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Abstract Xanthomonas arboricola pv. pruni causes bacte-
rial spot of stone fruit resulting in severe yield losses in
apricot production systems. Present on all continents, the
pathogen is regulated in Europe as a quarantine organism.
Host resistance is an important component of integrated pest
management; however, little work has been done describing
resistance against X. arboricola pv. pruni. In this study, an
apricot population derived from the cross “Harostar” ×
“Rouge de Mauves” was used to construct two parental
genetic maps and to perform a quantitative trait locus ana-
lysis of resistance to X. arboricola pv. pruni. A population
of 101 F1 individuals was inoculated twice for two consec-
utive years in a quarantine greenhouse with a mixture of
bacterial strains, and disease incidence and resistance index
data were collected. A major QTL for disease incidence and
resistance index accounting respectively for 53 % (LOD
score of 15.43) and 46 % (LOD score of 12.26) of the
phenotypic variation was identified at the same position on

linkage group 5 of “Rouge de Mauves.” Microsatellite
marker UDAp-452 co-segregated with the resistance, and
two flanking microsatellites, namely BPPCT037 and
BPPCT038A, were identified. When dividing the popula-
tion according to the alleles of UDAp-452, the subgroup
with unfavorable allele had a disease incidence of 32.6 %
whereas the group with favorable allele had a disease inci-
dence of 21 %, leading to a reduction of 35.6 % in disease
incidence. This study is a first step towards the marker-
assisted breeding of new apricot varieties with an increased
tolerance to X. arboricola pv. pruni.
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Introduction

Bacterial spot of stone fruit caused by Xanthomonas arbor-
icola pv. pruni is one of the major diseases of peach, apricot,
plum, and almond (du Plessis 1988; Pothier et al. 2011a). It
produces necrotic lesions on leaves, which may lead to
severe defoliations of the trees. Fruit lesions appear as
water-soaked spots becoming brown on the surface
(Civerolo and Hatting 1993). Cankers on twigs can be
observed, especially on plum (Garcin et al. 2005). X. arbor-
icola pv. pruni has been identified on all continents since its
first description in the USA by Smith (1903). In Europe,
severe outbreaks occur in France, Italy, Bulgaria, Romania,
and Ukraine (Anonymous 2006). In Switzerland, it was first
detected on apricot in 2005 in canton Valais (Pothier et al.
2010).

The bacteria overwinter in buds and cankers or in leaf
scars (Zaccardelli et al. 1998; Battilani et al. 1999). Spring
temperatures higher than 20 °C, heavy winds, and a high
humidity for at least 3 days are the most favorable
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conditions for bacteria multiplication and for obtaining se-
vere infections (Battilani et al. 1999). Late infections can be
also observed in the fall (Garcin et al. 2005). In neglected
peach orchards, X. arboricola pv. pruni can damage 25 % to
75 % of the fruits (Dunegan 1932; Pothier et al. 2011b).

In Europe, phytosanitary measures to avoid the spread of
the pathogen and the application of copper sprays are current-
ly the two strategies used to control X. arboricola pv. pruni,
but the efficacy of copper sprays is hindered by environmental
problems due to copper residues and by leaf damages it causes
(Ritchie 1995). In the USA, oxytetracycline is used to control
the disease but has a limited efficacy (Ritchie 1995).

Host resistance has been studied in peach, plum, and apri-
cot (Keil and Fogle 1974; Werner et al. 1986; Topp and
Sherman 1990; Layne 1991; Layne and Hunter 2003;
Garcin et al. 2005). Resistance screenings among the cultivars
have been conducted in the field and showed variation in
susceptibility to the disease. Symptoms were observed also
on the more resistant varieties, therefore indicating that com-
plete resistance seems to not exist (Garcin et al. 2005). These
results indicate that the resistance might be controlled in a
quantitative manner. Although breeding for quantitative resis-
tance would be more challenging than in the case of a quali-
tative resistance, quantitative resistance still represents an
interesting potential for breeding of more resistant cultivars.

Prunus genetic maps have been constructed in recent
years based on combinations of random amplified poly-
morphic DNA (RAPD), amplified fragment length polymor-
phism (AFLP), restriction fragment length polymorphism
(RFLP), and simple sequence repeat (SSR) markers
(Hurtado et al. 2002; Vilanova et al. 2003; Dondini et al.
2007). The Prunus reference map has been constructed from
a cross between almond (“Texas”) and peach (“Earlygold”;
T × E) and is saturated with RFLPs, SSRs, isoenzymes, and
sequence-tagged sites (Joobeur et al. 1998; Dirlewanger et
al. 2004a; Howad et al. 2005). The high level of synteny
reported in Prunus allows map comparison and the transfer
of markers among diploid (2n016) Prunus species
(Dirlewanger et al. 2004a, b; Lambert et al. 2004;
Olmstead et al. 2008). The very recent availability of the
peach physical map (Zhebentyayeva et al. 2008) and of the
genome sequence (International Peach Genome Initiative:
Peach Genome v1.0. 2010 http://www.rosaceae.org/peach/
genome) permit the development of markers for saturation
of very specific regions and for the cloning of genes.

Quantitative trait loci for resistance against several patho-
gens and pests have been mapped in Prunus. Resistance
against sharka in peach, apricot, and Prunus davidiana has
been extensively investigated and a major QTL has been
found on linkage group (LG) 1 (Lambert et al. 2004;
Decroocq et al. 2005; Sicard et al. 2008; Soriano et al.
2008; Dondini et al. 2010; Vera Ruiz et al. 2011). Other
resistance QTLs from P. davidiana have been detected for

powdery mildew in peach × P. davidiana crosses on LG1,
LG2, LG3, LG5, LG6, and LG8 (Dirlewanger et al. 1996;
Foulongne et al. 2003) and for leaf curl caused by Taphrina
deformans in a peach × P. davidiana cross on six linkage
groups (Viruel et al. 1998). Resistance genes against root-
knot nematode were identified and validated with molecular
markers on LG7 in plum and almond and on LG2 in peach
(Claverie et al. 2004; Dirlewanger et al. 2004b; Esmenjaud
et al. 2009; van Ghelder et al. 2010).

To date, despite regular yield losses in peach and apricot
productions due to X. arboricola pv. pruni, host resistance
against bacterial spot has not been intensively studied and
no major gene or QTL has been mapped. The objectives of
this study were to identify quantitative trait loci controlling
X. arboricola pv. pruni resistance using AFLP- and SSR-
based maps of the apricot population, “Harostar” × “Rouge
de Mauves”, and to identify SSR markers linked to the
QTLs for further use in a marker-assisted selection program.

Material and methods

Plant material

A cross between the Canadian cultivar “Harostar” and the
French cultivar “Rouge de Mauves” provided 101 F1 plants
and was used as a mapping population. “Harostar” is
reported to have a good resistance level against X. arbor-
icola pv. pruni (Layne and Hunter 2003) whereas resistance
level of “Rouge de Mauves” was unknown. Plants were
grown in an orchard in Conthey, Switzerland. Five repli-
cates per F1 and ten replicates from each parent were grafted
on the plum “Saint-Julien 655-2” rootstock, resulting in a
total plant number of 525. All plants were kept in a cold
chamber at 2 °C for short-term storage. Plants were then
potted and grown under greenhouse conditions at 23 °C,
60 % humidity for 1 week before being transferred in a
quarantine greenhouse. Inoculations were performed over
2 years (2010 and 2011) on the same population; plants
were kept in the quarantine greenhouse over winter. In
2011, 94 plants across 50 genotypes that had died during
the previous year were replaced with newly grafted plants
on the same “Saint-Julien 655-2” rootstock.

Bacterial strains

In the first year, four strains of X. arboricola pv. pruni were
used in a mix. Two of them were collected in Switzerland
(Valais), one strain in 2005 (XA1.29) and the second in
2007 (XA1.51) (Pothier et al. 2010). The two others were
the pathotype strain NCPPB 416 and the genome sequenced
strain CFBP 5530 (Pothier et al. 2011a; 2011c). In the
second year, a third Swiss strain, XA1.15 (Pothier et al.
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2010), was added to the mix. The genetic diversity of X.
arboricola pv. pruni being low (Boudon et al. 2005), strains
were chosen for their diversity in origins and for their
different years of isolation on different hosts in the attempt
to inoculate the plants with an inoculum with a high genetic
diversity (Pothier et al. 2011a). For long-term storage,
strains were kept in 40 % glycerol at −80 °C.

Inoculation

Inoculum was prepared as described by Socquet-Juglard et
al. (2012) and the inoculation procedure was modified as
following: prior to inoculation, plants were put in dark
conditions, 23 °C and 90 % humidity for 24 h for an optimal
stomata opening (pre-conditioning); the whole plant mate-
rial was randomly divided into three blocks in the same
quarantine greenhouse chamber and inoculation took place
during 3 days. To avoid possible block effects as observed in
the 2010 inoculation, the pre-conditioning step was not
performed in the 2011 inoculation and all plants were inoc-
ulated on the same day. Actively growing shoots (10 to
20 cm long) were immersed in the bacterial suspension,
and gently agitated for about 5 s until leaf surfaces were
fully wetted on both sides (Topp and Sherman 1995). In
2010, shoots of some plants were too long so they could not
be entirely inoculated. In those precise cases, not inoculated
leaves were marked and were not taken into account in the
scorings. In autumn 2010, plants were cut back and in 2011,
all leaves from young new shoots were inoculated.
Following inoculation, climate conditions were set to 23 °C
in the day, 18 °C in the night, and 85 % humidity.

Evaluation of disease resistance

Trees were assessed at 42 days post inoculation (dpi). The
number of inoculated leaves per plant showing symptoms
was counted and was expressed as disease incidence in
percent (DI10 and DI11). During the third assessment in
2010 and in 2011, the percentage of damage of each inoc-
ulated leaf was assessed and used to calculate the tree
resistance index (RI10 and RI11; adapted from Le Lézec
et al. 1997) according to the following formula:

RI ¼ ðn1 � 1Þ þ ðn2 � 2Þ þ ðn3 � 3Þ þ ðn4 � 4Þ þ ðn5 � 5Þ�=N½

where n1 is the number of symptomless leaves, n2 is the
number of leaves presenting 1 % to 25 % damage, n3 26 %
to 50 %, n4 51 % to 75 %, n5 76 % to 100 % damage, and N
is the total number of inoculated leaves per plant.

DNA isolation

Young leaves were collected inMay from orchard plants, frozen
in liquid nitrogen, and stored at −80 °C. Leaf samples were
lyophilized for 48 h. Genomic DNA was extracted using the
QIAGEN DNeasy Plant Mini kit (Qiagen, Hilden, Germany).
DNA quantity and quality was assessed with a NanoDrop ND-
1000 (NanoDrop Technologies, Wilmington, DE, USA) before
being used for both AFLP and SSR marker analysis.

SSR and AFLP analysis

One hundred and four SSR markers developed from apricot,
peach, cherry and almond (Table 1) were selected to

Table 1 Characteristics and origin of microsatellite (SSR) markers series used for the construction of the “Harostar” (Ha) and “Rouge de Mauves”
(RM) linkage maps

Marker
designation

Species Tested Amplified Polymorphic Mapped
Ha

Mapped
RM

Common SSRs Reference

AMPA P. armeniaca 15 15 11 6 6 4 Hagen et al. (2004)

Aprigms P. armeniaca 4 3 3 0 3 0 Vilanova et al. (2006)

BPPCT P. persica 11 9 7 5 5 3 Dirlewanger et al. (2002)

CH-PP P. persica 2 1 1 1 1 1 This study

CPPCT P. persica 3 2 2 1 0 0 Aranzana et al. (2002)

CPSCT P. salicina 1 1 0 0 0 0 Mnejja et al. (2004)

MA P. persica 1 1 1 1 1 1 Yamamoto et al. (2002)

Pac P. armeniaca 5 5 4 3 3 2 Decroocq et al. (2003)

PaCITA P. armeniaca 12 12 11 9 7 6 Lopes et al. (2002)

Pchgms P. persica 1 1 1 1 1 1 Sosinski et al. (2000)

PS P. cerasus 1 1 0 0 0 0 Sosinski et al. (2000)

UDAp P. armeniaca 44 42 38 34 24 21 Messina et al. (2004)

UDP P. persica 4 2 2 2 2 2 Cipriani et al. (1999);
Testolin et al. (2000)

Total 104 95 81 63 53 41
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regularly span the whole genome, according to the genetic map
of Dondini et al. (2007) and the Prunus reference map T × E
(Joobeur et al. 1998; Howad et al. 2005). To cover the top of
LG7, an additional marker was developed from the Genome
Database for Rosaceae (GDR) with the following primer
sequences: CH-PP-01: F5′ GTCACGTTCAAAGTCCTGC 3′
and R5′ CAGAATCAGCTCCTGGTA 3′. All markers were
first screened for polymorphism within and between the two
parents by testing the two parents and five progeny plants. Two
different methods for PCR amplification were used. One set of
markers was amplified with FAM or HEX dye-labeled forward
primers. In this case, PCR conditions were 94 °C for 15 min,
35 cycles of 94 °C for 45 s, 55 °C for 60 s, and 72 °C for 75 s;
and a final extension step of 72 °C for 5min. For the second set,
markers were amplified using M13-fam, SP6-hex, T7-atto565,
and E31-atto550 universal primers as described by Schuelke
(2000). In this case, 8 cycles of 94 °C (30 s), 53 °C (45 s), and
72 °C (45 s), and a final extension of 10 min followed the
35 cycles previously described for the markers of the first set.
PCR amplifications were performed in 10 μl reaction mixture
containing 5 μl Qiagen Multiplex PCR Master Mix (Qiagen,
Hilden, Germany), 1 μl Q-solution, 10 nM of primer mix,
10 ng genomic DNA, and 2 μl dH2O.

AFLP analysis was performed using protocol described by
Vos et al. (1995) and modified by Habera et al. (2004) for
fluorescent labeling, using the 6-FAM dye. The combination
of the restriction enzymes EcoRI and MseI was used. Five
EcoRI+2-MseI+2 primer combinations (Table 2) were tested
for reproducibility on 10 individuals; because they amplified
more than 25 polymorphic fragments per combination, they
were used to screen the rest of the progeny. All polymorphic
bands in the range 50–500 bp were scored visually for pres-
ence or absence. AFLPmarkers were named in function of the
length of the fragment obtained in addition to the name of the
primer combination used.

AFLP and SSR fragments were diluted in dH2O (1:100)
and mixed with 8.8 μl of formamide and 0.2 μl GeneScan
500 LIZ size standard (Applied Biosystems, Foster City,
California, USA). Samples were denaturated for 5 min at

95 °C and immediately cooled at −20 °C for 3 min.
Amplified PCR products were separated on an ABI 3130
sequencer (Applied Biosystems) and scored using the soft-
ware GeneMapper version 4.1 (Applied Biosystems).

Linkage mapping and QTL analysis

Linkage analysis was performed using JoinMap 4.0 software
(van Ooijen 2006). The pseudo-test cross strategy was chosen
using JoinMap CP (cross pollinating function) to obtain two
separate parental maps. Linkage groups were established using
a minimum log of odds (LOD) of 5.0 for parent “Harostar” and
4.0 for parent “Rouge de Mauves”; and a maximum recombi-
nation fraction of 0.40. Kosambi’s mapping function was used
to calculate map distances. Markers with distorted segregation,
determined by the χ2 analysis, were first included in the anal-
ysis; if those markers created severe conflicts with the segrega-
tion pattern of markers located in the same area, they were
excluded. Nomenclature and orientation of all linkage groups
were based on the maps published by Dondini et al. (2007) and
on the Prunus reference map (T × E, Joobeur et al. 1998).

Kruskal–Wallis (KW) tests and interval mapping (IM)
analysis, as well as multiple-QTL analysis (MQM), were
performed with MapQTL 5.0 (van Ooijen 2004). A permu-
tation test (1,000 permutations) was performed to calculate
the appropriate LOD score thresholds. A 5 % genome-wide
error rate was chosen and all values above each trait thresh-
old were considered significant.

Statistical analysis

In 2010, inoculation was performed on three consecutive days
leading to three blocks of plants, thus data produced in 2010
were checked for progeny × inoculation date effect. In 2011,
inoculation occurred on the same day; however, new plants
were added to replace the dead ones so data were verified for
progeny × plant age effect. In order to remove the inoculation
date effects of the first year and the plant age effect of the
second year, but also to allow comparison between traits over

Table 2 AFLP combinations tested and number of amplicons mapped in the apricot parents “Harostar” (Ha) and “Rouge de Mauves” (RM)

Primer
combination

Primer
designationa

Fragments
detected

Polymorphic
fragments in Ha

Polymorphic
fragments in RM

Total polymorphic
fragments

Total mapped
fragments

EAG-MAC E13-M12-x 161 16 11 27 25

EAG-MAG E13-M13-x 162 18 14 32 30

EAC-MAC E12-M12-x 147 14 11 25 23

EAC-MAG E12-M13-x 157 13 17 30 24

EAG-MCT E13-M18-x 136 28 10 38 34

Total 763 89 63 152 136

Average 152.6 17.8 12.6 30.2 27.4

a -x designates the size of the polymorphic band
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2 years and to combine datasets from both years, a standard-
ization procedure was performed for each plant in both years
datasets following the formula:

Xstd ¼ ðX � XmÞ=sd
where in 2010 Xstd is the standardized value of the plant, Xm is
the mean of the values collected for a specific inoculation date
to which plant X belongs to, and sd is the standard deviation of
the value of this subset; while in 2011 Xstd is the standardized
value of the plant, Xm is the mean of the values of the “old” or
“new” plants to which X belongs to, and sd is the standard
deviation of the value of this subset. Outliers were checked
before combining datasets of both years using Jackknife dis-
tances for each genotype and removed. The distributions of
each variable were finally tested for normality. Broad-sense
heritability was estimated using the following formula:

h2 ¼ σ2
g= σ2

g þ ðσ2
e=nÞ

h i

where σg
2 is genetic variance, σe

2 is environmental variance,
and n is the mean number of replicates per genotype
(Foulongne et al. 2003; Calenge et al. 2004). Frequency dis-
tributions, segregation models, one way ANOVA, and
Student’s t tests were calculated for each assessment using
software JMP®v.8.0 (SAS Institute Inc, Carey, NC, USA).

Candidate gene search

Based on the peach genome sequence predicted genes list
available at http://www.rosaceae.org/peach/genome, all
genes located on scaffold 5 between markers BPPCT037
and BPPCT038A were selected and a search for genes
involved in disease resistance was manually performed by
inspection of the genome annotations. A special interest was
given to disease resistance genes, but also to receptor-like
kinases containing leucin-rich repeats (LRR) because they
are known to be involved in tomato resistance to X. cam-
pestris pv. vesicatoria (Mayrose et al. 2004) and in rice
resistance to X. oryzae pv. oryzae (Song et al. 1995; Xiang
et al. 2006). Kinases could also play a role in soybean
resistance to X. axonopodis pv. glycines (Kim et al. 2011)
and in cassava resistance to X. axonopodis pv. manihotis
(Perez-Quintero et al. 2012). Sequences of each gene were
then analyzed with BLASTX (http://blast.ncbi.nlm.nih.gov)
in order to obtain updated annotations.

Results

Phenotyping X. arboricola pv. pruni resistance

In 2010, first symptoms appeared at 1 week post-inoculation
and were recognizable as primarily circular yellow spots;

the first necrosis appeared 1 week later. Severe defoliations
occurring in the inoculated part of the shoots were observed
for the most susceptible genotypes at 42 dpi. In 2011,
grayish zones spanning large parts of basal leaves were
observed at 1 week post-inoculation; these zones became
necrotic and most heavily affected leaves dropped during
the time of the experiment. At 42 days post inoculation,
disease incidence varied from 11.8 % to 85.3 % in 2010 and
from 3.6 % to 82.7 % in 2011 (data not shown).

The ANOVA performed to test the effects of the date of
inoculation the first year and the effect of the age of the plant
(grafted in 2010 or grafted in 2011) during the second year
revealed significant differences among those blocks for both
disease incidence and resistance index, and therefore, data
were standardized. When dividing the block of plants grafted
in 2010 according to genotypes with one to several dead
plants, or according to genotypes without any dead plant, no
significant difference of the average values was obtained
between these two sub-groups (Fig. 1).

Correlation coefficients between the two different stan-
dardized resistance traits were high (P<0.001, Table 3) in
each of the 2 years; a correlation for the same trait per
genotype between the two consecutive years could be also
observed (P<0.05, Table 3). When combining datasets of
the two years, both parents had in all cases higher values
than the F1 average, showing transgressive segregations in
the progeny (Fig. 2).

Fig. 1 Effects of the age of the plant on disease incidence in 2011. 1
mean disease incidence value of the genotypes for which no plant died in
2010 (plants grafted in 2010); 2 mean disease incidence value of the
genotypes for which at least one plant died in 2010 (plants grafted in
2010); 3mean disease incidence value of the plants of the same genotypes
as in 2, but grafted in 2011. 1 and 2 were not significantly different by
Student's t test (P<0.05) but both were significantly different from 3
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Construction of linkage maps

Five AFLP primer combinations and 104 SSR markers were
tested for polymorphism to construct the two parental link-
age maps (Tables 1 and 2). The five AFLP combinations
gave a total of 763 fragments; 152 were polymorphic and
136 of them were mapped. Eighty-nine AFLP fragments
were polymorphic in “Harostar”, 5 of them remained un-
grouped and 3 were excluded because they created tensions
in the maps; 63 were polymorphic in “Rouge de Mauves”, 4
of them remained ungrouped and 4 were excluded (Table 2).
Ninety-four (90.4 %) SSR markers produced amplicons; of
those, 14 (14.9 %) were monomorphic for both parents and
3 were not used because they had an “hk × hk” segregation
type. Two SSR markers (PaCITA11 in “Rouge de Mauves”
and AMPA123b for “Harostar”) were excluded because they
created tensions in the maps. Forty-one SSR markers were
shared between the maps of the 2 parents “Harostar” and
“Rouge de Mauves”, 22 were mapped only in “Harostar”
while 12 were mapped only in “Rouge de Mauves”. Five
microsatellite markers were multilocus, three of them,

UDAp-428 (Ha_LG2), UDAp-433 (Ha_LG6), and UDAp-
424 (RM_LG7), mapping both loci on the same linkage
group on a very close genetic distance. UDAp-471 ampli-
fied one locus on LG8 in “Rouge de Mauves” and one locus
on LG7 in “Harostar”. UDAp-424 mapped only one locus in
“Harostar” (LG7), and UDAp-433 mapped only one locus
in “Rouge de Mauves” (LG6). Finally, PaCITA10 was mul-
tilocus only in “Harostar” (LG3 and 4).

The number of marker loci per linkage group ranged
from 11 to 20 in “Harostar” and from 3 to 21 for “Rouge
de Mauves”. The average distances between two consecu-
tive loci were 4.9 cM for “Harostar” and 6.9 cM for “Rouge
de Mauves”. The “Harostar” linkage map of 553.6 cM in
total was composed by the expected 8 linkage groups
(Fig. S1). The two largest gaps (24 and 26 cM) that could
not be filled with markers were located on linkage groups 1
and 7. Concerning the genetic map of “Rouge de Mauves”,
it was composed of nine linkage groups and its total map
length was 684 cM (Fig. S2). The additional group is due to
the splitting of LG2 between markers UDAPp-428 and
UDAp-457. None of the 10 SSR markers tested to try to fill
this gap were polymorphic for this parent. Two gaps of 30
and 34 cM were observed on linkage groups 1 and 7.

QTL analysis

Broad-sense heritability values ranged from 0.96 for the
disease incidence to 0.97 for the resistance index obtained
with combined datasets. The genome-wide LOD thresholds
calculated by the permutation tests ranged from 2.4 to 2.5
(data not shown) and therefore all QTLs with a LOD score
higher than 2.5 were considered as significant (P<0.05).
The MQM analysis did not lead to the detection of other
QTLs, hence only results of Kruskal–Wallis and QTLs
found by interval mapping are presented.

The Kruskal–Wallis test identified three markers of
“Rouge de Mauves” linked (P<0.005) to both traits disease

Table 3 Pearson correlation coefficients between all Xanthomonas
arboricola pv. pruni resistance traits in the “Harostar” × “Rouge de
Mauves” progeny

DIstd DI10std DI11std RIstd RI10std

DIstd

DI10std 0.69**

DI11std 0.79** 0.21*

RIstd 0.91** 0.61** 0.74**

RI10std 0.67** 0.85** 0.22* 0.75**

RI11std 0.73** 0.15 0.89** 0.80** 0.23*

Years are indicated in names as 10 or 11; RIstd and DIstd are values
obtained with both datasets combined

DI disease incidence, RI resistance index, std standardized data

*P<0.05; **P<0.001

Fig. 2 Distribution in the 101 F1 progeny of a the disease incidence and b the resistance index with standardized data of both years combined at
42 days post inoculation. Parental values (Ha for “Harostar” and RM for “Rouge de Mauves”) are indicated by arrows
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incidence and resistance index on linkage group 1 (LG1;
BPPCT011), LG5 (UDAp-452), and LG7 (Ma10a). Marker
UDAp-446 on LG3 was only linked to resistance index.
Two QTLs were identified by interval mapping in the same
region of linkage group 5 of “Rouge de Mauves” for disease
incidence (LOD score of 15.4 and 53.6 % of phenotypic
variation explained, PVE) and for the resistance index (LOD
12.3, and 46.2 % of the PVE; Fig. 3 and Table 4). The peak
of the QTL for both traits is between the SSR markers
BPPCT037 and BPPCT038A with the marker UDAp-452
being basically at the peak position. The QTL peak had a
maximum likelihood position at 52.8 cM for the resistance
index and at 54.3 cM for the disease incidence. These two
QTLs found with the pooled data were also detected by
using separately the 2010 and 2011 datasets (data not
shown). No other significant QTL (at LOD 2.5 or higher)
was detected on any other linkage group of “Rouge de
Mauves”.

For “Harostar”, the Kruskal–Wallis identified only mark-
er E12-M13-278 on LG8 as significantly linked to both
resistance traits, the other markers were either linked to
disease incidence (PaCITA7 on LG1, E13-M13-380 on
LG2 and UDP98-412 on LG6) or to resistance index
(UDAp-446 on LG3 and UDAp-430 on LG5). No signifi-
cant QTL was detected in “Harostar” by interval mapping.

To check for the allelic effects of the QTL obtained, we
considered only the subset of the disease incidence obtained
for the old plants in 2011; in order to avoid age effect which
would require a standardization and would render more
difficult the interpretation of the results, all data obtained
from the new plants added in 2011 were excluded. A sig-
nificant difference was observed (P<0.0001) between the
untransformed means of disease incidence (Fig. 4a) and
resistance index (Fig. 4b) for the two subpopulations
obtained when dividing for the allelic effects of the SSR
marker UDAp-452. The disease incidence was 21 % for the
subgroup of genotypes possessing the favorable allele,
whereas for the subgroup with the negative allele the disease
incidence was 32.6 %, leading to a reduction of 35.6 % in
disease incidence for the subgroup possessing the favorable
allele. Concerning the resistance index, mean values
obtained for the subgroup with the favorable allele was 1.3
and the subgroup possessing the negative allele had a mean
value of 1.48, showing a reduction of 37.5 % of suscepti-
bility for the subgroup possessing the favorable allele.

Candidate genes search

A total of 448 genes were found between markers
BPPCT037 and BPPCT038A, and 6 of these, encoding for

Fig. 3 Location of QTLs on
LG5 involved in resistance
against Xanthomonas
arboricola pv. pruni in “Rouge
de Mauves” by combining
datasets of both years. Dotted
horizontal line represents the
genome-wide threshold (LOD
of 2.5); solid curve shows the
QTL for disease incidence and
dotted curve shows the QTL for
resistance index. Confidence
intervals of 2-LOD are repre-
sented with lines. Boxes repre-
sent a 1-LOD confidence
interval. Box with solid line
represents the QTL for disease
incidence, and dotted box rep-
resents the QTL for resistance
index

Tree Genetics & Genomes (2013) 9:409–421 415



receptor-like protein kinases, LRR proteins or disease resis-
tance proteins (Table 5), could be involved in primary sources
of resistance. Two genes similar to disease resistance protein

At1g58400 and another one to the F-box/LRR-repeat protein
At5g63520 have large introns (more than 1,000 bp) and are
therefore present twice in Table 5.

Table 4 Summary of the QTLs for resistance against Xanthomonas arboricola pv. pruni detected in the progeny “Harostar” × “Rouge de Mauves”
by Kruskal–Wallis test and interval mapping

Trait LGa Position Markerb KWc LODd PVEe Allele sizef Allele effectf

0 1 0 1

DIstd Ha1 74.17 PaCITA7 8.67** – – 196 213 0.13 −0.23

DIstd RM1 135.3 BPPCT011 8.77** – – 0 196 0.09 −0.29

DIstd Ha2 25.12 E13-M13-380 10.08** – – – – −0.24 0.16

DIstd RM5 54.3 UDAp-452 52.34*** 15.43 53.6 174 184 0.21 −0.50

DIstd Ha6 48.99 UDP98-412 8.26** – – 136 140 −0.22 0.10

DIstd RM7 24.64 Ma10a 7.62* – – 124 126 0.11 −0.22

DIstd Ha8 12.96 E12-M13-278 10.13** – – – – −0.36 0.08

RIstd RM1 135.3 BPPCT011 8.59* – – 0 196 0.09 −0.28

RIstd Ha3 10.11 UDAp-446 10.15** – – 135 168 −0.26 0.14

RIstd RM3 29.35 UDAp-446 7.52* – – 135 154 −0.20 0.14

RIstd Ha5 53.42 UDAp-430 7.03* – – 178 200 −0.17 0.11

RIstd RM5 52.8 UDAp-452 43.98*** 12.26 46.2 174 184 0.21 −0.49

RIstd RM7 24.64 Ma10a 9.98** – – 124 126 0.15 −0.30

RIstd Ha8 12.96 E12-M13-278 7.02* – – – – −0.30 0.04

DI and RI: QTLs detected for the disease incidence and resistance index using a combination of standardized datasets from both years
a Parental map (RM “Rouge de Mauves”, Ha “Harostar”) and linkage group on which marker was linked to resistance
bMolecular marker closest to the peak of each QTL
cKruskal–Wallis score; P values are presented (*P<0.005; **P<0.001; ***P<0.0001)
d LOD (logarithm of odds ratio) score determined by interval mapping
e Phenotypic variance explained by the peak of the LOD score in %
f Allele sizes and their respective mean phenotypic score of progeny carrying the 0 or 1 allele. Favorable allele is the lowest value

Fig. 4 a, b Allelic effects of the
disease incidence (a) and
resistance index (b) for “Rouge
de Mauves” at marker locus
UDAp-452 with untransformed
values obtained from the old
plants in 2011. Favorable
alleles are represented by a 1
and unfavorable alleles are rep-
resented by a 0. Standard errors
are represented. Means sharing
a letter were not significantly
different using a t test (P<0.05)
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Discussion

Phenotypic screenings

Resistance to bacterial leaf spot of “Harostar” has been
described as “good” in field trials (Layne and Hunter
2003), equaling the ones of “Veecot”, “Haroblush”, and
“Harogem” cultivars. Under controlled conditions, in both
years “Harostar” showed very few necroses per leaf al-
though most of the leaves were symptomatic. As a conse-
quence, its disease incidence was higher than the average
observed in the progeny plants, equaling scores obtained for
the second parent. No information about the resistance level
to bacterial spot of “Rouge de Mauves” was available at the
beginning of the project. The results of our inoculations
showed that both parents were moderately susceptible under
greenhouse conditions. This small phenotypic difference
obtained between the parents was not expected, but a trans-
gressive segregation was observed and skewed towards
resistance, indicating that alleles from both parents are con-
tributing to an increase of resistance against the pathogen.
Student’s t tests conducted with the genotypes for which one
to several plants died in 2010 showed that the increase in
resistance observed on the older plants in 2011 in compar-
ison to the new plants was due to a plant age effect rather
than from a genetically explained susceptibility, and that

plants which died in 2010 died for other reasons than the
susceptibility to the disease (Fig. 1). Standardization of the
datasets was consequently a necessary step to combine the
set of older plants with the new ones. Differences that have
occurred between both experiments, such as the addition of
a new X. arboricola pv. pruni strain into the inoculum mix,
or the differences in pre-conditioning did not significantly
changed the disease reactions of the plants (Table 3) and
permitted to pool the datasets obtained from both years,
allowing a more precise QTL detection.

Linkage analysis and map construction

The use of multiplex and megaplex PCRs for SSR analysis
as previously reported for apple, barley, wheat, apricot, and
cherry (Patocchi et al. 2008; Hayden et al. 2008; Campoy et
al. 2010) permitted to efficiently screen many markers in a
limited time and at a reduced price. In addition, the use of
fluorescent labeling and the combination of E primer and M
primer with only two selective nucleotides instead of three
for the AFLP analysis has been particularly efficient and
permitted to obtain on average 30 polymorphic fragments
per combination, whereas with the use of polyacrylamide
gels and primer combinations of three selective nucleotides
for one primer and two for the second primer, Vilanova et al.
(2003) obtained about eight polymorphic bands per

Table 5 Candidate genes involved in putative resistance between markers BPPCT037 and BPPCT038A of LG5 in peach with their best BLASTX
alignments and putative functions of the genes based on Genbank annotations

Peach
genome
locus tag

Transcript
start

Transcript
stop

Genbank
accession

Organism Most similar
protein sequence

Total
score

Query
coverage

E value Maximum
identity

ppa002786m 14,204,987 14,206,985 XP_002276125 Vitis vinifera LRR receptor-like
serine/threonine/
tyrosine-protein
kinase SOBIR1

840 94 % 0 71 %

ppa000993m 14,614,860 14,617,720 XP_002278672 V. vinifera LRR receptor-like
serine/threonine-
protein kinase GSO1

1285 99 % 0 73 %

ppa001911m 13,804,474 13,807,656 XP_002279697 V. vinifera Probable inactive
LRR receptor-like
protein kinase
At3g03770-like

785 75 % 3e−159 81 %

ppa017731m 14,474,974 14,476,131 XP_002278135 V. vinifera Putative disease
resistance protein
At1g58400-like

417 96 % 2e−137 64 %

ppa023827m 14,472,683 14,473,351 XP_002278135 V. vinifera Putative disease
resistance protein
At1g58400-like

246 95 % 7e−74 64 %

ppa015025m 12,471,703 12,473,070 XP_002276590 V. vinifera Probable disease
resistance protein
At5g66900 isoform 1

164 80 % 7e−41 36 %

ppa004403m 13,602,452 13,606,441 XP_003523154 Glycine max F-box/LRR-repeat
protein At5g63520-like

610 40 % 4e−32 74 %

ppa019969m 13,598,585 13,601,215 XP_002283895 V. vinifera F-box/LRR-repeat
protein At5g63520-like

254 47 % 2e−20 41 %
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combination and Lalli et al. (2008) obtained nine poly-
morphic bands.

The genetic linkage map of “Harostar” had the expected
8 linkage groups; whereas the linkage map of “Rouge de
Mauves” had one additional linkage group that could be
assigned to LG2 (Figs. S1 and S2). Despite the ten micro-
satellite markers used to try to fill this gap and the relatively
high number of AFLPs mapped, we could not join the two
fragments into a single chromosome. Failures to obtain the
eight linkage groups have been previously reported in
Prunus (Dirlewanger et al. 2006; Illa et al. 2009; Eduardo
et al. 2011). An explanation could be a large homozygous
region on the LG2 of “Rouge de Mauves” either derived
from selfing or from the use of the same cultivar in the
breeding process of this parent. However, both hypotheses
cannot be tested since the pedigree of “Rouge de Mauves” is
unclear.

Four markers mapped in new regions, three of them were
never reported as multilocus: PaCITA10 which mapped on
LG3 and LG4, UDAp-433 which mapped twice on LG6 and
UDAp-471 which mapped on LG7 and LG8. The fourth
SSR, UDAp-486, is normally known to map on LG6, but it
has been found in our case only on the bottom of LG4 of the
“Harostar” map. This could be another multilocus marker,
as one peak was present in both parents but did not segre-
gate in our population. Total lengths of our maps (553 cM
for “Harostar”; 684 cM for “Rouge de Mauves”) are in the
average of those reported in apricot (504 cM for “Lito” and
620 cM for “BO81604311”, Dondini et al. 2007).

QTL analysis

Although resistance traits were normally distributed and that
several regions on both parents were found to be linked with
the resistance traits by Kruskal–Wallis, indicating a poly-
genic control of the trait, only one significant QTL involved
in disease resistance was found by both Kruskal–Wallis and
interval mapping tests in “Rouge de Mauves”. Mapped on
LG5, this QTL accounted for 53 % of the phenotypic
variation explained for the disease incidence and for 46 %
of the phenotypic variation explained for the resistance
index. The peak of the QTL is located very close to marker
UDAp-452, in a region downstream the minor QTL in-
volved in sharka resistance (Lambert et al. 2007) and up-
stream a major QTL involved in powdery mildew resistance
(Foulongne et al. 2003; Lalli et al. 2005). Several possibil-
ities could explain why we did not find any significant QTL
by interval mapping in “Harostar”, such as a too small size
of the population, which did not permit to have a statistical
analysis powerful enough to identify QTLs having a small
contribution to the variation of the traits. Other possibilities
for a lack of detection of QTLs could be the interaction
between QTLs or the genetic background of the parents

(e.g., epistasis) or a too small difference in effect of two
alleles of a QTL. The use of a mix of bacterial strains in the
inoculum might also have hindered the detection of strain-
specific QTLs to the advantage of a strain non-specific
QTL. Finally, the QTL on LG5 was found on a moderate
susceptible parent, but this phenomenon is not uncommon
and has been reported in different plant species (Pilet et al.
1998; Wang et al. 2000; Calenge et al. 2004).

Perspectives for marker-assisted selection (MAS)

Accounting for both disease incidence and severity, resis-
tance index was thought to be the trait that could represent
best the difference between susceptibility and resistance
against X. arboricola pv. pruni. Therefore in resistance
breeding, QTLs revealed by this trait should be the most
interesting. A reduction of both factors is expected to reduce
the negative impact of the disease from an epidemiological
point of view, resulting in a lower economic damage.
However both traits resistance index and disease incidence
were highly correlated and led to the detection of a QTL on
the same locus, although the QTL for resistance index was
less precise with a larger LOD confidence interval. This may
be due to the fact that resistance index is based on a visual
score of the damage on the leaves, which may lead to a bias
although extra care was taken during evaluations, in con-
trary to the disease incidence.

Our results highlight a region on LG5 of “Rouge de
Mauves” accounting for 53 % of the phenotypic variation
explained by the disease incidence QTL with SSR marker
UDAp-452 being near the peak position. Its two flanking
markers BPPCT037 and BPPCT038A have a high polymor-
phism in both cherry and peach (Dirlewanger et al. 2002),
which increase the chance of being polymorphic in different
backgrounds. The differences that occurred between the
experiments conducted in 2 years did not lead to significant
changes, even with the addition of a new bacterial strain,
showing that this region is stable. Therefore the proposed
markers upon validation in a different background can be
used in a MAS program in which breeders could be inter-
ested in both a reduced disease incidence and a reduction of
the damage on leaves.

Understanding gene functions and molecular mecha-
nisms underlying the resistance is of importance. The re-
lease of the peach genome sequence (International Peach
Genome Initiative: Peach Genome v1.0. 2010 http://
www.rosaceae.org/peach/genome) permitted to perform a
candidate gene search between the two flanking markers
BPPCT037 and BPPCT038A. Kinases are known to play
an important role in plant defense response and have been
identified in different pathosystems involving different
Xanthomonas species (Song et al. 1995; Mayrose et al.
2004; Kim et al. 2011; Perez-Quintero et al. 2012).
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Between the two flanking markers three putative genes
encoding LRR receptor-like serine/threonine kinases were
found using the peach genome annotations; in addition, two
genes encoding putative disease resistance proteins and one
encoding a putative F-box/LRR-repeat protein could be
found in this region. Although peach and apricot genomes
are highly synthenic and co-linear (Dondini et al. 2007; Illa
et al. 2009; Illa et al. 2011), these results have to be taken
with care since differences such as insertions, deletions, or
inversions between both genomes cannot be excluded.
Another approach to identify target genes involved in dis-
ease resistance could be the use of transcriptomic tools
available such as microarrays or RNA-seq (Martínez-
Gómez et al. 2011) and to consider pathogen virulence
factors as related to plant interactions (Hajri et al. 2012).
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