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Abstract Successive crises in the early twenty-first century prompted regulators
around the world to ask financial institutions to implement a series of regulations.
These measures aimed to increase transparency, improve consumer and investor pro-
tection, restructure financial capital, stabilize insurance and pension markets, and
improve solvency. The Solvency II framework introduced in the European Union
applied these principles to insurance companies. This study attempts to predict the
solvency of an insurer within a set of European insurers. The dataset consists of 29
insurance groups that operate across the European Union with a country of origin
within the European Union for the period 2016 to 2020. The variables were con-
structed from annual financial statements retrieved from (Thomson Reuters) Data-
Stream. The solvency capital requirement ratios were obtained manually from the
solvency financial condition reports of each group. Regularized linear regression
applying a ¢,/ least-absolute-shrinkage-and-selection-operator penalty showed that
the reinvestment rate, cash and equivalents, long term investment, and losses-bene-
fits-and-adjustments expenses have the greatest predictive impact on the solvency of
insurers. The contribution of this paper lies in the identification of determinants that
allow insurance companies to maintain strong solvency capital requirement ratios so
that they can maintain internal operations with minimal interruption.
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Introduction

Since the financial crisis that began in 2007-2008, the European Union (EU) has
undertaken an ambitious scheme for supervisory and regulatory reform. That crisis
spurred a severe worldwide economic crisis that marked the next decade and the first
quarter of the twenty-first century. Until the coronavirus (COVID) pandemic broke out
in 2020, it was probably the most serious financial crisis since the Great Depression.

The 2008 bankruptcy of Lehman Brothers sparked an international banking
crisis. The European debt crisis began with a deficit in Greece in late 2009. The
2008-2011 Icelandic financial crisis involved the failure of all three of that country’s
major banks. Relative to the size of its economy, the Icelandic crisis was the largest
economic collapse suffered by any country in history.

Regulatory authorities reacted. The United States (U.S.) enacted the Dodd-Frank
Wall Street Reform and Consumer Protection Act of 2010 in order to "promote
the financial stability of the United States" (U.S. Library of Congress, 2010, PL
111-203). In 2009, countries around the world adopted the Basel III capital and
liquidity standards. Because regulation is a complex interaction between politicians,
civil servants, industry, interested groups, regulatory bodies, and consumers, its true
impact demands close scrutiny.

The European Insurance and Occupational Pensions Authority (EIOPA, 2009a,
b) introduced new solvency capital requirements as a system of governance and
a mechanism for cooperation and coordination between supervisory authorities.
Called Solvency II, this scheme took effect on January 1%, 2016 and applies to all
European insurance and reinsurance companies (EIOPA, 2009a, b, 2015a, b, 2016,
2018). It attempts to create a level playing field for the European insurance sector. In
addition to prescribing rules for the governance of insurance companies, Solvency
II emphasizes the capital required to cover the assumed risks and safeguard the sol-
vency of insurers.

Solvency II seeks to reduce the risk of failure of an insurance company to cover
the claims of the insured and protect policyholders from losses due to such events. In
addition, Solvency II sets rules for more detailed, public information included in the
Solvency and Financial Condition Report (SFCR) and not just in the Report to Super-
visors. Increased transparency should boost confidence in all types of insurance: life
insurance, non-life insurance, and reinsurance. As risk taking is the primary compo-
nent of the business of insurance, an insurer’s risk management process is laid out in
its own risk and solvency assessment (ORSA) (EIOPA, 2015a, b). ORSA includes a
risk-based assessment of the insurer’s solvency needs based on its business profile
and own risk appetite. It must be considered in running the business.

This study advances the existing literature in two ways. First, it identifies the most
important variables affecting the solvency capital requirement (SCR) ratio, which
is vital for the viability of European insurance companies. Second, this study sets a
benchmark for monitoring and forecasting the effectiveness of the risk management
process that insurers implement. Such forecasting ability is of the utmost importance
for the insurance sector, since solvency enables insurers to deliver benefits promised
to policyholders and fulfill their social obligations.
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Literature Review

Financial services, banking and insurance have benefited from real-world
applications of machine learning. Examples include customer/market segmentation,
portfolio optimization, tracking and prevention of money laundering and other illegal
financial activities, implementation of smarter and more effective risk management
and regulatory compliance in finance and accounting. These capabilities enable
organizations to achieve and maintain a long-term competitive advantage (Paltrinieri
et al., 2019; Sen & Mehtab, 2021; Lei et al., 2020; Dornadula & Geetha, 2019;
Eling et al., 2022; Yu et al., 2021; Leo et al., 2019; Gu et al., 2020; Ye & Zhang,
2019; Zand et al., 2020). The existing literature addresses a wide range of machine
learning applications in insurance. These include the prediction of insolvency, fraud
detection (in property and casualty insurance), claims (in export credit insurance),
customer-risk level, and losses (in property and casualty insurance), claims analysis
(in health and travel insurance), lapse-risk management, portfolio insurance
strategies, and motor insurance analysis (Table 1).

This study addresses a gap in the literature, the identification of the most impor-
tant factors affecting SCR ratios. This paper studies the internal (firm-related) fac-
tors that allowed insurance companies to maintain SCR ratios that ensure solvency.
These factors relate to premiums generated, insurers’ reserves, effectiveness in rein-
vesting in profitable assets, cash or cash equivalents held, long-term investments,
losses and expenses (e.g., management, administrative), size, and income generated
by each insurer’s total activity.

Data and Variables

The dataset consists of 29 insurance groups that operate across the EU, with a
country of origin within the EU, from 2016 to 2020. The proxy employed for
solvency is the SCR ratio, which is the sum of eligible own funds divided by
the SCR, calculated on a consolidated basis. The SCR is the amount of assets
that insurance and reinsurance companies are required to hold in order to attain
99.5% confidence that they will be able to meet the claims of policyholders under
extreme expected losses. The SCR accounts for life insurance, health insurance,
market, credit, operational and counterparty risk and must be recalculated at least
once a year.

Eligible own funds are the component of actual own funds that qualify for cov-
erage of the SCR and the minimum capital requirement (MCR), the minimum
safety net of capital adequacy over one year. Eligibility is decided by the regulator,
includes restrictions on the amount of each tier of capital an insurer can use to cover
its SCR and MCR, and must be over 100% (EIOPA, 2020a, b).

The variables were constructed from annual financial statements retrieved from
(Thomson Reuters) DataStream (2012). SCR ratios were obtained manually from
the SFCR of each group. The variables are defined in Table 2.
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Methods

Traditional econometric approaches typically specify a model to be fitted. The
model is usually based on economic theory and specifies a fixed functional form that
includes a dependent variable and one or more independent variables. The ordinary
least squares (OLS) procedure is the most common method in general and seeks
to minimize the sum of the squared residuals. Given a regression line through the
data, the sum of the squared residuals is estimated as the sum of the squares of the
distances of the data points from the regression line. In contrast, machine-learning
(ML) approaches capture data patterns and apply them to a wide range of problems.
ML techniques are efficient and accurate in prediction and classification (Berry &
Linoff, 2004; Kudyba, 2014; Sarker, 2021; Thompson, 2014). ML is primarily con-
cerned with prediction: producing the best predictions of y given available data X.
Informally, “machine learning belongs in the part of the toolbox marked y rather
than in the more familiar § component” (Mullainathan & Spiess, 2017, p. 88). ML
methods attempt to find generalizable patterns in the available data and exploit those
patterns to make accurate predictions.

Since the objective of ML is to make accurate predictions, ML methods must be
evaluated differently than econometric methods. The latter are commonly evaluated
using metrics that are calculated using in-sample tests (e.g. R%, p-values) and out-of-
sample tests (e.g., bias, accuracy). As in econometrics, ML methods typically parti-
tion the data into training and testing data (in-sample and out-of-sample, respec-
tively). Holdout testing data are used to evaluate the model that has been fitted using
the training data. ML methods typically employ cross-validation to train a model.
This analytical framework follows the approach introduced by Chen (2021).

Findings
Summary statistics-Correlation analysis

Summary statistics of the key variables (Table 3) report negative values in the annual
change of insurance premiums and reserves, as well as the reinvestment ratio and net
investment income. Furthermore, some companies exhibit zero long-term debt. There
is large variation in the exposure to long-term investments from 14.34% to 90.62% of
assets. Expenses also exhibit great variation. Losses, benefits and adjustments expenses
ranged from 22.46% to 131.26%. Selling, general and administrative expenses ranged
from 0.04% to 38.13% of total revenue. In terms of solvency, one company in 2020 fell
below the 100% security threshold and posted a SCR ratio of 66%.

The SCR ratio has a positive correlation with the annual change in insurance pre-
miums and reserves, the reinvestment ratio, net investment income, long-term debt
and expenses in losses, benefits, and adjustments. In contrast, it has a negative correla-
tion with cash and equivalents, premium and selling, and general and administrative
expenses (Table 4).
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Table 3 Summary statistics of the model variables for 2016-2020

Mean Standard deviation Min Max
Premiums Earned—Change % 0.0182 0.0802 -0.4230  0.2180
Reserves—Change % 0.0273 0.1139 -0.2650  0.9820
Reinvestment Rate 0.0396 0.0588 -0.2150 0.3290
% Long-Term Debt to Total Capital 0.2206 0.1449 0.0000 0.7790
Cash and Equivalents 0.0423 0.0570 0.0020 0.3019
Long-Term Investments 0.6490 0.1764 0.1434  0.9062
Total Long-Term Debt 0.0428 0.0519 0.0000  0.4792
Total Premiums Earned 0.8713 0.1547 0.3615 1.6126
Net Investment Income 0.1062 0.1245 -0.6170 0.5754
Losses, Benefits, and Adjustments Expenses 0.6474 0.1694 0.2246 1.3126
Selling/General/Admin. Expenses 0.1037 0.0825 0.0004  0.3813
SCR ratio 2.0281 0.3922 0.6600 3.4100

Source: Authors’ estimates using Python and annual financial statements from the Thomson Reuters
DataStream (2012) database provided by Refinitiv. The SCR ratios were obtained manually from the
SFCR of each insurance firm. N=145

Results

The estimation results of all regression and supervised ML models showed that our
model is weakly predictive, Pooled OLS, random forest, extra trees, eXtreme gra-
dient boosting (XGBoost), gradient boosting, AdaBoost, support vector regression
(SVR) and multi-layer perceptron (MLP), struggled to find just the right combina-
tion of independent variables to make good predictions. Traditional linear regression
did not exceed 0.30 in R? (Table 3). The metrics used to analyze regression models
are R? and the root mean squared error (RMSE) (Table 5).

Implementation of Regularized linear models-LASSO

A modification of linear regression is the least absolute shrinkage and selection
operator (LASSO). The loss function in LASSO is changed to reduce the model’s
complexity by limiting the sum of the absolute values of the model coefficients:

Lossfunction = OLS + a * summation 1

where the summation is the absolute value of the magnitude coefficients.

The default value of the regularization parameter in LASSO regression (given by
a) is 1, where a is the parameter that balances the amount of emphasis given to min-
imizing the residual sum of squares (RSS) versus minimizing the sum of squares of
coefficients. At a=0, LASSO is equivalent to OLS. RSS is the sum of the squared
errors between the predicted and actual values in the training data set. The larger
the value of «, the more aggressive the penalization. The LASSO hyperparameter a
reached its optimal value at 0.1453 (Fig. 1).
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24 Siopi E. et al.

Table 5 Outcome of the eight regression models for the period 2016-2020

R? RMSE

Train Test Train Test
Linear Regression 0.247743 0.02163 0.867327 1.052815
Random Forest Regression 0.895306 0.396792 0.323564 0.826673
Extra Trees Regression 0.968077 0.470771 0.178671 0.774323
XGB Regressor 0.895214 0.241988 0.323707 0.926698
Gradient Boosting Regressor 0.579085 0.335906 0.64878 0.867392
AdaBoost Regressor 0.82527 0.298078 0.418008 0.891753
SVR 0.798679 0.197611 0.448688 0.953439
MLP Regressor 0.290617 0.250762 0.842249 0.921319
No of Observations 108 37 108 37

Source: Authors’ estimates using Python and annual financial statements from the Thomson Reuters
DataStream (2012) database provided by Refinitiv. The SCR ratios were obtained manually from the
SFCR of each insurance firm

LASSO has the effect of reducing coefficients to zero if they do not contribute
significant predictive value. The sparsity induced by LASSO indicates significance,
akin to the role of p-values informal statistics.

LASSO model selection using an information criterion: AIC or BIC

The Akaike information criterion (AIC) or the Bayes information criterion (BIC)
was used to select the optimal value of the regularization parameter a. Before fitting

0.06

0.04

0.00

Cross-validation score

-0.02

-0.04

0.00 005 0.10 015 0.20 025
LASSO hyperparameter o € (0,1)

Fig. 1 LASSO hyperparameter o reaches its optimal value at 0.1452999999999999998. Source:
Authors’ estimates using Python and annual financial statements from the Thomson Reuters DataStream
(2012) database provided by Refinitiv for 2016-2020. The SCR ratios were obtained manually from the
SFCR of each insurance firm
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the model, the data were standardized. The AIC and BIC values can be plotted for
different values of a. The vertical lines in the plot correspond to the a chosen for
each criterion. The selected a (Fig. 2) corresponds to the minimum of the AIC and
BIC criterion (Pedregosa et al., 2011).

As a increases toward its optimized value of 0.1453, LASSO turns more coeffi-
cients into zero. The reinvestment rate, cash and equivalents, long-term investment,
losses-benefits-and-adjustments expenses were selected from the LASSO regres-
sion. LASSO results are best understood through a comparison with the results of
conventional OLS regression, which indicates that only the losses-benefits-and-
adjustments expenses variable is statistically significant (Table 6). The coefficients
of all four variables post the same sign in both regressions though. The other six
explanatory variables were assigned zero coefficients at a relatively aggressive value
of the LASSO complexity parameter a. In effect, LASSO regression reduced the
dimensionality of the model from 10 to 4.

LASSO regression based on standardized data allows the resulting beta coef-
ficients to be read directly. Although Table 6 reports a corresponding vector of
p-values, the sparsity induced by this regression method is unequivocally clear and
decisive. The zero-coefficient trick replaces or complements the more conventional
removal of variables with a high (non-significant) p-value.

In this study, the absolute value of the long-term investment coefficient exceeds
the sum of the absolute value of the other three non-zero coefficients. Therefore, that
variable commanded an overwhelming share of coefficient importance (defined as
the absolute value of each non-zero coefficient divided by the sum of the absolute
value of all non-zero coefficients). Therefore, LASSO reports the subset of predic-
tive variables within the £, quasi-norm of variables with non-zero coefficients.
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Fig. 2 Selecting the LASSO hyperparameter a via AIC and BIC. Source: Authors’ estimates using
Python and annual financial statements from the Thomson Reuters DataStream (2012) database provided
by Refinitiv for 2016-2020. The SCR ratios were obtained manually from the SFCR of each insurance
firm. Due to tiny values, they are plotted on a negative base-10 logarithmic scale
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Finally, the negative sign attached to the coefficient for cash and equivalents
should be highlighted. This is the only negative variable in the new ¢ vector of
coefficients. Cash is not a risk-free asset, especially with respect to the solvency of
financial institutions. Cash earns so little return that it undermines preparedness for
future crises (Danielsson et al., 2016).

Discussion

The LASSO regression showed that the reinvestment rate, cash and equivalents,
long term investment, and losses-benefits-and-adjustments expenses can predict the
solvency of insurance companies during the period under investigation. Insurance
companies operated under a low-interest rate environment and continue to earn less
investment income. Annual investment returns are reinvested to generate additional
future returns.

However, reinvestment at lower yields has a measurable impact on an insurer’s
future financial health. Older, higher-yielding, maturing securities and cash are rein-
vested at current (lower) market rates, leading to reduced investment income. As a
result, insurance companies must either hold more assets in the future to earn the
same investment income, or else hold riskier assets to achieve better returns. The
reinvestment rate can be considered as a tool for risk management, which discour-
ages insurers from investing in risky portfolios and endangering their solvency ratio.
Risk-averse insurers want to avoid losses from risky investments, even though they
may benefit in the short-term.

Insurance companies are long-term investors. They invest premiums paid by pol-
icyholders. Due to the long-term nature of many products (such as annuities and
life insurance policies), insurers invest in long-term assets to match their long-term
liabilities. However, under Solvency II, assets and liabilities are valued mark-to-
market. Consequently, short-term market movements pose a risk that must be man-
aged. Mark-to-market valuation ensures that the SCR ratios reflect an insurer’s true
economic position. Therefore, mark-to-market valuation is an instrument for risk
management and policyholder protection, even though it does not fully capture the
investments’ long-term horizon.

The solvency capital requirements motivate insurers to match the duration of their
assets and liabilities. The better the duration match, the lower the solvency capital
requirement is. SCR ratios increase insurers’ appetite for long-term assets. Insurers
are free to make prudent investments, and capital requirements will depend on the
actual risk associated with those investments.

Cash is not a risk-free asset. There are differences between the SCR needed
to cover cash deposits at a bank and other cash equivalents. Solvency II assumes
that the loss (given default) for cash at a bank is 100%. The EIOPA estimates that
approximately €190 billion in cash and cash equivalents were held on the balance
sheets of European insurers at the end of the second quarter of 2020. A Euribor of
-0.6% implies that roughly €1 billion of this cash will be lost through negative yields
over the next 12 months (EIOPA, 2020a, b).
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Losses-benefits-and-adjustments expenses reflect the cost of investigating and
settling insurance claims, relative to an insurance company’s gross revenue. Inves-
tigations are necessary to prevent fraud and reduce exaggerated claims; in essence,
to verify the amount of the loss. The business of insurance requires fair and prompt
payment of valid claims. When an insurance company refuses claims without ade-
quate investigation and fails to pay promptly and fairly when liability is clear, many
insureds may sue to recover underpayments. If an insurance company loses many
underpayment lawsuits, such defeats indicate that the insurance company is rou-
tinely underpaying claims. Therefore, losses-benefits-and-adjustments expenses can
provide early warning of systematic under payment relative to gross revenue.

Conclusion

Five years after the implementation of the Solvency II Directive, this study makes
two primary contributions. First, it identifies the most important factors in predict-
ing SCR ratios and evaluates the impact of these factors on solvency. The reinvest-
ment rate, cash and equivalents, and long-term investments (as part of total assets)
and losses-benefits-and-adjustments expenses (as part of total revenue) can be used
as benchmarks for monitoring and forecasting SCR ratios. Second, this study attains
these results through computational extensions of OLS regression. It makes particu-
larly illuminating use of LASSO.
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