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Abstract In the Western Cape region of South Africa,
dormancy release and the onset of growth does not occur
normally in apple (Malus x domestica Borkh.) trees during
spring due to the mild winter conditions experienced and
fluctuations in temperatures experienced during and be-
tween winters. In this region, the application of chemicals
to induce the release of dormancy forms part of standard
orchard management. Increasing awareness of the environ-
mental impact of chemical sprays and global warming has
led to the demand for new apple cultivars better adapted to
local climatic conditions. We report the construction of
framework genetic maps in two F1 crosses using the low
chilling cultivar ‘Anna’ as common male parent and the
higher chill requiring cultivars ‘Golden Delicious’ and
‘Sharpe’s Early’ as female parents. The maps were
constructed using 320 simple sequence repeats, including

Communicated by E. Dirlewanger

M. M. van Dyk (><) - M. K. Soeker - D. J. G. Rees
Department of Biotechnology, University of the Western Cape,
Private Bag X17,

Bellville 7535, South Africa

e-mail: daleen.vandyk@up.ac.za

I. F. Labuschagne

Agricultural Research Council (ARC) Infruitec-Nietvoorbij,
Private Bag X5026,

Stellenbosch 7599, South Africa

I. F. Labuschagne

Colors Fruit (SA) (Pty) Ltd,

3rd Floor Newlink Centre, New Street,
Paarl 7646, South Africa

M. M. van Dyk

Department of Genetics, University of Pretoria,
Lynwood Road,

Pretoria 0002, South Africa

116 new markers developed from expressed sequence tags.
These maps were used to identify quantitative trait loci
(QTL) for time of initial vegetative budbreak (IVB), a
dormancy related characteristic. Time of IVB was assessed
four times over a 6-year period in ‘Golden Delicious’ x
‘Anna’ seedlings kept in seedling bags under shade in the
nursery. The trait was assessed for 3 years on adult full-sib
trees derived from a cross between ‘Sharpe’s Early’ and
‘Anna’ as well as for 3 years on replicates of these
seedlings obtained by clonal propagation onto rootstocks.
A single major QTL for time of IVB was identified on
linkage group (LG) 9. This QTL remained consistent in
different genetic backgrounds and at different developmen-
tal stages. The QTL may co-localize with a QTL for leaf
break identified on LG 3 by Conner et al. (1998), a LG that
was, after the implementation of transferable microsatellite
markers, shown to be homologous to the LG now known to
be LG 9 (Kenis and Keulemans 2004). These results
contribute towards a better understanding regarding the
genetic control of IVB in apple and will also be used to
elucidate the genetic basis of other dormancy related traits
such as time of initial reproductive budbreak and number of
vegetative and reproductive budbreak.

Keywords Microsatellites - Marker-assisted selection -
Dormancy

Introduction

The domesticated apple (Malus x domestica Borkh.) has
been distributed into diverse climatic conditions worldwide
for commercial production of fruit. Apple trees need
exposure to cold temperatures, referred to as chill unit
(CU) accumulation during winter, in order for budbreak to
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occur promptly and uniformly after winter (Cook and
Jacobs 2000). In warmer production areas, such as the
Western Cape region of South Africa, the application of
dormancy breaking chemicals, forming part of standard
orchard management, enable successful production of high
chilling requiring apple cultivars in suboptimal environ-
mental conditions. Failure to apply dormancy-breaking
chemicals can result in prolonged dormancy symptoms,
which include extended rest, less synchronized breaking of
buds, and reduced branching (Labuschagné et al. 2002b).
An increasing awareness of both global temperature
increase and the negative effects associated with the use
of chemical sprays (for both pest and disease resistance and
growth regulation) has resulted in the need to breed
cultivars better adapted to current and future environmental
conditions.

The breeding of new cultivars using conventional
breeding methods is a time-consuming process, especially
in perennial tree species with a long juvenile phase such as
apple. Markers linked to genes involved in apple disease
resistance for a variety of pests and pathogens have been
identified (Gardiner et al. 2007) and are already in use in
breeding programs (Kellerhals et al. 2008; Tartarini and
Sansavini 2003; Tartarini et al. 2000), through the imple-
mentation of marker-assisted breeding (MAB) and selection
(MAS) that enables the selection of favorable genotypes at
a very early seedling stage. The genetic determinants of
dormancy-related characteristics, such as time of initial
vegetative budbreak (IVB), are still poorly understood, and
this hampers the genetic improvement of such characters
using MAB. Dormancy characteristics can be controlled by
factors residing within the bud itself, referred to as
endodormancy, by factors in the plant but outside of the
bud (paradormancy) and control by environmental factors
(ectodormancy; Khan 1997; Lang et al. 1985). Although
our study focused on time of IVB, a character related to
endodormancy (Bradshaw and Stettler 1995), various other
characteristics can be associated with dormancy, such as
position and number of budbreak and budbreak duration.

Unravelling of the genetic basis of complex traits such as
dormancy can be undertaken through the construction of a
genetic linkage map followed by quantitative trait loci
(QTL) identification (Falconer and Mackay 1996; Young
1996). A first attempt towards understanding the genetic
control of ‘leaf break’ in apples through the identification
of QTLs, was performed by Conner et al. (1998) using a
population of 172 trees derived from a cross between
‘Wijcik Mclntosh’ and NY 75441-58. Eight genomic
regions on seven linkage groups (LGs) could be associated
with time of budbreak. The genetic linkage map con-
structed during their investigation, however did not include
transferable simple sequence repeat (SSR) markers, result-
ing in their inability to align this map with the now more
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commonly used LG numbering for apple genetic linkage
maps (Maliepaard et al. 1998). Further investigation
resulted in alignment of three LGs from these two maps,
including one (LG 3) that was homologous to LG 9 of
Maliepaard et al. (1998) and carried a QTL for leaf break
(Kenis and Keulemans 2004). More recently Segura et al.
(2007) used 123 seedlings derived from a cross between
‘Starkrimson’ and ‘Granny Smith’ to identify two QTLs for
time of budbreak. The first on LG 8, corresponded to that
identified on the corresponding LG 7 by Conner et al.
(1998) (see Kenis and Keulemans 2004). The second QTL
for time of budbreak identified by Segura et al. (2007) was
on LG 6.

In the present study, genetic linkage maps were
constructed for two mapping pedigrees with the low
chilling requiring cultivar ‘Anna’ as common male parent.
‘Anna’ is one of only a few cultivars worldwide character-
ized by a low chilling requirement (CR) and with ‘Dorsett
Golden’ was reported as varieties needing less than 300 h
of chilling in Southern California (http://ucce.ucdavis.edu/
files/filelibrary/5764/33384.pdf) and North and North
Central Florida (Andersen and Crocker 2000). Both
published SSR markers (Celton et al. 2009; Guilford et al.
1997; Hemmat et al. 2003, 1997, Liebhard et al. 2002;
Silfverberg-Dilworth et al. 2006; Yamamoto et al. 2002a, b)
and 116 new SSR markers, developed from expressed
sequence tags (ESTs), were used for the construction of the
genetic linkage maps used to identify a major QTL for time
of IVB on LG 9.

Materials and methods
Plant material

Two F1 progenies, derived from crosses between the low
chilling ‘Anna’ (common male parent) and the higher chill
requiring ‘Golden Delicious’ (population A) and ‘Sharpe’s
Early’ (population B), containing 87 and 92 individuals,
respectively, were used. Seedlings from population A were
kept in seedling bags under shade netting in Groot
Drakenstein (Western Cape, South Africa; 33°50'36” S
18°58'39” E). Seedlings in this population were cut back
and re-grown to single shoots on a seasonal basis and no
chemical treatment was used to induce budbreak. Seedlings
from population B were planted in an orchard in Vyeboom
(Western Cape, South Africa; 34°4’'15" S 19°4'47" E)
characterized by low winter chilling. Resulting trees were
in their fifth growing season at the onset of this investiga-
tion. Seven clonal replicates from seedlings in population B
and the two parental cultivars were grafted onto rootstocks
(M793) and planted in seven randomized blocks in an
adjacent orchard (34°8'21” S 19°0'44"” E). Both sites are
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characterized by warmer winters and fluctuating chilling
accumulation between winters. At these sites CU accumu-
lation varies between 500 and 1,000 CU annually. Chill
units were calculated according to a modified Utah model
found to be more suitable for local chilling conditions
where negative CU values are not carried from one day to
the next (Linsley-Noakes et al. 1994). Orchard management
of adult and juvenile clonal trees from population B were
typical of commercial practice, except that no pruning and
tree growth manipulations, such as dormancy breaking
chemicals, were applied.

Phenotypic assessment

The time of IVB was scored as the day on which the first
green leaves emerged from the vegetative buds (day 1 being
January 1; Labuschagné et al. 2002a, b). Phenotypic trait
assessments were performed four times over a period of
6 years (1999, 2000, 2002, and 2004) on the 87 seedlings
from population A. Trait assessment of population B was
first performed during a 3-year period, from 1996 to 1998,
on 60 adult trees, initially in their fifth growing season,
followed by trait assessment on the seven clonally
replicated juvenile trees of all 92 siblings from 1998 to
2000. The data obtained from population B has been used
in previous studies (Labuschagné et al. 2002a, b) during
which broad sense heritability of IVB was estimated
between 0.62 and 0.92 in clonal trials on young seedlings
and between 0.57 and 0.83 for adult seedling trees. We
calculated Pearson’s correlation coefficients to determine
the relationship between different years of phenotypic trait
assessment.

DNA extraction

Extraction of seedling and parental cultivar DNA were
performed using the hexadecyl trimethyl ammonium bromide
(CTAB) method described by Doyle and Doyle (1990) with
the addition of polyvinylpyrollidone (Kim et al. 1997) in
order to bind secondary plant products such as polyphenolics.

SSR marker development and implementation

Unigene sets obtained from the large public EST database
(>240,000; http://www.ncbi.nlm.nih.gov; Naik et al. 2006;
Newcomb et al. 2006) for Malus, were searched for SSRs
using the Tandem Repeats Finder algorithm (Benson 1999).
SSRs were selected based on length of the repeat unit,
number of repeats (>10 for di-, >7 for tri-, >5 for tetra- and
penta-, and >3 for hexanucleotide repeats) and length of
sequences flanking SSR regions. Conserved sequences
flanking 196 selected SSRs (100 di-, 60 tri-, 25 tetra-,
5 penta-, and 6 hexanucleotide repeats) were used to design

primers resulting in amplicons ranging between 100 and
450 bp in length. Newly developed SSR markers were
tested on the three parental cultivars, ‘Anna’, ‘Sharpe’s
Early’, and ‘Golden Delicious’.

Markers for map construction were selected based on
map position as well as heterozygosity observed during
previous studies. They included 238 previously published
SSR markers (Celton et al. 2009; Guilford et al. 1997,
Hemmat et al. 2003, 1997, Liebhard et al. 2002; Silfverberg-
Dilworth et al. 2006; Yamamoto et al. 2002a, b), marker
AGI11 (unpublished data, A. Patocchi (ETH-Ziirich, CH))
and marker Md-EXP7 (Costa et al. 2008) and were initially
screened for polymorphism over the three parental cultivars,
‘Anna’, ‘Sharpe’s Early’, and ‘Golden Delicious’.

SSR analysis

All SSR markers implemented in mapping populations
were fluorescently labeled and up to 16 markers were
multiplexed using both size and fluorescent dye (6-FAM™,
VIC™, NED™, and PET™) differences. Polymerase chain
reaction (PCR) reactions were performed using the Qiagen
multiplexing kit (QIAGEN Ltd., West Sussex, RH10 9NQ)
according to the manufacturer’s instructions. Resulting
PCR products were prepared for capillary electrophoresis
by adding 1 ul of a 1:10 diluted PCR product to 10 pl Hi-
Di formamide containing 0.15 ul GeneScan™-500 LIZ™
size standard (Applied Biosystems). Genotyping was
performed using the ABI Prism 310 and 3130 (16-capillary
array system) Genetic Analyzers (Applied Biosystems,
Foster City, CA, USA). Data collection and analysis were
performed using GeneMapper®4 software (Applied Bio-
systems, Foster City, CA, USA).

Genetic linkage map construction

For both progenies, parental genetic linkage maps and
integrated genetic linkage maps were constructed using
JoinMap®4 (Van Ooijen 2006). A logarithm of the odds
(LOD score) of 4 was used to define LGs and genetic
distances between markers were calculated using the
Kosambi mapping function. On the basis of previously
mapped SSRs, LGs were numbered in accordance with the
17 LGs obtained by Maliepaard et al. (1998).

QTL analysis

QTL analysis was performed using MapQTL®5 (Van
Ooijen 2004) using the average phenotypic value for the
4 years of phenotypic trait assessment performed on
population A and the two 3-year periods of trait assessment
performed on adult and juvenile trees from population B.
Analyses were also performed separately for each year of
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phenotypic trait assessment and in the case of clonal
replicates, the mean value per genotype was used. Regions
with potential QTL effects were identified using interval
mapping with a step size of 1 ¢cM. QTLs were declared
significant if the maximum LOD, obtained after multiple
rounds of MQM mapping, exceeded the genome wide
(GW) LOD threshold (calculated with an error rate of 0.05
over 1,000 permutations). QTLs were characterized by the
maximum LOD score and the percentage of phenotypic
variation explained. For each QTL the differences in mean
time of IVB associated with the different genotypic classes,
ac, ad, bc, and bd, derived for an ab x cd cross, are
reported. QTLs were graphically displayed as bars next to
the LGs on which they were identified, with bars
corresponding to a 95% confidence interval (LOD score
drop of 0.5) and dotted lines corresponding to a 90%
confidence interval (LOD score drop of 1).

Results
Phenotypic trait assessment

Bi-modal distribution patterns were observed during most
years of phenotypic trait assessment (Fig. 1). The distribution
patterns indicate budbreak was occurring earlier during
consecutive years as trees matured. Significant levels of
correlation were found between the different years during
which phenotypic trait assessment were conducted (Table 1).
High broad sense heritability values (h*=0.69) for IVB were
calculated by Labuschagné et al. (2002a).

SSR marker development and implementation

The amplification success of newly developed SSR markers
was 86% (168 SSRs from a total of 196). From these, a
total of 116 new SSR markers were polymorphic in at least
one of the three parental cultivars used and were mapped in
one or both mapping populations (Table 2). Of the 240
previously published markers, including 238 SSR markers
(Celton et al. 2009; Guilford et al. 1997; Hemmat et al.
2003, 1997; Liebhard et al. 2002; Silfverberg-Dilworth et
al. 2006; Yamamoto et al. 2002a, b), marker AGII
(unpublished data, A. Patocchi (ETH-Zirich, CH)) and
marker Md-EXP7 (Costa et al. 2008), 232 markers yielded
amplification products of which 204 markers were hetero-
zygous in one or more of the three cultivars tested.
Designing new SSR markers so that the resulting
amplicons vary in size, enabled effective multiplexing of
up to 16 markers in one PCR reaction, greatly reducing the
cost involved in the screening of mapping populations.
Markers used within each multiplex are very flexible when
using the QIAGEN multiplexing kit (QIAGEN Ltd., West
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Sussex, RH10 9NQ) that provides optimal reaction con-
ditions that increases specificity and minimizes the effect of
primer-dimers and non-specific artifacts often associated
with multiplex PCR reactions. The ease with which
different multiplexes could be assembled enabled easy
assembly of new multiplexes containing highly informative
markers for each specific mapping pedigree.

Genetic linkage map construction

The four parental maps constructed (Fig. 2) enabled the
positioning of 286 SSR markers on 17 LGs corresponding to
the number of chromosomes in the apple haploid genome.
The number of SSR markers per LG range from ten SSR
markers on LG 3 to 28 SSR markers on LG 10, with an
average of 17 SSR markers per LG. The positioning of the
116 newly developed SSR markers (Table 2) range from two
SSR markers on LG 1 to 15 SSR markers on LG 10.

Genetic linkage map construction allowed the positioning
of five previously published but unmapped markers (Liebhard
et al. 2002). CHO1b09b was mapped to LG 4, CHO1e09b
was mapped to LG 10 and CHO2h11b was mapped to LG 12
in both mapping populations. CHOlel2; was mapped to LG
8 and CHO05c02 was mapped to LG 11 in the ‘Golden
Delicious’ x ‘Anna’ mapping population. Three markers
were mapped to different LGs when compared to their
location on previously published maps: (1) CH03e03 was
mapped to LG 5 compared to LG 3 (Liebhard et al. 2002),
most likely due to the amplification of a different locus as
observed fragment sizes are slightly larger than published (a
fragment size of 216 bp was observed in ‘Prima’ compared
to the published 186 bp), (2) Hi23g12 was mapped to LG 15
compared to LG 8 (Silfverberg-Dilworth et al. 2006)
confirming results obtained by Patocchi et al. (2009); (3)
CHO05d04 was mapped to LG 5 compared to LG 12
(Liebhard et al. 2002), also most likely due to the
amplification of a different locus as observed fragment sizes
are slightly smaller than published (fragments of 154 and
175 bp were observed in ‘Prima’ compared to the published
176 and 186 bp. The marker CH05g07 (Liebhard et al. 2002)
was found to amplify two loci, both mapping to LG 12. A
locus amplified by the marker Hi03a03 (Silfverberg-
Dilworth et al. 2006) was confirmed to map onto LG 6 in
both mapping populations used while a second locus
amplified by the same marker was found to map to LG 14
in the ‘Anna’ x ‘Sharpe’s Early’ mapping population,
confirming structural homology between LG 6 and LG14
(Celton et al. 2009).

Population A

Of the 285 SSR markers screened on 87 seedlings from the
‘Golden Delicious’ x ‘Anna’ mapping pedigree, 260 markers
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Fig. 1 Histogram showing the distribution of time of initial vegetative
budbreak (IVB) observed in / ‘Golden Delicious’ x ‘Anna’ seedlings
during 4 years of phenotypic trait assessment a 1999, b 2000, ¢ 2002,
and d 2004; 2 ‘Sharpe’s Early’ x ‘Anna’ juvenile trees during 3 years

were positioned on the integrated F1 genetic linkage map
(map coverage: 1,376.7 cM). Genetic linkage maps con-
structed for the parental cultivars ‘Golden Delicious’ (map
coverage: 1,124.5 cM) and ‘Anna’ (map coverage:
1,292.6 cM) consisted of 163 (including 72 new SSRs) and
170 (including 71 new SSRs) markers, respectively. Parental

maps were aligned using 92 SSR markers in common (Fig. 2).

of phenotypic trait assessment a 1998, b 1999, and ¢ 2000; and 3
‘Sharpe’s Early’ x ‘Anna’ adult trees during 3 years of phenotypic trait
assessment a 1996, b 1997, and ¢ 1998

Population B

The ‘Sharpe’s Early’” x ‘Anna’ genetic map was constructed
using 230 SSRs genotyped over the 92 F1 seedlings. The
integrated F1 genetic linkage map (map coverage:
1,242.6 c¢M) consisted of 207 mapped SSR markers.
Genetic linkage maps constructed for the parental cultivars

Table 1 Pearson’s correlation coefficients indicating phenotypic association (P<0.0001) between different years for time of initial vegetative

budbreak (IVB)

Mapping population

Association between different years of phenotypic trait assessment

Years 1+2 Years 1+3 Years 2+3 Years 1+4 Years 2+4 Years 3+4
‘Golden Delicious’ x ‘Anna’ 0.68 0.69 0.68 0.70 0.78 0.67
‘Sharpe’s Early’ x ‘Anna’ (Adult trees) 0.96 0.94 0.96
‘Sharpe’s Early’ x ‘Anna’ (Young seedlings)® 0.81 0.80 0.90

#Clonal trial
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‘Sharpe’s Early’ (map coverage: 1,012.9 cM) and
‘Anna’ (map coverage: 1,050.6 cM) consisted of 127
(including 41 new SSRs) and 126 (including 45 new
SSRs) markers respectively. Parental maps were aligned
using 79 SSR markers in common (Fig. 2). The parental
map constructed for ‘Anna’ has 94 SSR markers in
common with the parental map for ‘Anna’ constructed
for population A.

QTL detection and mapping

A single major QTL for time of IVB was detected on LG 9
(Fig. 3). Analyses performed on the average time of IVB
for the different populations and developmental stages
showed that this QTL exceeded the GW LOD threshold
during phenotypic trait assessment performed on adult trees
from population B. LOD scores obtained for the analyses
performed on averages from population A and juvenile
trees from population B were just below the GW LOD
thresholds. Separate QTL analysis for the different years of
phenotypic trait assessment performed on seedlings from
population A resulted in GW LOD thresholds being
reached during trait assessment performed on seedlings in
their fourth (2002) and sixth (2004) year (Table 3). GW
LOD thresholds were exceeded during all 3 years pheno-
typic trait assessment has been performed on adult trees
from population B (Table 3). Separate QTL analysis for the
three different years of phenotypic trait assessment per-
formed on juvenile trees from population B resulted in GW
LOD thresholds not being reached during the first three
juvenile years (Table 3). One-way analysis of variance
indicated significant association (P<0.0001) between spe-
cific NZmsCN943946 alleles inherited from the parental
cultivar ‘Anna’ and time of (IVB). This association was true
during all years of phenotypic trait assessment on ‘Golden
Delicious’ x ‘Anna’ (30.22<F>91.73) and ‘Sharpe’s Early’ x
‘Anna’ adult (34.39<F>49.9) and juvenile (30.6<F>69.27)
trees.

Differences in time of IVB associated with the four
genotypic classes, ac, ad, bc, and bd, derived from an ab x
cd cross, indicate that the phenotypic variation can be
associated with alleles inherited from the common male
parent ‘Anna’. This QTL explains between 4.8% and
40.1% of the phenotypic variation observed in population
A and between 11.9% and 44.6% of the phenotypic
variation observed in population B.

Discussion
The genetic linkage maps constructed are composed

entirely of SSR markers and since a very large proportion
of these markers are derived from EST sequences (more

@ Springer
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Fig. 2 Parental genetic linkage maps of ‘Golden Delicious’ (GD) and
‘Anna’ from population A and ‘Sharpe’s Early’ (SE) and ‘Anna*’
from population B. Numbering of LGs are according to Maliepaard et
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Fig. 2 (continued)

than 120) these maps are the most functional maps yet
available. The newly developed and mapped SSR markers
will enable the expansion of the 15 cM reference map,
currently consisting of 86 SSR markers covering 85% of the
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genome, proposed by Silfverberg-Dilworth et al. (2006) with
up to 11 SSR markers. Depending on polymorphic informa-
tion content determined on a larger number of cultivars,
some of the newly developed SSR markers might be used to
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Fig. 3 Position of the QTL for time of IVB detected on LG 9 of the
consensus ‘Golden Delicious’ x ‘Anna’ (GDxAn) map and the
‘Sharpe’s Early” x ‘Anna’ (SExAn) map. QTLs are represented by
boxes where the length of the box corresponds to a 5% confidence
interval and extended lines to a 10% confidence interval. Boxes

replace markers with low polymorphism now included in the
reference set, due to lack of more polymorphic SSR markers
in certain regions (Silfverberg-Dilworth et al. 2006).

The time of IVB showed a wide bi-modal distribution in
the seedlings derived from both mapping populations.

representing average time of IVB are filled and boxes representing
time of IVB for separate years are open. Boxes indicating QTL
detected on juvenile trees are green and those indicating QTL detected
on adult trees are red

Although bi-modality could be explained by seedlings
having a difference in their rapidity of response to favorable
conditions after their CR was satisfied (Labuschagné et al.
2003), the distribution of time of IVB can be explained by
the fact that the trait is controlled by a major QTL together

Table 3 Parameters associated

with the QTL for time of initial ~ Year LOD* mu_ac{00}°  mu_bc{00}"  mu_ad{00}"  mu_bd{00}* % Expl®
vegetative budbreak (IVB)
identified on LG 9 of the con- Population A: ‘Golden Delicious’ x ‘Anna’
sensus map used for population Average  6.07 (6.8) 271 271 247 252 36.7
A and population B, using 1999 3.1(54) 309 311 285 292 25.4
multiple QTL mapping (MQM)
2000 3.91 (8.9) 307 312 277 302 4.8
2002 5.7 (4.4) 282 279 269 271 23.6
*Maximum LOD score with con- 2004 7 (4.8) 254 254 226 235 40.1
ls)ldered threshold in parentheses Population B: ‘Sharpe’s Early’ x ‘Anna’—adult trees
Estimated mean of the Average  8.65 (7.0) 252 262 219 219 416
distribution of time of
IVB associated with each 1996 9.52 (8.6) 258 267 221 222 44.6
genotypic class with alleles 1997 8.04 (6.1) 254 262 224 222 39
“a” and “b” inherited from the 1998 6.83 (5.3) 245 256 212 212 38.2
pare;n?al C,u ltlvar‘s Gold’en s Population B: ‘Sharpe’s Early’ x ‘Anna’—juvenile trees
Delicious’ and ‘Sharpe’s Early’,
respectively, and alleles “c” and ~ Average 468 (49) 246 246 226 225 17.6
“d” inherited from the cultivar 1997 2.56 (4.5) 260 256 245 242 11.9
‘Anna’ 1998 444 (4.6) 254 255 235 232 20.9
¢Percentage of the variance 1999 449 (5.8) 251 253 230 226 17.9

explained by the QTL
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with some minor QTLs. High heritability estimates,
although specific to the experimental conditions in which
they have been calculated, were calculated for time of
IVB by both Labuschagné et al. (2002a) (h*=0.69) and
Segura et al. (2007) (h*=0.58), indicating that the trait has
a strong genetic influence and that it can be selected for
using marker-assisted selection. Heritability is not always
related to the power of QTL detection (Segura et al. 2007),
as the latter is also influenced by population size and the
number of QTLs affecting the trait. The small number of
individuals included in phenotypic trait assessment (87
from ‘Golden Delicious’ x ‘Anna’ and 60 and 92 for
adults and juveniles from the ‘Sharpe’s Early’ x ‘Anna’
mapping pedigrees) and the amount of variation observed
among seedlings from the same mapping population,
allowed for the detection of only one QTL with large
effect. The fact that this QTL explains up to 40.1% and
44.6% of the phenotypic variation observed in populations
A and B, respectively, indicates that there are further
QTLs affecting time of IVB. These may include several
QTLs with smaller effect that are statistically not detect-
able due the restricted population sizes used and the
phenotypic variation observed in the seedlings. During
initial interval mapping (van Dyk et al. 2009), the
involvement of several minor QTLs were suggested.
Implementation of more markers leading to better genome
coverage and the ability to perform MQM analysis
enabled the identification of a QTL with large effect in
the current study.

Genetic linkage maps constructed for both mapping
populations enabled the efficient detection of a major QTL
affecting the time of IVB on LG 9 (Table 3). This QTL may
co-localize with one of eight QTLs involved in leaf break
that was identified by Conner et al. (1998). The QTL
identified on LG 3 of the genetic linkage map produced by
Conner et al. (1998) was, after the implementation of
transferable microsatellite markers, shown to be homolo-
gous to the LG now known to be LG 9 (Kenis and
Keulemans 2004). In the present study, the QTL on LG 9
can be associated with specific allele inheritance from the
common parent ‘Anna’. Performing QTL analyses on an
integrated parental map when working with an outbreeder,
as was done during this study, enables the determination of
both the effect of alleles inherited from a single parent and
the interaction between alleles inherited from both parents.
Results (Table 3) indicated a clear difference in average
time of IVB between seedlings that inherited allele “c”
from ‘Anna’ (average “ac” and “bc”) compared to seedlings
that inherited allele “d” from ‘Anna’ (average “ad” and
“bd”). No clear difference could be detected between
seedlings that inherited different alleles from the other
parental cultivar involved in each mapping pedigree or
seedlings with a specific combination of parental alleles.

The power of QTL detection (LOD score) increased
during consecutive years of phenotypic trait assessment
being performed on seedlings from population A and
juvenile trees from population B. This suggests that
although the QTL can be associated with time of IVB in
young seedlings, the association between the QTL and the
trait becomes stronger as the tree matures. The QTL was
found to be significant (LOD score exceeding GW LOD
thresholds) in all 3 years during which phenotypic trait
assessment was performed on adult trees from population B
(Table 3). Although significant GW LOD thresholds are not
met in juvenile trees from population B, the association
between the QTL and time of IVB can be seen from
obtained phenotypic means associated with each of the
genotypic classes (Table 3). Budbreak occurring earlier as
trees mature has not been reported before. Preliminary
results suggest no correlation between the earlier time of
vegetative budbreak, associated with seedling age in two
apple populations studied, and the CU accumulated during
different years. These results suggest that the CR, which is
the major determinant of time of budbreak (Bradshaw and
Stettler 1995), has been met and that the time of vegetative
budbreak is also influenced by factors associated with tree
age. These results need to be confirmed in future studies,
including several years of phenotypic trait assessment
performed during different developmental stages and on
different populations.

Markers linked to the QTL identified will be used in a
validation test on a larger progeny sharing common
parentage. The QTL region will be saturated with markers
selected for their positioning on the genetic linkage map as
a result of selective (bin) mapping on a subset of
individuals (van Dyk and Rees 2009). The ideal will be
the identification of markers flanking the QTL that can be
used for the implementation of MAS in breeding for
cultivars that are better adapted to local climatic conditions.
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