in the wettest month.

Inferences about the importance of environmental variables
for particular populations may be quantified by projecting
climatic variables onto a population vector. The relative im-
portance of each climatic variable in bringing about changes
in relative performance may be demonstrated using the
Juquila (9) vector, where the projection of precipitation in
the driest month (the most influential environmental variable)
is slightly further along the vector than precipitation in the
driest quarter. This vector represents Juquila’s adaptation pro-
file with respect to all climatic variables.

Further inferences that may be made about populations
relate to the nearness of populations, which reflects both
similarities in their pattern of change and stability with prox-
imity to the origin reflecting a lack of predictable change in
relative performance, i.c. an average response due to the
regression slopes being near to zero. Populations close to the
origin are relatively stable and do not have predictable re-
sponse patterns. For example, San Esteban (16) is located
closest to the origin and may therefore be regarded as a stable
population with little change in performance induced by cli-
matic variables. The opposite may be inferred for Juquila (9),
which is the population with the greatest vector length and
therefore the population that exhibits the greatest predictable
changes in relative productivity induced by climatic variables.
Quantifying the similarities in population responses to envi-
ronmental variables is possible using the angle between pop-
ulation vectors. For example, the Juquila and (9) Mountain
Pine Ridge (14) responses to environmental variables are
negatively correlated (¥=—0.92) while the El Carrizal (5) and
Mountain Pine Ridge responses are quite similar with respect
to all variables (=0.94).

While identifying populations that respond positively or
negatively to changes in climate variables may be used to
guide deployment of a priori tested populations, it would be
useful if this approach could be extended to identify the
climatic variables that shape populations’ adaptive profiles
in the species’ native range. Significant relationships between
Bioclim climate data from the native range and the loadings of
these populations in trials may be interpreted as adaptation

associated with local climate. When quantified as the correla-
tion (7;) between population loadings for growth differentials
and the climate experience in the native range, formal tests of
significance may be used to identify climate variables that are
associated with preference. For PC1, a positive regression
may be interpreted as an association between native-range
climatic variables and preferences for higher precipitation or
lower seasonality of precipitation and lower temperatures.
None of the regressions indicated that there was a significant
association between responsiveness to environmental vari-
ables and native range climate (details not shown). While
the preference of populations was not significantly associated
with native range climate, the climate variables that provide a
contrast along PC1 showed weak associations with population
preference (annual precipitation p=0.14 and precipitation sea-
sonality p=0.16). These associations may be interpreted as
follows: (1) populations derived from areas of high annual
precipitation present a negative response pattern when rainfall
increases, and (2) populations derived from areas with high
precipitation seasonality respond positively to increased rainfall.

Discussion

A selection of well-tested populations from a network of
P. tecunumanii field trials was analysed so that patterns of
genetic response to changes in environmental variables could
be visualised. Similar to findings for eucalypt trials (Brawner
et al. 2013), pine population changes over precipitation gradi-
ents accounted for a much greater proportion of the variation
in productivity differentials than changes over temperature
gradients. This indicates rainfall is the principal driver of
change in the relative performance of populations. For exam-
ple, a population such as Juquila responds positively as pre-
cipitation increases and negatively as precipitation decreases,
demonstrating a positive preference for higher precipitation.
In contrast, populations like Chanal and El Carrizal are rela-
tively less productive as precipitation increases demonstrating
an aversion to higher precipitation. This specific example
emphasises that comparisons among population loadings for
change across climatic gradients are made relative to one
another with environmental main effects removed; it is not
suggested that the absolute productivity of these populations
would increase as precipitation decreases. Similar examples
may be developed for temperature gradients using the second
principal component.

Interpretations of the influence of a climatic variable on the
relative productivity of P. tecunumanii populations should be
visually apparent in the biplot as it spatially represents simi-
larities in climatic variables and population responses to these
climatic variables. This allows for the interpretation of all
environmental variables and populations simultaneously. For
example, the climatic variables associated with precipitation
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were tightly clustered to the right of the biplot indicating they
have similar effects on the populations’ performance.
Conversely, the Jocon population is spatially separated from
other populations, indicating that Jocon is distinct in its re-
sponse to the environmental variables. Verifying the genetic
differences among populations with DNA-based approaches
provides a way of quantifying similarities among populations
so that these differences in preference would be associated
with more accurate population classifications. Combining
molecular-based phylogenies with populations selected as
genetically distinct may provide a means for targeting popu-
lations with specific adaptation profiles for use in landscape
genomic studies (Sork et al. 2013).

While it is possible to make comparisons among all popu-
lation preferences simultaneously, care must be taken to con-
strain inferences to make it clear that they are estimates from
populations that were evaluated within a specific climatic
space. For example, Fig. 4 provides comparisons among
populations across the two ecotypes even though these popu-
lations are experimentally disconnected; they were not tested
in common trial and each ecotype was targeted to environ-
ments that were more similar to where they were sourced from
(Supplementary Figures 1, 2, 3, 4 and 5). Defining the climate
envelope that each population experienced in the field trials
provides the environmental boundaries that must be used to
constrain inferences on preference. Estimates of preference
across a climatic gradient should be paired with a description
of the trial environments as these environments define the
climates that the population has experienced. In a similar
manner, inferences on rotation-age adaptability are extrapola-
tions and should refer to the early development of
P tecunumanii plantations given that data comes from 5-
year-old assessment. Given the high age-age correlations
and moderately high site-site correlations for pine growth
traits, extrapolating temporally is likely to be less problematic
than extrapolating environmentally. Survival is a trait that in
under genetic control and clearly reflects adaptability that this
was not accounted for in this study. One option would be to
use total volume in the row plots to provide a better indication
of overall adaptability, with mean annual increment calculated
from later-age block plots in replicated trials providing the
most robust estimates of genetic change associated with to
adaptability (Brawner et al. 1999; Stanger et al. 2010). In any
case, this specific analysis is interpreted with selection of 5-
year-old individual tree volume as the phenotype of interest.

As well as displaying similarities or differences among
populations and environmental variables, the location of pop-
ulations with respect to the environmental variables provides
an indication of how they are inter-related. Further informa-
tion can be gained by inspecting the distance of populations or
climatic variables from the origin with relatively responsive
populations positioned far from the origin and relatively un-
responsive populations such as San Esteban (16), San
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Vincente (21), San Jeronimo (18) and San Lorenzo (19)
located near the origin. Interestingly, this similarity in stability
is reflected by geographical proximity with the San Vincente,
San Jeronimo and San Lorenzo populations located along the
same mountain ridge and the first two populations separated
by just 10 km (Fig. 1). Climate variables located nearer the
origin, such as precipitation in wettest quarter and precipita-
tion in the wettest month, are those that produce the least
change among the populations.

Application in the conservation and use of forest genetic
resources

Understanding populations’ responsiveness to climatic vari-
ables may be used to prioritise conservation efforts in view of
a changing climate (Hamann and Aitken 2013). The prefer-
ence of populations may be used to target resources to con-
serve germplasm from populations that are close to their
environmental limits (Benito-Garzon et al. 2013; Razgour
et al. 2013). For example, the low-elevation populations of
La Esperanza (10) and San Francisco (17) are oriented away
from environmental variables associated with higher temper-
atures, indicating these populations prefer cooler temperatures
more than the other populations. The negative responses to
increased temperature may be avoided if the populations were
to migrate to higher elevations. However, stands of individ-
uals within these populations that are already located near the
tops of hills or ridges may require assisted migration sooner
than populations that are insensitive to temperature increases
to ensure rare alleles contained within these stands may be
conserved (Ponce-Reyes et al. 2013). Mitigating the risks of
population losses or reductions in genetic diversity from low-
land attrition or range-shift gaps from upward range shifts
may be possible if a populations’ climatic preferences are
understood (Kreyling et al. 2010).

A real-world application of this method may be found in
the development of P. tecunumanii planted forests in an area
where the species has never been grown, using seed from
selections made from field trials established in South Africa.
Planted forests are a recent development on the Lichinga
plateau in Mozambique, an area characterised by a long and
hot dry season marked by a high seasonality in precipitation.
A natural first step in the domestication process for this new
environment is to take seed from the populations that have
been shown to be highly productive in South Africa, such as
Montebello (13) and San Francisco (17). Referring to the
biplot in Fig. 4, it is clear that neither Montebello nor San
Francisco prefer higher seasonality of precipitation, as the
vectors for both populations are nearly at 90° angles from
the seasonality of precipitation climate variable. However,
Montebello responds positively to higher temperatures, and
San Francisco responds positively to higher precipitation in
the driest quarter. While both populations are of a similar
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genetic merit, this evidence would suggest that Montebello
may provide a more robust choice. On the other hand, El
Carrizal (5) and Mountain Pine Ridge (14) are two popula-
tions with estimates of genetic merit close to the species mean
and may therefore be passed over using breeding-value anal-
yses. Inspection of Fig. 4 would indicate that these popula-
tions are relatively more productive when the seasonality of
precipitation and seasonality of temperatures are high, which
suggests that selections from within these populations could
be used to increase the resilience of planted forests established
where large fluctuations of precipitation and temperature are
typical. Combining information from standard genetic analy-
ses and the biplot approach also identifies Yucul (23) as a
population of interest since it combines a high across-sites
genetic merit and moderate increases in relative productivity
when planted in environments where the seasonality of pre-
cipitation is high.

Climatic preferences are not predictable using climate data
from the native habitat

This study could not find significant evidence to support the
concept that populations that are more or less reactive to envi-
ronmental change may be identified using the climate of their
native habitat. This could support the hypothesis that many tree
species have native ranges that reflect genetic changes during
the Pleistocene or some other climatic period (Crisp et al. 2004)
rather than the present climate. While this may initially be
counter-intuitive, three points may be considered to support this
finding: the first relates to the representativeness of current
climate data compared to the climate experienced over time
period required to develop adaptive differences, the second is
associated with the precision and level of sampling of genetic
and environmental variables and the third relates to the pine
mating system. Firstly, when one considers the time scales that
are required for pine populations to migrate, it is evident that
the climatic trajectory that was followed during the process of
producing genetically distinct populations within
P, tecunumanii is likely to have had a stronger influence than
the 10 to 50 years represented by the Bioclim variables
(Franklin 2010). Secondly, while populations of
P tecunumanii differ significantly in their productivity, there
is also genetic variation within populations. Downscaling
coarse climatic data should provide a more precise classifica-
tion of environments (Storlie et al. 2013) for investigating
relationships between climatic preference and current climate
and may be required to provide further support for the concept
of local environment shaping environmental preferences
(Gillingham et al. 2012; Blanquart et al. 2013). Thirdly, knowl-
edge of the highly outcrossing mating system and extremely
long distance pollen transfer that is possible in P. fecunumanii
would facilitate a wide mixing of alleles among and within
populations with wide-crossing effectively reducing the

fixation of adaptive alleles that would lead to distinct adaptation
strategies developing divergent populations.

Conclusions

The preference-based biplot presented herein provides an
alternative view of the adaptive features of populations with
respect to the environmental variables that characterise exper-
imental locations. The main strength of presenting GxE
interactions as they are displayed in Fig. 4 is the abstraction
away from location-specific data to the climatic variables that
drive changes in performance. While useful, this methodology
requires further information for breeding climate-resilient
crops, which is readily retrieved from standard genetic analy-
ses. Nevertheless, these combined analyses would be useful
for the development of different breeds with adaptive patterns
tailored to distinct environments.

For the populations investigated in this study, variables
related to precipitation were able to explain a large proportion
of the variation in climatic preferences compared to variables
related to temperature. Predictable changes in population pro-
ductivity across climatic gradients or genotype by environ-
mental variable interactions are effectively presented in a
concise manner using this preference analysis approach.
Providing a direct link between changes in productivity
among populations evaluated in field trial networks and the
native population climatic variables associated with these
changes may be used to identify populations that merit con-
servation efforts, to direct the deployment of germplasm for
existing replanting programs and to identify germplasm suit-
able for future and alternative climatic conditions.

Using population classifications derived from genomic
data rather than locality of seed collection provides an alter-
native means of evaluating the manner in which environment
shapes genetic variation. Testing the significance of associa-
tions between molecular-based phylogenies or haplotypes and
changes in relative productivity across environmental gradi-
ents provides a means for identifying the genomic regions
involved in regulating the environmental responses of germ-
plasm. This may lead to a more refined understanding of how
changes in climatic variables will differentially impact the
genetic composition of our forests.
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Data Archiving Statement Data required to reproduce any estimates
or figures provided in this manuscript is provided in the Supplementary
Materials attachment to this manuscript. The main figures in the manu-
script (3 and 4) describing the clustering and ordination are readily
reproduced with a call to the R functions using the options identified in
the text based on the matrix provided in Supplementary Table 1. This
table contains the correlation coefficients estimated from the population
within trial estimates meeting trial and population minimum specifica-
tions. Specifications required for inclusion in the meta-analysis are pro-
vided in the methods. Detailed results from populations (Table 1) in-
volved in the trial network are provided in Southern Forests—Growth
potential and genetic parameters of four Mesoamerican pines planted in
the Southern Hemisphere 2012, GR Hodge and WS Dvorak doi: 10.2989/
20702620.2012.686192 #.Uomk1CcdPKO. All climatic data associated
with native range or trial locations used for this study is stored on the
Bioclim website http://www.worldclim.org/bioclim. Table 1 describes the
location of the native range populations (Fig. 1) evaluated in the trial
network. The weather variables used to compare the environmental
coverage of each population across the trial network (Fig. 2) are
summarised in Supplementary Figures 1, 2, 3, 4 and 5.
No genomic data was used in this study.
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