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Abstract The development of genomic tools will enhance
traditional tree breeding technologies leading to more certain
and timely recovery of the American chestnut, a keystone
heritage tree of the eastern United States. Major efforts are
being made in gene discovery, genetic marker development,
construction of a BAC-based physical map, and DNA
transformation technology. A strategy of map-based cloning,
association genetics, and genetic engineering, combined with
traditional and marker-assisted backcross breeding is pro-
posed for the long-term genetic restoration of this iconic tree
species.
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Introduction and historical context

The American chestnut (Castanea dentata [Marsh.] Borkh.)
was once one of the most important tree species in America
(U.S. Census Bureau 1908; Davis 2006) but virtually
ceased to exist as an economically and ecologically relevant
forest tree by the mid 1900s, having fallen victim to the
chestnut blight, (Cryphonectria parasitica [Murr.] Barr), an
introduced fungal pathogen. The blight killed some four
billion trees, one of the greatest ecological disasters in
American history. Decades of tree breeding efforts and
research on chestnut and the fungal pathogen engender
hope that the tree species will be restored. Breeding is now

at the third generation of backcrossing, with genotypes
expected to be 15 out of 16 American germplasm. This
paper briefly reviews the status of the American chestnut
and discusses how genomic science may complement
ongoing efforts and accelerate the reintroduction of the
species in American forests. Chestnut may become a model
for application of genomic technology to other threatened
tree species, particularly as increased stresses come to our
forests through climate change and introduced pests/
diseases.

The role of chestnut in America’s forest ecosystems
has been shaped by glaciation and settlement. Chestnut
probably survived the Wisconsin glaciation in small
Southern Appalachian refugia and migrated north along
the mountain chain as the climate started warming about
10,000 years ago, reaching the current northern limit of
its natural range (Fig. 1), within the last few thousand
years (Russell 1987; Russell and Davis 2001; Anagnostakis
2001). Likely uncommon in precolonial times, the American
chestnut expanded rapidly following disturbance caused by
settlers, no doubt a result of the species ability to sprout
prolifically from cut or burned stumps, quickly establishing
dominance on cleared sites (Paillet 2000). Today, chestnut
survives as rare, large “escapes” or as numerous small
understory sprouts in the heart of its range (Stephenson et al.
1991).

The American chestnut possessed a remarkable array of
desirable traits. It grew very rapidly, often to a great size,
with outstanding form and wood quality. The wood was
very resistant to rot and therefore was used extensively in
construction as lumber and roofing, poles, masts, and
railroad ties. Tannins were extracted from bark and wood
chips, and the chips were subsequently pulped for the
production of paper. The tree grew well on dry uplands, a
trait that today would make it a valuable biofuel species in
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Fig. 1 Natural range of the American chestnut circa 1900 (Saucier 1973)
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these regions (Jacobs 2005). Historically, its seeds provided
food and revenue for rural communities, and a wide range
of animals were dependent on the mast, including black
bear, turkey, deer, raccoon, and the passenger pigeon (Hill
1994). Chestnut has been described as “the perfect tree”
(Freinkel 2007). Within a few decades, the chestnut blight
altered these ecosystem interactions completely.

Chestnut blight typically enters a tree through wounds,
infecting and killing cambial tissues and ultimately
girdling the tree (Anderson 1914). Low levels of resis-
tance to the blight have been reported in native popula-
tions of American chestnut (http://ipm.ppws.vt.edu/griffin/
accf.html), but moderate to high levels of resistance
appear not to exist.

Current approaches to developing disease-resistant
American chestnuts

Three approaches to developing blight-resistant American
chestnut are being pursued: breeding for resistance,
biological control of the blight, and genetic transformation.

Breeding for resistance Both hybrid breeding (introgres-
sion of major effect resistance alleles) and within species
breeding for quantitatively inherited resistance (additive)
are being pursued. Attempts to introduce resistance factors
into American chestnut via interspecific crosses with
Asian chestnut species began in the 1930s, but failed to
recover trees that physically resembled the native Amer-
ican chestnut (Jaynes 1994). In the early 1980s, backcross
breeding of interspecific hybrids to American chestnut was
initiated by the Connecticut Agricultural Experiment
Station (CAES, http://www.ct.gov/caes), and The Ameri-
can Chestnut Foundation (TACF) (http://www.acf.org).
Good progress has been made by both institutions in
introgressing resistance from Chinese chestnut (Castanea
mollissima Blume) and Japanese chestnut (Castanea
crenata Siebold & Zuccarini) into a modest array of
genetic backgrounds. TACF is already in their sixth
generation of backcross and intercross matings (Hebard
2006). The first tests of what are hoped to be blight-
resistant, American-type trees are now being planted, and
operational releases of verified resistant material is 7–
12 years in the future.

Griffin et al. (2006) report modest success in continuing
efforts to breed among surviving American chestnuts that
possess putative quantitatively inherited blight resistance.

Biological Control Blight was also introduced to Europe,
from Asia. In 1965, a strain of the blight fungus, unable to kill
the European chestnut (Castanea sativa Mill.), was reported
in France (Grente 1965). Subsequent inoculation of cankers

with this “hypovirulent” strain gradually resulted in remis-
sion of the disease throughout Europe (Anagnostakis 2001).
Hypovirulence is caused by a fungal virus. Attempts to
replicate this success with American chestnut have been only
marginally successful (MacDonald and Fulbright 1991;
Griffin 2000; Anagnostakis 2001, MacDonald and Double
2006). Spread of the hypovirulence in forest settings is
constrained by a genetic system that restricts fusion of
hyphae among diverse strains of the fungus (Anagnostakis
1977). Apparently, the fungus in America is highly diverse,
genetically, and not uniformly affected by the fungal viruses.
Still, hypovirulence remains a viable component of an
integrated disease control program that includes genetic
resistance (Freinkel 2007; http://ipm.ppws.vt.edu/griffin/
accf.html).

Genetic Transformation The use of transgenes has been
proposed for restoration of species threatened by introduced
pests and pathogens (Merkle et al. 2006). Agrobacterium-
mediated transformation of embryogenic lines and plant
regeneration from somatic embryos have been achieved for
American chestnut (Carraway et al. 1994; Andrade et al.
2005). A gene encoding an antifungal enzyme, oxalate
oxidase (OXO), also known as wheatgermin, has been
recently introduced into chestnut (Polin et al. 2006; Welch et
al. 2007). Oxalate is an inhibitor of the hypersensitive
response. OXO is expressed in plants to degrade the oxalic
acid produced by fungal pathogens, and at the same time,
OXO produces hydrogen peroxide, which serves as a
fungicide and as a signal for the plant defense response.
Transfer of a wheat OXO has generally improved resistance
to fungal pathogens in dicots (Lane 2002). Other antifungal
genes that have been used successfully in plants, might
increase resistance in chestnut, such as genes encoding
chitinases (Dana et al. 2006) or antifungal peptides (Huang
et al. 2002; Castro and Fontes 2005). If resistance genes
from chestnut were isolated, it would be possible to
combine, in one plant, multiple resistance genes to create a
more general and stable type of resistance. To date, no genes
with antifungal properties have been identified in Castanea
species. In hazelnut (Corylus avellana; family Betulaceae)
resistance to eastern filbert blight is controlled by a single
locus (Mehlenbacher et al. 2004) and therefore might be
isolated before any genes from Castanea are available.

The potential role of genomics in American chestnut
restoration

Genomics is being applied to virtually every major crop
plant and to several tree species to identify genes that can
accelerate improvement (Morgante and Salamini 2003;
Neale 2007). Genomic analysis of chestnut will (1) identify
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many of the genes of the organism and their locations, (2)
provide for complex trait dissection of blight resistance and
other important growth, form and adaptability traits
(Kubisiak et al. 1997; Neale and Savolainen 2004; Verho-
even et al. 2006; Neale and Ingvarsson 2008), (3) provide
tools for association of genes and traits (Rafalski 2002;
Neale and Savolainen 2004), (4) identify and clone specific
resistance factors, for genetic engineering or marker-aided
selection (Salvi and Tuberosa 2007), and (5) speed
backcross breeding and provide pedigree identity capability
(Hospital et al. 1992; Dekkers and Hospital 2002; Lecape et
al. 2007; see Fig. 2). Beyond providing insights into the
chestnut genome, genomics will provide better understand-
ing of the blight fungus, and the interaction with its
chestnut host and viral parasite (Allen et al. 2003). Full
genome sequencing of Cryphonectria parasitica has been
completed by the Joint Genome Institute of the Department
of Energy (http://genome.jgi-psf.org/euk_home.html)
which may lead to new strategies for biological control.

Genomic tool development

Three genomic tools currently under development (http://
www.fagaceae.org) should advance the progress toward
restoration of American chestnut. These are, (1) large-scale
gene discovery through high throughput Roche/454 se-
quencing of expressed genes (ESTs) in American and
Chinese chestnut (Margulies et al. 2005), (2) development
of large numbers of genetic markers from this sequence
data identifying markers showing polymorphisms within
and between species, and (3) the construction of a high
resolution bacterial artificial chromosome (BAC)-based
physical map. Genomic work has focused on Chinese
chestnut because a major goal is the identification of the

resistance factors in this species. New mapping populations
in Chinese chestnut, American chestnut, and hybrids are
also being created to permit high resolution mapping and
comparative mapping studies.

About 10,000 expressed genes (EST) have been
sequenced and annotated (http://www.fagaceae.org) with
a SNP frequency of about one in 600 bases of consensus
sequence. Hundreds of polymorphic simple sequence
repeat (SSR) sequences have been detected in the EST
sequences. SSRs are particularly useful in comparative
genomics studies with other Castanea or Fagaceae
species (Barreneche et al. 2004; Sisco et al. 2005). A
major objective is to obtain an integrated high-resolution
genetic and physical map, which would be a major step
toward cloning of blight resistance genes. Identification of
markers very close to resistance factors may allow
identification of candidate genes for resistance. Cloning
of resistance genes would facilitate development of
desirable combinations of resistance genes in the best
genotypes either by breeding or by genetic engineering.

Cytogenetics

Substantial segregation distortion and an inability to resolve
two linkage groups was observed in the comparison of the
American/Chinese hybrid map with that of European
chestnut (Sisco et al. 2005), suggesting chromosome
rearrangements within the genus. Recently, Islam-Faridi et
al. (2008) provided cytogenetic evidence of a translocation,
as a quadrivalent in pollen mother cells of an F1 hybrid (C.
mollissima x C. dentata). If rearrangements are associated
with chromosomes carrying resistance factors, as the
genetic data suggest, introgression of resistance in back-
cross breeding may be hindered by segregation distortion
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and reduced recombination (Rieseberg et al. (1995).
Comparative mapping that elucidates chromosomal rear-
rangements will enhance the effectiveness of backcross
breeding (introgression) in efforts to disseminate resistance
factors in breeding populations.

Marker-enhanced breeding

Genomics will have the largest and most immediate impact on
recovery of the American chestnut through development of
DNA markers that will guide backcross breeding (both
foreground and background selection) and early culling in
recurrent lines. Highly informative markers reduce overall
time to introgress resistant loci into production populations
(Hillel et al. 1990; Hospital et al. 1992, 2002; Hospital and
Charcosset 1997). One or more generations of backcrossing
may be eliminated through use of markers to select against
donor DNA in progeny. As nearly complete American
chestnut resistant lines are produced, markers could virtually
replace the need for disease inoculation protocols in recurrent
selection programs designed to spread the resistance factors.
Markers will also be invaluable in pyramiding genes for
resistance (Friedt and Ordon 2007; White et al. 2007).

Using markers for fingerprinting and pedigree confirma-
tion can save breeding program years of effort. New markers
in chestnut have already proven useful. Markers would be
particularly useful for determination of the breakpoints of the
chromosomal rearrangements to maximize the efficiency of
selection for resistance in spite of rearrangements. If specific
resistant lines are commercialized and protected, markers will
be required to maintain pedigree fidelity and provide legal
identification.

Trait dissection using genomics

Blight resistance in chestnut appears to be an oligogenic
trait. QTL mapping experiments (Casasoli et al. 2001,
2006; Kubisiak et al. 1997) conducted with interspecific
crosses between American and Chinese chestnuts suggest at
least three resistance loci on separate linkage groups. These
loci account for up to 42% of the phenotypic variation in
blight resistance as measured by canker size in inoculated
interspecific chestnuts. The large number of genetic
markers and polymorphisms now available, in combination
with large backcross breeding populations, suggests the
possibility of disease gene identification through associa-
tion genetics, as a complement to map-based cloning.
Association genetics is a direct method of identifying
genes, by correlation of specific SNP polymorphisms in
known genes with specific phenotypes (Tenaillon et al.
2001). Association genetics requires large populations,

good phenotyping capability, SNP single nucleotide poly-
morphism) markers in most genes, and linkage disequilib-
rium appropriate for the marker density (Rafalski 2002).
Because of their life history characteristics, most tree
species are well suited for association genetics (Neale and
Savolainen 2004; Gonzalez-Martinez et al. 2007). Associ-
ation genetics could significantly speed up the identification
of genes controlling blight resistance and other economic
and adaptive traits.

Beyond initial recovery: an expanded role
for association genetics

Recovery of American chestnut will be a slow process as
resistance factors are introgressed or engineered into the
broad array of genetic backgrounds necessary for adaptation
across the former natural range of the species. To date,
selection of American chestnut trees for inclusion in the
breeding program has been dictated largely by availability of
stump sprouts with pollen or seed catkins. Selection of
parents based on desirable wood or nut traits has not
occurred. It is suggested here that a clonally replicated
provenance trial designed to simultaneously serve as an
association genetics population could enhance selection of
existing resistant breeding lines, through use of markers
associated with desirable traits, and also provide genotypes
for future infusion into recurrent populations. To be
successful, these genetic trials would have to be established,
following appropriate quarantine protocols, in locations not
currently influenced by the chestnut blight (e.g., west coast
of the US), so they may develop unhindered. The establish-
ment of a population in the near term could benefit the
chestnut recovery program for years to come.

Map-based cloning and association genetics will play
key roles in identification of disease resistance genes
in chestnut

A common strategy for the identification of resistance
genes in a plant species is map-based cloning (Tanksley
et al. 1995; Bent 1996, McHale et al. 2006). In this
approach, colocalization of resistance and genetic markers
to regions of known sequence leads to the isolation,
identification, and characterization of plant disease resis-
tance genes. To do this, high-resolution genetic mapping,
local physical mapping, and local genome sequencing are
required. When candidate genes are identified, their
functional resistance is verified by DNA transformation
or genetic complementation. Disease resistance genes have
been cloned from many plants, including Arabidopsis,
other dicots, and several cereals. Most plant genes for
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disease resistance (R genes) belong to related families of
nucleotide-binding site/leucine-rich repeat genes, (NBS-
LRR). Plant genomes sequenced so far, have 150
(Arabidopsis) and 400 (rice and poplar) NBS-LRR
homologs (McHale et al. 2006; Kohler et al. 2008). If
the genes underlying the blight resistance QTLs in
Chinese chestnut could be identified, isolated, and char-
acterized in this way, it would be possible to pyramid
several different resistant factors in selected American
chestnut genotypes either by transgenic methods or by
marker-assisted breeding, adding speed and confidence to
traditional breeding approaches.

Map-based cloning is routine in Arabidopsis due to its
small genome size (<150 Mb), full genome sequence, and
highly saturated genetic maps (Jander et al. 2002). The
prospect of cloning of blight disease resistance QTLs in
chestnut appears reasonable once high resolution genetic
maps and contiguous physical maps exist for the regions of
interest. The overall ratio of base pairs (genome size of
800 Gb) to recombination map distance for chestnut is
about 800 kb/cM (Casasoli et al. 2006), compared to
Arabidopsis with a general ratio of 250 kb/cM.

Current plans include the localization of 500 to 1,000
SNP and SSR markers on genetic maps and to identify
additional markers closely linked to resistance. The large
number of ESTs and SNPs in these ESTS should aid greatly
in establishing contigs and a minimum tiling path for
targeted sequencing based on the integrated genetic and
physical maps. Fine scale genetic mapping of QTLs may be
possible using association genetics in the large backcross
inbred populations made by TACF.

An additional challenge

Public acceptance of transgenic crops has been slow due to
fears of new technology and the potential for release of
artificial genes into the environment. It is expected that there
will be similar opposition to a genetically modified chestnut
(Strauss and Bradshaw 2004). However, chestnut is a special
case, where an ecological disaster has already occurred and
the genetic technology could aid in the restoration of a
spectacular forest tree. Chestnut may become the first case of
the application of genetic technology for ecological restora-
tion and lead to similar applications for the protection or
conservation of many threatened forest tree species, in these
particularly difficult times (Merkle et al. 2006).
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