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Genetic admixing of two evergreen oaks, Quercus acuta
and Q. sessilifolia (subgenus Cyclobalanopsis), is the result
of interspecific introgressive hybridization
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Abstract In forests worldwide, Quercus is a major genus;
however, the boundaries between the constituent species are
relatively weak, and hybridization is reported frequently. In
this study, we examined Quercus acuta and Quercus
sessilifolia (subgenus Cyclobalanopsis), which have a puta-
tive hybrid—Q. x takaoyamensis. We investigated leaf mor-
phological traits and microsatellites of Q. acuta and
Q. sessilifolia in the area where the two species are both
found. Although the leaf traits overlapped, the two species
could be distinguished morphologically as demonstrated by
principal component analysis based on a range of these traits.
They were also genetically differentiated, with FST=0.104.
However, they shared most of the alleles at all eight loci
examined, and considerable genetic admixing was detected.
Admixture analysis demonstrated that Q. acuta and
Q. sessilifolia, respectively, contained 11 and 24 % of indi-
viduals with a probability of less than 0.9 of being correctly
assigned to their species.Model-based testing showed that this
admixing was created by not only shared ancestral polymor-
phism but also by hybridization. Effective population size and
migration rate were estimated using the coalescent approach.
We estimated 8.843 and 71.98 effective numbers of migrants
per generation to Q. acuta and Q. sessilifolia, respectively.
Theoretically, one to ten migrants per generation are required
to prevent complete genetic differentiation. Based on the
results of this study, it appears that genetic admixing, with

sharing ofmost alleles, is probably common in the two species
and is maintained by interspecific introgressive hybridization.
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Introduction

Quercus is a widely distributed tree genus. Its species bound-
aries are as weak as those of Populus (Martinsen et al. 2001;
Stettler et al. 1996), Betula (Johnsson 1945; Palme et al.
2004), and Eucalyptus (Field et al. 2011; Potts and Dungey
2004), and genetic admixtures, considered to be due to inter-
specific hybridization, have been reported frequently all over
the world (Cavender-Bares and Pahlich 2009; Guichoux et al.
2013; Lepais et al. 2009; Matsumoto et al. 2009; Moran et al.
2012; Zeng et al. 2011). Thus, it can be used as a model genus
for studying hybridization. However, some pairs of Quercus
species, although they are morphologically and genetically
differentiated from each other, share almost all their alleles
(Moran et al. 2012; Muir and Schlotterer 2005; Valbuena-
Carabana et al. 2005). In these cases, it is possible that a
shared ancestral polymorphism rather than hybridization is
responsible for the genetic admixture between the species. In
the case of Quercus robur and Quercus petraea, this possibil-
ity has been discussed (Muir and Schlotterer 2005), and
finally, it has been concluded that hybridizations have truly
occurred (Abadie et al. 2012; Guichoux et al. 2013; Lexer
et al. 2006; Scotti-Saintagne et al. 2004). As hybridization is
common in the genus Quercus, there is no doubt that the
evolutionary dynamics of the genus, including speciation
and range expansion, have been affected by hybridizations
(Petit et al. 2003; Zeng et al. 2011).
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The genus Quercus can be separated into two subgenera—
Quercus and Cyclobalanopsis—based on whether the cupule
is imbricate-scaled or lamellate. Subgenus Quercus is found
across the northern hemisphere and contains ca. 300 species,
while Cyclobalanopsis is found from the Himalayas and
Southeast Asia to China and Japan and contains ca. 150
species (Huang et al. 1999). The leaf morphologies of subge-
nus Cyclobalanopsis trees resemble each other more than
those of subgenus Quercus (Yan and Zhe-Kun 2002). Unlike
subgenus Quercus, there have, to our knowledge, been no
studies of hybridization using genetic makers in subgenus
Cyclobalanopsis.

Our study species, Quercus acuta Thunb. and Quercus
sessilifolia Blume, both belong to subgenus Cyclobalanopsis
and are late successional species with evergreen leaves; they
are found in warm temperate forest. Q. acuta, with oblong or
elliptic leaves, 2–4 cm long petiole, a long acuminate leaf tip,
cuneate or rounded leaf base, and an entire leaf margin, occurs
in Korea and Japan (Ohashi et al. 2006; Ohba 2006).
Q. sessilifolia, with narrowly oblong or elliptic-oblanceolate
leaves, 0.4–1.2 cm long petiole, acute leaf tip, cuneate or
attenuate leaf base, and nearly entire leaf margin with sparse
small teeth, is found in Taiwan, China, and Japan (Ohba
2006). These two species grow in a somewhat higher eleva-
tion zone than otherCyclobalanopsis species;Q. acuta prefers
upper and Q. sessilifolia lower slopes (Ito et al. 2007). Previ-
ous studies that investigated the cpDNA haplotypes of species
of the subgenusCyclobaranopsis in Japan found thatQ. acuta
and Q. sessilifolia exhibited the same haplotype (Ohyama
et al. 1999, 2001). Based on leaf morphology, Quercus x
takaoyamensisMakino, which is the putative hybrid between
Q. acuta and Q. sessilifolia, has been identified in a mixed
stand of the two parental species (Kobayashi and Midorikawa
1959; Makino 1920; Yamashita et al. 1999). These previous
studies reported that the leaf morphology of Q. x
takaoyamensis was intermediate between Q. acuta and
Q. sessilifolia and highly variable. However, no studies inves-
tigating the details of its morphological and genetic traits have
been published, and it is still unclear whether there actually is
hybridization between Q. acuta and Q. sessilifolia.

Themain objective of this study was to clarify the existence
and the degree of interspecific hybridization betweenQ. acuta
and Q. sessilifolia in the wild. First, we investigated morpho-
logical and genetic differences between Q. acuta and
Q. sessilifolia using five leaf morphological traits and eight
microsatellite markers. Second, the degree of genetic
admixing of the two species was examined by means of
Bayesian admixture analysis. Third, we investigated whether
the genetic admixture is only the result of shared ancestral
polymorphism or a combination of shared ancestral polymor-
phism and interspecific hybridization. Finally, in order to
quantify the degree of interspecific hybridization, the migra-
tion rate between the two species was estimated.

Materials and methods

Study sites and sampling

We thoroughly searched habitats where Q. acuta and
Q. sessilifolia occur in Gifu Prefecture, central Japan, and
selected 15 sites where at least two individuals of one or both
species were found (Fig. 1 and Table 1). Numbers of individ-
uals were very low because the species are rare in this region.
All trees taller than 2 m were selected for examination at each
site, with the exception of Tsurusato (site number 14), where
we examined only 30 individuals randomly selected from
both species because they were so abundant. We sampled 3
to 4 shoots from 75 Q. acuta and 178 Q. sessilifolia individ-
uals. Leaf specimens were collected for species identification
and so that we could record the morphological traits. Three
leaves picked from the sampled shoots were dried with silica
gel and stored at room temperature while awaiting DNA
extraction.

Measurement of morphological traits and data analysis

Initially, species statuses of individuals were identified sub-
jectively based on the detailed observation of the specimens
collected. Next, in order to confirm them objectively, leaf
shapes, the length, and width of leaves (mm), petiole length
(mm), shape of the leaf tip and base, and the absence or
presence of leaf teeth were recorded for ten leaves per tree
using the specimens collected. Leaf ratio was calculated by
dividing length by width. The shape of the leaf tip was scored
0, 0.5, or 1, representing acute, intermediate, or acuminate,
respectively. The shape of the leaf base was scored 0, 0.5, or 1,
representing cuneate, intermediate, or obtuse, respectively.
The status of leaf teeth was scored 0 or 1, representing without
or with teeth, respectively. Five morphological traits, leaf
ratio, petiole length, leaf tip, leaf base, and leaf teeth, were
averaged for each individual tree. Principal component anal-
ysis (PCA) was conducted based on the five morphological
traits, using the princomp function in R version 2.15.1 (R
Development Core Team 2012). A correlation matrix was
used for calculating eigenvalues to normalize the variables.

DNA extraction and microsatellite analysis

,

,
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We selected seven genomic [QpZAG9, QpZAG110, and
QpZAG119 (Steinkellner et al. 1997); QrZAG7, QrZAG20,
and QrZAG101 (Kampfer et al. 1998); QM69-2M1 (Isagi
and Suhandono 1997)] and seven EST microsatellite markers
[QmC00141 , QmC00898 , QmC00963 , QmC01133 ,
QmC01368, and QmC02241 (Ueno et al. 2008); CR627959
(Ueno and Tsumura 2008)] developed for the subgenus
Quercus. All were successfully amplified in our study species.
Multiplex PCR was conducted using a Type-it Mnicrosatellite



PCR Kit (QIAGEN, Hilden, Germany), following the manu-
facturers’ instructions, with a TaKaRa PCR Thermal Cycler
(TaKaRa, Shiga, Japan). The length of the PCR products was
scoredwith anABI PRISMTM 310Genetic Analyzer (Applied
Biosystems, CA, USA), and allele size was determined using
GENESCAN analysis software version 3.7 (Applied
Biosystems, CA, USA). Quality of loci, deviation from
Hardy-Weinberg equilibrium (HWE), genotyping error, and
the fraction of null alleles for the 14 loci were checked using
MicroChecker version 2.2.3 (Van Oosterhout et al. 2004). We
also tested whether the loci were non-neutral, showing higher

levels of interspecific genetic differentiation than expected if
there was neutrality, using fdist2 (Beaumont and Nichols
1996). Finally, we used eight loci (QpZAG9, QrZAG7,
QrZAG20 , QrZAG101 , QmC00141 , QmC00963 ,
QmC01368, and QmC02241; Table 2), which did not deviate
from the assumption of HWE in both species, for which there
was no evidence of genotype error or null alleles in both
species, which satisfied the assumptions indicating selective
neutrality and which contained enough genetic diversity to
distinguish between the two species (gene diversity >0.1; see
details in Supplementary material).

Fig. 1 Locations of sampling
sites

Table 1 Sampling site informa-
tion and the number of sampled
individuals

Site number Site name Latitude Longitude Number of samples

Q. acuta Q. sessilifolia

1 Kamiishizu 35.259 136.458 14 3

2 Nangusan 35.353 136.518 19 2

3 Nanno 35.200 136.588 3 1

4 Tanigumi 35.514 136.588 0 30

5 Horado 35.595 136.795 0 2

6 Itadori 35.662 136.818 5 12

7 Katachi 35.619 136.892 0 12

8 Suhara 35.592 136.943 0 22

9 Sodai 35.555 136.923 0 8

10 Yaotsu 35.505 137.156 0 10

11 Ikitsushi 35.453 137.131 0 13

12 Onada 35.377 137.127 0 2

13 Nishiyamaji 35.201 137.120 4 3

14 Tsurusato 35.265 137.180 30 30

15 Kamado 35.405 137.316 0 28

Total 75 178
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Genetic data analysis

Number of alleles and gene diversity of the eight loci were
calculated using FSTAT version 2.9.3 (Goudet 2001). Genetic
differentiations between the two species at the eight loci were
tested by permutation tests not assuming HWE, implemented
in FSTAT.

Bayesian admixture analysis was performed using STRU
CTURE version 2.3.4 for estimating the genetic admixture
rates of individuals (Falush et al. 2003; Pritchard et al. 2000).
To determine the optimal number of clusters (K), ten indepen-
dent runs were replicated for each value ofK from 1 to 12, and
theΔK statistic was calculated using the CorrSieve package in
R (Campana et al. 2011; Evanno et al. 2005). Independent
runs were performed with a burn-in period of 500,000 and
500,000 subsequent Markov chain Monte Carlo (MCMC)
steps. The ten independent results for each K value were
merged into one using CLUMPP version 1.1.2 (Jakobusson
and Rosenberg 2007).

In order to determine whether the observed genetic admixture
is just the result of genetic drift or a combination of genetic drift
and gene flow between the two species, relative roles of drift and
gene flow were assessed using the 2MOD program that was
based on coalescent theory (Ciofi et al. 1999). The QrZAG101
locus was excluded because it consisted of compound microsat-
ellite repeats, the evolutionary processes of which are complex
(Bull et al. 1999), and so, it was not ideal for the coalescent
analysis. Seven loci were thus used in this analysis. 2MOD
evaluates (1) the drift model, which assumes that drift is the sole
reason for population divergence since a certain time, i.e., the
observed genetic admixture was created by only shared ancestral
polymorphisms, and (2) the gene flow model, which assumes
immigration-drift equilibrium of gene frequencies within popu-
lations, i.e., the observed genetic admixture was created not only
by shared ancestral polymorphisms but also by interspecific
hybridization. Three independent MCMC simulations were con-
ducted with 100,000 steps; 10,000 steps were discarded as the
burn-in period and every fifth step was sampled. Ultimately, we
used 54,000 samples, and the probabilities of each model [P
(drift) and P (gene flow)] were calculated.

In order to quantify the interspecific gene flow, BayesAss
version 3.0 (Wilson and Rannala 2003) and Migrate-n version
3.3.2 (Beerli 2006; Beerli and Felsenstein 2001) were used.
Both programs are able to detect asymmetric migration events.
The former can estimate the recent migration rate (over the last
several generations), and the latter can estimate the historical
migration rate based on coalescent theory. In the BayesAss
analysis, asymmetric migration rates were estimated by Bayes-
ian methods. Three replicate runs consisting of 1 million burn-
in steps and a further 2 million MCMC steps were performed
with different random number seeds, and posteriors were sam-
pled every 2,000 steps. We confirmed that approximately the
same posterior distributions were obtained from each of the

three replicate runs. Trace plots for all parameters were pro-
duced, and their convergences were checked. The 95 % higher
posterior density (95 % HPD) was calculated using the coda
package in R (Plummer et al. 2006). In the Migrate-n analysis,
because this is based on coalescent theory, we used seven loci,
excluding the QrZAG101 locus, as was the case with the
2MOD analysis. The mutation-scaled effective population size
(θ=4Neμ) and migration rate (M=m/μ) were estimated by
Bayesian methods. Ne, m, and μ represent the effective popu-
lation size, migration rate and mutation rate, respectively. Prior
uniform distributions ranging from 0 to 100 and from 0 to 120
were used for θ and M, respectively, with starting values
estimated from FST. Relative mutation rates were estimated
from the data, and the Brownian motion model was employed
because the exact stepwise mutation model was extremely time-
consuming and did not converge. The Metropolis-Hasting al-
gorithm was used to generate posterior distributions. Three
replicate runs consisting of 1 million burn-in steps and a further
200,000 MCMC steps were performed with different random
number seeds, and posteriors were sampled every 100 steps.We
confirmed that approximately the same posterior distributions
were obtained from each of the three replicate runs. Trace plots
for all parameters were produced, and their convergences were
checked. A static heating scheme using 32 chains with the
exponential increase heating term option was employed. Poste-
rior distributions of parameters over all loci were calculated by
averaging the randomly drawn values from the posterior distri-
butions of each of the seven loci as empirical distributions,
adjusting mutation rates among the loci using estimated relative
mutation rates. The 95 % HPD was calculated, as was the case
with the BayesAss analysis. Symmetric migration (migration
rates were symmetrical), one-way migration, and no migration
models were compared to the full model (asymmetric migra-
tion) to determine the direction of interspecific gene flow. The
Bezier approximation and harmonic mean method were used to
marginalize the likelihood, and we calculated log Bayes factors
against the most parsimonious model [log (marginal likelihood
of the most parsimonious model)–log (marginal likelihood of
the model)] and determined which model was the best fit for the
data (Beerli and Palczewski 2010).

Results

Morphological data

Although the distributions of each of the five leaf traits dif-
fered between the two species, there was some overlap for all
of them (Fig. 2). However, using a combination of the first two
principal components (PC) derived on the basis of the five leaf
traits, the two species could be distinguished (Fig. 3). Al-
though there was little overlap for PC 1, the distributions for
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the two species were very close. Distributions for PC 2 over-
lapped completely.

Genetic differentiation and genetic admixing

For the eight loci, although the ranges of the alleles overlapped
and the two species shared most of the alleles (Fig. 4), genetic
differentiationswere highly significant for all eight loci (Table 2).
Numbers of alleles of Q. acuta were lower than those of
Q. sessilifolia for all eight loci. Gene diversities ofQ. acutawere
also lower than those of Q. sessilifolia for six of the eight loci.

In the Bayesian admixture analysis, the average value of
the log probability of data plateaued at K=4 to 8, then

decreased with increasing values of K (Fig. 5). ΔK peaked
at K=2 and K=4, indicating that these K values were appro-
priate to consider (Fig. 6), as secondary peak of the ΔK
statistic may indicate the existence of within-species genetic
structure. If such genetic structure is ignored, it can reduce the
potential for species assignment. Thus, we used the results of
K=4 in the following analyses. Because the admixture coef-
ficients q41 and q42, and q43 and q44 roughly correspond to
Q. acuta and Q. sessilifolia, the sum of q41 and q42, and the
sum of q43 and q44 could be considered to represent the
probability of an individual belonging to Q. acuta (PQac=
q41+q42) or Q. sessilifolia (PQse=q43+q44), respectively
(Fig. 6). The values of PQac and PQse varied greatly within
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Fig. 2 Distributions of five leaf morphological traits of Quercus acuta (black) and Q. sessilifolia (white)
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based on the genotypes of eight
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each species (Fig. 7). The average values of PQac and PQse for
Q. acuta were 0.938 and 0.062, while those for Q. sessilifolia
were 0.131 and 0.869, respectively. Of the individuals
Q. acuta and Q. sessilifolia, 11 and 24 %, respectively, had a
probability of less than 0.9 of being correctly assigned to their
species. These two species thus showed similar levels of
genetic admixing. PQac and PQse values for individual trees
of the two species were compared with the results of the PCA
(Fig. 3). However, individuals that showed genetic admixing
were uniformly distributed across PC 1 and PC 2, and no clear
relationships could be detected.

Population history and migration

The 2MOD population history test strongly supported a gene
flow model rather than a drift model [P (gene flow)=1.000,
P (drift)=0.000], indicating that interspecific hybridization

significantly contributed to the observed genetic admixture
between the two species.

In the detection of recent migration events by BayesAss,
the medians (95 % HPD) of the posterior distributions of the
migration rates from Q. sessilifolia to Q. acuta and from
Q. acuta to Q. sessilifolia were 0.140 (0.099–0.187) and
0.086 (0.060–0.116), and their 95 % HPDs overlapped.

In the detection of historical migration events by Migrate-n,
the most parsimonious model was that based on symmetric
migration; models with different migration parameters were
compared against the most parsimonious model using the log
Bayes factor (LBF; Table 3). For all the models, LBFs were
larger than 21.3 and 128.5 for the Bezier approximation and
harmonic mean methods, respectively. When the Bayes factor
for eachmodel compared to themost parsimoniousmodel is >150
(LBF against the most parsimonious model was greater than log
(150)≈5.0), support for the most parsimonious model is
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Fig. 4 Distributions of alleles in Quercus acuta (black) and Q. sessilifolia (white) at the eight loci

Table 2 Estimates of genetic diversities and differentiation between Quercus acuta (N=75) and Q. sessilifolia (N=178) at eight microsatellite loci

Locus Q. acuta/Q. sessilifolia Genetic differentiationa Referenceb

A HE FST G’ST D

QpZAG9 11 / 18 0.881 / 0.873 0.020 0.153 0.146 *** 1

QrZAG7 11 / 13 0.775 / 0.894 0.087 0.519 0.494 *** 2

QrZAG20 6 / 12 0.749 / 0.790 0.069 0.276 0.251 *** 2

QrZAG101 10 / 13 0.717 / 0.829 0.050 0.211 0.185 *** 2

QmC00141 4 / 8 0.164 / 0.757 0.272 0.518 0.404 *** 3

QmC00963 3 / 4 0.273 / 0.542 0.119 0.169 0.105 *** 3

QmC01368 4 / 7 0.575 / 0.731 0.072 0.186 0.150 *** 3

QmC02241 8 / 12 0.795 / 0.726 0.140 0.545 0.502 *** 3

Average 7.1 / 10.9 0.616 / 0.768 0.104 0.322 0.280 ***

N sample size, A number of alleles detected, HE gene diversity, FST Weir and Cockerham’s FST (Weir and Cockerham 1984), G’ST standardized GST

value (Hedrick 2005), D Jost’s population differentiation index (Jost 2008)
a Statistical significance of genetic differentiation between the two species was tested by permutation tests implemented in FSTAT (Goudet 2001)
b 1 Steinkellner et al. (1997), 2 Kampfer et al. (1998), 3 Ueno et al. (2008)
***P<0.001
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overwhelming (Link and Barker 2010). In our analysis, since
LBF >>5 in both methods, the symmetric migration model was
strongly supported.

Medians (95 % HPD) of the posterior distribution of
mutation-scaled population size (θ=4Neμ) in Q. acuta and
Q. sessilifolia were 2.433 (2.070–2.958) and 18.52 (15.30–
21.49), respectively (Fig. 8a). The median (95 % HPD) of the
posterior distribution of mutation-scaled migration rate (M=
m/μ) was 14.19 (12.86–15.84; Fig. 8b). Posterior distributions
of the effective number of migrants per generation (Nem) were
calculated by θ×M/4, and medians (95 % HPD) of the values
from Q. sessilifolia to Q. acuta and from Q. acuta to
Q. sessilifolia were 8.843 (7.362–11.15) and 71.98 (56.64–
84.72), respectively (Fig. 8c).

Discussion

What caused the genetic admixture?

Although Q. acuta and Q. sessilifolia were genetically and
morphologically differentiated, they were genetically

admixed in the selectively neutral genomic regions studied.
Interspecific hybridization is one of the possible causes of this.
In the genusQuercus, genetic admixing has often been report-
ed over its distribution range and is considered to be the result
of hybridization (Cavender-Bares and Pahlich 2009;
Guichoux et al. 2013; Lepais et al. 2009; Matsumoto et al.
2009; Moran et al. 2012; Zeng et al. 2011). In the studied
species, most of the alleles at each locus were shared between
the two species, and the ranges of the alleles were almost
entirely overlapping. These distributions of alleles suggest
that this admixture may be the result of a shared ancestral
polymorphism (Muir and Schlotterer 2005). If this admixture
was created by only shared ancestral polymorphism, the un-
derlying mechanism could be considered to be pure genetic
drift after speciation. We compared pure drift model with a
gene flow model (drift+gene flow), and the gene flow model
was strongly supported. Despite the fact that these two species
are phylogenetically very close to each other (Ohyama et al.
1999, 2001) and, therefore, the possibility that the shared
ancestral polymorphism is the main cause of this genetic
admixture that cannot be completely rejected, the result of
the model comparison indicated that the interspecific gene
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flow significantly affected the genetic admixing of the two
species. As with the species in our study, the European oaks
Q. robur and Q. petraea exhibit genetic admixing, with most
of their alleles shared, and this has been attributed to shared
ancestral polymorphism at one time (Muir and Schlotterer
2005). However, increasing evidence based on genome scans
and detailed artificial pollination experiments (Abadie et al.
2012; Guichoux et al. 2013; Lepais et al. 2013; Lexer et al.

2006; Scotti-Saintagne et al. 2004) supports the possibility
that hybridization accounts for shared polymorphisms be-
tween these oak species. The results of previous studies and
our study suggest that genetic admixing with the sharing of
many alleles as a result of hybridization can be considered a
common occurrence in the genusQuercus (Moran et al. 2012;
Muir and Schlotterer 2005; Valbuena-Carabana et al. 2005).

Characteristics of hybridization between the two oaks

In both species, admixed individuals exhibited a very variable
admixture rate. Moreover, genetic admixtures were observed
even at the site where only Q. sessilifolia grew. As indicated
by the results of the BayesAss and Migrate-n analyses, the
genetic admixture observed in this study could have been the
result not only of recent hybridization but also of several
occurrences of historical hybridization and, thus, introgres-
sion. Admixed individuals exhibited a range of morphological
traits. This could be because no loci used in this study violate
the assumption of selective neutrality since, although intro-
gression can occur between the selectively neutral genomic
regions as a result of hybridization, this cannot occur in the
genomic regions affected by natural selection that produced
functional differences, even when interspecific gene flow
occurs frequently (Butlin 2010; Via 2009). Thus, the two
species could remain morphologically distinct. Most of the
populations in the study region consisted of small numbers of
individuals. This may have limited intraspecific pollination,
and interspecific hybridization can be an effective way to
ensure the reproduction. If this is so, the estimated admixture
rates in this study may differ from rates in other regions where
there are enough individuals of each species to minimize
levels of hybridization.

A putative hybrid of the two species, Q. x takaoyamensis,
is known, identified by its intermediate leaf morphology
(Makino 1920). It has been reported that the leaf morphology
of Q. x takaoyamensis is not stable and is highly variable
among individuals (Kobayashi and Midorikawa 1959;
Yamashita et al. 1999). Not all individuals with the interme-
diate genetic admixture rate exhibited intermediate morpho-
logical traits (PC 1), and thus, there was no clear congruence
between the leaf morphology and genetic status. Although

Table 3 The most parsimonious
model (in bold) and other candi-
date models and their log mar-
ginal likelihoods (LML) and log
Bayes factors (LBF) when com-
pared to the most parsimonious
model

Model Bezier approximation Harmonic mean

LML LBF LML LBF

Symmetric migration model −5689.4 −930.2
Asymmetric migration model (full model) −5710.7 21.3 −1058.7 128.5

One-way migration model from Q. sessilifolia to Q. acuta −5928.4 239.0 −1301.1 371.0

One-way migration model from Q. acuta to Q. sessilifolia −5932.8 243.4 −1298.5 368.3

No migration model −6533.9 844.5 −1579.9 649.7
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size (θ=Neμ; a), mutation-scaled migration rate (M=m/μ; b), and the
effective number of migrants per generation (Nem; c)
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hybrid individuals between Q. acuta and Q. sessilifolia, i.e.,
Q. x takaoyamensis, are sure to exist in the wild as shown by
the result of our genetic analyses, it is difficult to distinguish
them from pureQ. acuta and Q. sessilifolia individuals on the
basis of leaf morphology.

No significant asymmetric migration between the two spe-
cies was detected in association with either recent or historical
migration events. Generally, there are some differences in the
strength of barriers to interspecific gene flow between species,
and therefore, asymmetric hybridization occurs (Arnold 1997;
Lewis and Crowe 1958; Tiffin et al. 2001). In the genus
Quercus, some cases of asymmetric hybridization have been
reported: For example, inQ. robur and Q. petraea, there were
differences in fertilization success (Steinhoff 1993), and in
Q. robur, Q. petraea, Quercus pubescens, and Quercus
pyrenaica, post-zygotic barriers were the key determinant of
the direction of hybridization (Lepais et al. 2013). In our study,
although migration rates were symmetric across the whole
region, at some sites (1, 6, and 14), the two species exhibited
different levels of admixing. A more detailed study is required
to reveal the direction of hybridization between Q. acuta and
Q. sessilifolia.

In the coalescent-based historical migration analysis, al-
though the mutation-scaled migration rate (M=m/μ) was fixed
between the two species, the mutation-scaled effective popu-
lation sizes (θ=4Neμ) were different, and the value of θ for
Q. sessilifoliawas ca. 8 times larger than that for Q. acuta. As
a result, effective numbers of migrants per generation (Nem)
were different, and the values from Q. sessilifolia to Q. acuta
and from Q. acuta to Q. sessilifolia were 8.843 and 71.98,
respectively. Sewall Wright’s one migrant per generation rule
states that, in ideal populations, one migrant per generation is
enough to prevent complete population differentiation
(Wright 1931). However, in real populations with factors in
play other than those accounted by genetic theory, one to ten
migrants per generation are considered necessary (Mills and
Allendorf 1996; Wang 2004). The values of Nem observed in
this study are equal to (Nem intoQ. acuta) or larger than (Nem
into Q. sessilifolia) 10, suggesting that there is sufficient
hybridization to prevent complete genetic differentiation be-
tween the species and that the genetic condition of most alleles
being shared between the species has been maintained. In
order to confirm hybridization between the two species, arti-
ficial pollination experiments or paternity and parentage anal-
yses to directly detect recent hybridizations are required.

Conclusions

Q. acuta and Q. sessilifolia exhibited genetic admixing, and
we consider that the cause is not simply shared ancestral
polymorphism but also interspecific hybridization. Hybridiza-
tions have occurred several times, and as a result, there has

been introgression. Although these two species are genetically
andmorphologically differentiated, genetic admixture rates do
not correspond to the observed morphology. This suggests
that genomic regions related to morphology have been strong-
ly affected by natural selection. Nem has been sufficient to
prevent complete genetic differentiation, and the sharing of
most of the alleles has been maintained by introgressive
interspecific gene flow.
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