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Abstract Machine learning has dramatically expanded the range of tools for evaluating
economic panel data. This paper applies a variety of machine-learning methods to the
Boston housing dataset, an iconic proving ground for machine learning. Though machine
learning often lacks the overt interpretability of linear regression, methods based on decision
trees score the relative importance of dataset features. In addition to addressing the theoret-
ical tradeoff between bias and variance, this paper discusses practices rarely followed in
traditional economics: the splitting of data into training, validation, and test sets; the scaling
of data; and the preference for retaining all data. The choice between traditional and
machine-learning methods hinges on practical rather than mathematical considerations. In
settings emphasizing interpretative clarity through the scale and sign of regression coeffi-
cients, machine learning may best play an ancillary role. Wherever predictive accuracy is
paramount, however, or where heteroskedasticity or high dimensionality might impair the
clarity of linear methods, machine learning can deliver superior results.
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Introduction

Perhaps no task is more prevalent, or more useful, in economics than the prediction of a
numerical value through panel data. By far the most popular tool is linear regression via
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the ordinary least squares (OLS) method. The scale and sign of coefficients, along with
p-values, t-statistics, and confidence intervals, communicate valuable information
among economists.

Though widely and readily understood, linear regression may not provide the
most accurate predictions from panel data. This paper introduces basic machine-
learning methods. Many machine-learning methods use decision trees to divide
data, variable by variable. Ensembles of decision trees harness the Delphic
wisdom of numerous miniature predictors. Boosting combines weak learners
into a stronger, more accurate predictor. Data suitable for trees and forests can
also enable regression through support vector machines and neural networks.

Machine-learning methods lack the overt interpretability of linear regression.
Tree- and forest-based methods offset the opacity of these black boxes by
scoring the relative importance of dataset features. This paper will address the
bias-variance tradeoff as well as the importance of training, validation, and
reserving a holdout dataset for testing. Machine learning also sheds light on the
primacy of data over algorithms and the wisdom of retaining all outliers. Where
interpretability remains paramount, machine learning can support traditional
regression methods. Machine learning excels in settings emphasizing predictive
accuracy.

Data: The Boston Housing Study

This overview of machine learning revisits Harrison and Rubinfeld’s (1978)
effort to predict housing prices in Boston’s 506 census tracts. A popular
proving ground for machine learning (Miller 2015), the Boston housing dataset
is included in the SciKit-Learn (Python 2021) package. Table 1 summarizes
that dataset.

Splitting and Scaling

Supervised machine learning requires the splitting of data into randomized subsets
for training and testing. This practice, rare in conventional economics, ensures that
machine learning does not merely memorize values associated with data to be
predicted (Müller and Guido, 2017, pp. 17–18). Holding out 25% (a typical if
arbitrary proportion) of the data ensures the generalizability of any supervised
learning method to data not seen during training (Müller and Guido, 2017, pp. 17–
18).

Many machine-learning algorithms perform more accurately on scaled data
(Müller and Guido, 2017, pp. 134–142). Standard scaling ensures that machine
learning evaluates all variables and reports results in terms of Gaussian z-scores.
Critically, the scaling of test data must proceed according to the distribution of
values in the training data in order to prevent data leakage (Müller and Guido,
2017, pp. 138–140).

As Table 2 shows, OLS regression allows a linear model to be expressed and
interpreted in closed form. Accuracy, as measured by r2 for predictions in the Boston

Chen J.M.2



T
ab

le
1

St
at
is
tic
al
su
m
m
ar
y
of

B
os
to
n
ho
us
in
g
da
ta
se
t
va
ri
ab
le
s

C
R
IM

Z
N

IN
D
U
S

C
H
A
S

N
O
X

R
M

A
G
E

D
IS

R
A
D

T
A
X

PT
R
A
T
IO

B
L
ST

A
T

PR
IC
E

C
ou
nt

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

50
6

M
ea
n

3.
61
35

11
.3
63
6

11
.1
36
8

0.
06
92

0.
55
47

6.
28
46

68
.5
74
9

3.
79
50

9.
54
94

40
8.
23
72

18
.4
55
5

35
6.
67
4

12
.6
53
1

22
.5
32
8

St
d
de
v

8.
60
15

23
.3
22
5

6.
86
04

0.
25
40

0.
11
59

0.
70
26

28
.1
48
9

2.
10
57

8.
70
73

16
8.
53
71

2.
16
49

91
.2
94
9

7.
14
11

9.
19
71

M
in

0.
00
63

0
0.
46

0
0.
38
5

3.
56
1

2.
9

1.
12
96

1
18
7

12
.6

0.
32

1.
73

5

25
%

0.
08
20

0
5.
19

0
0.
44
9

5.
88
55

45
.0
25

2.
10
02

4
27
9

17
.4

37
5.
37
8

6.
95

17
.0
25

50
%

0.
25
65

0
9.
69

0
0.
53
8

6.
20
85

77
.5

3.
20
74

5
33
0

19
.0
5

39
1.
44

11
.3
6

21
.2

75
%

3.
67
71

12
.5

18
.1

0
0.
62
4

6.
62
35

94
.0
75

5.
18
84

24
66
6

20
.2

39
6.
22
5

16
.9
55

25

M
ax

88
.9
76
2

10
0

27
.7
4

1
0.
87
1

8.
78

10
0

12
.1
26
5

24
71
1

22
39
6.
9

37
.9
7

50

So
ur
ce
:
B
os
to
n
ho
us
in
g
da
ta
se
t
on

Sc
iK
it-
L
ea
rn

(P
yt
ho
n
20
21
)

An Introduction to Machine Learning for Panel Data 3



housing dataset, is quite respectable for traditional regression: 0.716806 for the training
set and 0.778941 for the test set. Most variables are statistically significant.

Distinct Statistical and Machine-Learning Cultures

Linear regression is by far the most popular method for evaluating panel data. The
dominant statistical culture giving rise to this method assumes that data stem from a
specific type of stochastic model (Breiman 2001). Machine learning represents a
competing algorithmic culture (Breiman 2001). The suspension of assumptions regard-
ing the generation and distribution of data opens the door to algorithms beyond
generalized linear methods (Breiman 2001). The algorithmic culture seeks greater
accuracy and deeper understanding of data at any scale.

The no‐free‐lunch theorem holds that it is impossible to know in advance which
machine-learning model is best suited to a particular dataset (Wolpert 1996). Conse-
quently, the most practical approach lies in applying as many methods as feasible.
Though economics has been slow to accept machine learning, economists should draw
liberally from either side of the cultural divide between statistical and algorithmic
traditions (Athey and Imbens, 2019).

Because machine-learning alternatives to linear regression are so easily implement-
ed, the practical case for combining statistical and algorithmic methods becomes even
more compelling. Panel data, once rendered in a two-dimensional format compatible
with Excel or statistical software such as Stata or SPSS, can be exported as comma-
separated values (CSV). Data in CSV format can be imported into Python and put

Table 2 OLS model of the Boston housing dataset (based on a train/test split)

Variable Beta coefficient Significance: p <0.001: ***; 0.01: **; 0.05: *; 0.10, +:

CRIM −0.120264 **

ZN 0.150448 ***

INDUS 0.029518

CHAS 0.074704 *

NOX −0.280434 ***

RM 0.221709 ***

AGE 0.021906

DIS −0.352755 ***

RAD 0.299396 ***

TAX −0.202809 *

PTRATIO −0.239119 ***

B 0.063051 +

LSTAT −0.452595 ***

Source: Author’s own calculations based on data from the Boston housing dataset on SciKit-Learn (Python
2021)
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immediately to work, with minimal preprocessing, in every machine-learning model
evaluated in this paper.

Dendrological Methods: Decision Trees and Forests

The classification and regression tree (CART) algorithm supports a dazzling constel-
lation of methods (Breiman et al., 1984; Loh 2008). Decision trees and their stochastic
ensembles (or forests) may be known by the fanciful name, dendrological machine
learning.

Because its predictions are not rigidly linear, dendrological machine learning often
outperforms linear regression. All dendrological algorithms are robust in the presence
of outliers. These algorithms are also quite forgiving of misspecified models. The
inclusion of weakly predictive or even non-predictive variables rarely weakens a
decision tree or forest ensemble.

Bifurcating the data according to values for each independent variable generates a
decision tree predicting the average price per house in each of Boston’s 506 census
tracts. This basic machine-learning model instantly improves r2 relative to the OLS
baseline. r2 for the training set improves from 0.716806 to 0.920483. More
importantly, test set r2 improves by nearly +0.10 from 0.778941 to 0.876399.

However, dendrological methods are incompatible with conventional tests of statis-
tical significance. Machine-learning theorists debate the relative merits of less accurate
but readily interpreted white box models and more accurate but heuristically opaque
black box models (Rudin 2019). Methodological diversity generates a subtler gray
spectrum of solutions offering different mixtures of accuracy and interpretability
(Pintelas et al., 2020). In practice, different applications will demand blends of white
and black box models (Loyola-González 2019).

Decision trees and ensembles of trees do quantify the contribution of each predictive
variable. Tree-based methods in SciKit-Learn report feature importances, a vector of
values reporting each regressor’s contribution to the model’s predictions (Géron 2019,
pp. 198–199). Feature importances represent “a weighted average, where each node’s
weight” in a decision tree or across all trees in a forest “is equal to the number of
training samples that are associated with it” (Géron 2019, p. 198). Like any other vector
of probabilities, their sum is always 1.

Feature importances most closely resemble standardized regression coefficients (or
beta coefficients) in conventional statistics (Newman and Browner, 1991), whose use in
causal inference is itself controversial (Greenland et al., 1986). Feature importances do
differ in a crucial way. Whereas beta coefficients can be positive, negative, or zero,
feature importances are invariably non-negative. Consequently, they convey no infor-
mation regarding the positive or negative correlation between a predictor and the target
variable.

Figure 1 reports feature importances for the core CART model. The number of
residents of lower socioeconomic status and the average number of rooms per house
account for more than 84% of the predictive power of a basic decision tree within the
Boston housing dataset.

An Introduction to Machine Learning for Panel Data 5



The Bias-Variance Tradeoff

A brief interlude on the bias-variance tradeoff serves as a prelude to an exploration of
ways to enhance the accuracy of the CART algorithm. The tension between bias and
variance arises from an intrinsic property of supervised machine learning. Greater
inaccuracy, or bias, in the estimates of model parameters can reduce the variance
among parameter estimates across samples (Kohavi and Wolpert, 1996). The bias-
variance tradeoff holds the key to the application of machine learning beyond the data
on which these algorithms have been trained (Geman et al., 1992). Since it “is
impossible to simultaneously achieve the lowest possible variance and bias,” the
“challenge is to generate a model with (reasonably) low variance and low bias” as
the approach “most likely to generalize well to external sets” (Dankers et al., 2019, p.
107).

Bias refers to a method’s overall accuracy, particularly in training. Excessive bias
yields a model that underfits its data. As often happens with polynomial variants of
generalized linear methods, highly accurate models do not provide reliable results
unless they generalize well to new, unseen data. High-variance models tend to overfit
training data. Therefore, variance affects the generalizability and consistency of results
with new data. At optimal complexity, a model strikes the ideal balance between
underfitting and overfitting data.

Hyperparameter Tuning

Most machine-learning models reconcile bias and variance through hyperparameter
testing. Hyperparameters set the rate at which a machine-learning model learns or the

Fig. 1 Feature Importances generated by the CART decision tree algorithm. Source: Author’s own calcula-
tions based on data from the Boston housing dataset on SciKit-Learn (Python 2021)
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number of splits within a decision tree. In practice, many machine-learning models
offer a daunting list of adjustable hyperparameters. If these settings are not properly
tuned, a machine-learning model may fall far short of its predictive potential. Ways to
explore a potentially vast hyperparameter space include grid search and random search
(Müller and Guido, 2017, pp. 267–282).

Training, Validation, and Test Data

Hyperparameter tuning presents a further challenge: Tuning can consume almost all
available data. Sufficiently large datasets provide the luxury of a three-way split
between training, validation, and test subsets. For example, the Modified National
Institute of Standards and Terminology (MNIST) dataset of handwritten digits (a vital
contributor to optical character recognition) is divided into 60,000 observations for
training, 10,000 for validation, and 10,000 for testing (Kussul and Baidyk, 2004). An
intermediate validation subset enables machine learning to strike the optimal balance
between bias and variance before optimized hyperparameters are applied to the final
holdout subset of test data.

With 506 observations, the Boston housing dataset is relatively small. One way to
test different hyperparameters without contaminating the training process is k-folds
cross-validation (Müller and Guido, 2017, pp. 258–267). The division of training data
into k subsets enables the use of each of those folds as a synthetic validation set without
data leakage.

Ensemble and Boosting Methods

Bagging and Pasting

The simplest way to diversify the results of a decision tree is to sample training
instances, either with or without replacement. Bagging, short for bootstrap aggregation,
samples with replacement (Breiman 1996; pasting samples without replacement,
Breiman 1999). Because 1/e of any dataset will escape sampling even if an infinite
number of samples are drawn (Géron 2019, p. 195 & footnote 6), the out-of-bag subset
of training instances not chosen in bagging provides additional validation of a decision
tree’s generalizability to previously unobserved data.

Bagging improves both the training and the test performance of the decision tree
algorithm on the Boston housing dataset. Training r2 improves from 0.920483 to
0.941659, and test r2 from 0.876399 to 0.900210. The loss of accuracy in the out-of-
bag score relative to the test score, from 0.900210 to 0.854082, counsels some caution
in the interpretation of these results.

Random Forests and Extra Trees

Ensemble and boosting methods aggregate numerous decision trees. This broad and
diverse class of methods includes random forests, extremely randomized trees (extra
trees), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting
(XGBoost). All of these methods use the same syntax within SciKit-Learn’s application
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programming interface. Code for one method applies, with slight modifications, to all
others.

Random forests may be the simplest of ensemble methods (Ho 1995). Instead of
searching for the best feature when splitting a node, random forests search for the best
feature within a random subset. They require the tuning of only two hyperparameters:
the maximum number of features in a randomized tree, plus the maximum depth of
each tree. Randomizing the thresholds for each feature, as opposed to searching for the
optimal threshold, yields an even more stochastic algorithm called extremely random
trees, or extra trees (Geurts et al., 2006).

Adaptive and Gradient Boosting

Boosting represents a special class of ensembles that combine weak learners into a
strong learner (Drucker and Cortes, 1996). Each step in the sequential training of
predictors seeks to correct mistakes made by its predecessor (Géron 2019, p. 199).

The AdaBoost algorithm relies upon decision stumps, or decision trees truncated
after a single split (Freund and Schapire, 1997). After each training instance, AdaBoost
updates weights for each predictor (Freund and Schapire, 1997). Sequential learning
makes it difficult to implement AdaBoost through parallel computing and to scale it to
larger datasets (Géron 2019, p. 201).

The gradient boosting algorithm also adds predictors sequentially to an ensemble.
Rather than adjusting the weights for each instance, as AdaBoost does, gradient
boosting fits each new predictor to the previous predictor’s residual errors (Breiman
1998a, 1998b; Friedman 2001). Hyperparameters in gradient boosting control the
ensemble’s learning rate as well as the depth and growth of decision trees within the
ensemble (Géron 2019, p. 204).

Machine learning offers many variants of gradient boosting. XGBoost overcomes
limits on speed and scalability that have plagued other boosting algorithms (Chen and
Guestrin, 2016). Training on random subsamples yields stochastic gradient boosting,
which trades higher bias for lower variance and faster training (Friedman 2002).

Support Vector Machines and Neural Networks

Decision trees and ensemble methods do not exhaust the machine-learning arsenal.
Though support vector machines and neural networks deserve extensive examination in
their own right, this article considers them for a very simple and practical reason. Panel
data preprocessed for evaluation by trees, forests, and boosting methods in SciKit-
Learn can be fed, with no further modifications, into a support vector machine and a
multilayer perceptron.

Support vector machines and neural networks represent two very different ap-
proaches to machine learning. Better suited for small- to medium-sized datasets,
support vector machines are versatile enough to handle tasks such as classification,
error and fraud detection, and even clustering, a form of unsupervised learning beyond
the reach of most other supervised methods (Ben-Hur et al., 2001). Neural networks
supply the muscle behind ambitious applications of computer vision, natural language
processing, reinforcement learning, and robotics. Both methods perform regression
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tasks easily (Drucker et al., 1997; Murtagh 1991). SciKit-Learn implements two
support vector machines and a multilayer perceptron for regression.

Results

CART and bagging delivered test and out-of-bag r2 scores from 0.854 to 0.900. These
basic methods produced a considerable improvement over the r2 of 0.779 that linear
regression attained. Table 3 combines these results with those from more advanced
ensemble and boosting methods, as well as results from SciKit-Learn’s support vector
machine and multilayer perceptron.

In Table 3, the columns of test results are more informative than the training
columns. r2 and the root mean square error (RMSE) scores improve as the models
progress in complexity from linear regression through trees and forests and ultimately
the multilayer perceptron.

All machine-learning models exceeded the accuracy of the baseline linear regression
model. Random forest, extra trees, and XGBoost, typical of ensembles and boosting
models, outperformed the basic CART model and its first-order improvement through
bagging. The support vector machine and multilayer perceptron were even more
accurate.

As impressive as gains of +0.10 to +0.16 in r2 are, reducing RMSE by 37 to 48%
represents an even greater improvement. Relative to OLS, the best machine-learning
methods cut each prediction’s average error by nearly one-half. Figures 2, 3, 4, and 5
depict improvements along the ladder of model-based complexity from linear regres-
sion to the CART decision tree, ensemble learning and boosting, the support vector
machine, and the multilayer perceptron.

Table 3 Summary of machine-learning results on the Boston housing dataset

Training Test

Model r2 RMSE r2 RMSE

Linear 0.716806 0.532160 0.778941 0.525247

Decision tree 0.920483 0.281988 0.876399 0.392754

Bagging 0.941659 0.241539 0.900210 0.352901

Random forest 0.981473 0.136114 0.912558 0.330347

Extra trees 0.997930 0.045500 0.916564 0.322691

XGBoost 0.998408 0.039894 0.912709 0.330061

Support vector machine 0.945452 0.233555 0.924545 0.306870

Multilayer perceptron 0.954146 0.214135 0.939349 0.275124

Source: Author’s own calculations based on data from the Boston housing dataset on SciKit-Learn (Python
2021)
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Discussion

Vastly improved accuracy alone justifies the application of machine learning to panel
data. Dendrological models can be interpreted alongside linear regression. Machine
learning’s superior handling of data also counsels reconsideration of conventional
approaches to outliers.

Bagging Random Forest

Fig. 3 Boston housing dataset – Bootstrap aggregation (bagging) and random forest. Notes: In the bagging
model, Train: r2 = 0.941659 and RMSE = 0.241539. Test: r2 = 0.900210 and RMSE= 0.352901. In the
random forest model, Train: r2 = 0.981473 and RMSE = 0.136114. Test: r2 = 0.912558 and RMSE =
0.330347. Source: Author’s own calculations based on data from the Boston housing dataset on SciKit-
Learn (Python 2021)

Linear Regression CART Decision Tree

Fig. 2 Boston housing dataset –Linear regression and CART decision tree. Notes: In the linear regressionmodel,
Train: r2 = 0.716806 and RMSE= 0.532160. Test: r2 = 0.778941 and RMSE= 0.525247. In the CART decision
tree model, Train: r2 = 0.920483 and RMSE= 0.281988. Test: r2 = 0.876399 and RMSE= 0.392754. Source:
Author’s own calculations based on data from the Boston housing dataset on SciKit-Learn (Python 2021)
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Interpretability through Feature Importances

Support vector machines and neural networks are black boxes, notoriously hard to
express or interpret in terms comparable to the sign and scale of coefficients in a linear
or polynomial model. However, random forests, XGBoost, and extra trees report
feature importances based on the probability that an independent variable affects a

Extra Trees XGBoost

Fig. 4 Boston housing dataset – Extra trees and XGBoost. Notes: In the extra trees model, Train: r2 =
0.997930 and RMSE = 0.045500. Test: r2 = 0.916564 and RMSE = 0.322691. In the XGBoost model, Train:
r2 = 0.998408 and RMSE = 0.039894. Test: r2 = 0.912709 and RMSE= 0.330061. Source: Author’s own
calculations based on data from the Boston housing dataset on SciKit-Learn (Python 2021)

Support Vector Machine Multilayer Perceptron

Fig. 5 Boston housing dataset – Support vector machine and multilayer perceptron. Notes: In the support
vector machine model, Train: r2 = 0.945452 and RMSE= 0.233555. Test: r2 = 0.924545 and RMSE=
0.306870. In the multilayer perceptron model, Train: r2 = 0.954146 and RMSE= 0.214135. Test: r2 =
0.939349 and RMSE = 0.275124. Source: Author’s own calculations based on data from the Boston
housing dataset on SciKit-Learn (Python 2021)
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prediction. These vectors can be interpreted, even though they cannot convey addition-
al information embedded in the sign of standardized regression coefficients.

Figures 6, 7, and 8 report the feature importance of three ensemble and boosting
models. According to Fig. 6, the random forest model assigns nearly 80% of its
predictive weight to the two variables that dominate the CART model: Each census
tract’s proportion of residents having lower socioeconomic status and the average
number of rooms per house. XGBoost, shown in Fig. 7, assigns nearly as much weight
(roughly 75%) to those variables. In each of these models, weighted distance to five
employment centers trails badly in third place, adding less than 10% of total predictive
weight. In contrast, the slightly more accurate extra trees model assigns more balanced
feature importances to socioeconomic status and rooms per house. Figure 8 places these
weights at roughly 0.30 and 0.26, respectively.

Strikingly, these machine-learning models’ feature importances challenge the pre-
mises underlying the original Boston housing study. Harrison and Rubinfeld (1978)
conjectured that housing prices would reflect the negative impact of air pollution. In
feature importances reported by random forests and XGBoost, nitrogen oxide levels as
a proxy for pollution lagged behind other variables, scarcely reaching 3% in predictive
ability. Extra trees assigned less than 7% in predictive importance to nitrogen oxide.

The contrast between feature importances and linear coefficients casts doubt upon
the illusory clarity of OLS regression. The linear model supported the original hypoth-
esis that real estate prices reflect the negative impact of pollution. Feature importances
reduce the weight otherwise attributable to this factor. Many experts might agree that
average home size and a neighborhood’s character, as a thinly disguised euphemism for
the presence of poor people, have a greater impact on home prices. To the extent that
pollution does affect housing prices, its impact may reflect environmental racism, or the
tendency with which pollution is directed toward nonwhite inhabitants (Bullard 2001).
Machine learning thus sharpens inferences from more traditional predictive methods
and from expert human judgment.

Fig. 6 Feature importances for the random forest model. Source: Author’s own calculations based on data
from the Boston housing dataset on SciKit-Learn (Python 2021)

Chen J.M.12



Treatment of Outliers in Light of Lessons from Machine Learning

Machine-learning algorithms are not simply more accurate. As Fig. 2 shows, their
superior performance is most pronounced among extreme observations. Machine
learning outperforms linear regression in predicting prices in Boston’s most expensive
neighborhoods. Data that traditional methods might otherwise discard as outliers
become more tractable.

Traditional statistics uses numerous devices to manage purported outliers. Trimming
crudely discards data beyond points presumed to be too extreme (Clarke 1994; Lusk
et al., 2011). Slightly less destructive winsorizing clips outliers at an arbitrary level and

Fig. 8 Feature importances for the extra trees model. Source: Author’s own calculations based on data from
the Boston housing dataset on SciKit-Learn (Python 2021)

Fig. 7 Feature importances for the XGBoost Model. Source: Author’s own calculations based on data from
the Boston housing dataset on SciKit-Learn (Python 2021)
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assigns the corresponding minimum or maximum value (Dixon 1960; Hastings et al.,
1947; Tukey 1962).

In contrast, the intrinsic robustness of machine learning counsels the retention of all
data. Machine learning has revealed “the unreasonable effectiveness of data” (Halery
et al., 2009, p. 9). Given sufficient data, very different algorithms attain almost identical
results on complex problems such as natural language disambiguation (Banko and
Brill, 2001). Performative convergence despite differences in algorithmic complexity
suggests the primacy of data over theoretical elaboration and experimental design.
“[I]nvariably, simple models and a lot of data trump more elaborate models based on
less data” (Halery et al., 2009, p. 9).

A key corollary of the unreasonable effectiveness of data is a systematic preference
in machine learning for retaining all data as observed, with neither trimming nor
winsorizing. The unreasonable-effectiveness hypothesis neutralizes concerns “about
the curse of dimensionality and overfitting of models to data” (Halery et al., 2009, p. 9).
Machine learning disfavors the discarding of observations at either extreme, because
the phenomena of greatest economic interest “consist[] of individually rare but collec-
tively frequent events” (Halery et al., 2009, p. 9).

Conclusion

Machine learning can dramatically improve accuracy in predictions based on panel
data. Models based on decision trees report feature importances that enable these black
boxes to be interpreted in ways akin to coefficients and signs in linear regression. Once
data have been properly split into training, validation, and test sets and scaled for
machine learning, researchers should apply all feasible machine-learning models,
without trimming or winsorizing the data.

The primary limitation of machine learning is its lack of interpretive clarity. Unless
based on CART or a (boosted) ensemble of decision trees, machine-learning methods
are effectively black boxes. Even feature importances generated by dendrological
methods cannot convey information associated with the sign of coefficients and
correlations in linear models.

The choice between conventional linear methods and machine-learning alternatives
hinges on this balance between accuracy and interpretability. This tradeoff in deploy-
ment parallels the balance between bias and variance in the tuning of machine-learning
models. In applications or circumstances emphasizing predictive accuracy, machine
learning may dominate conventional regression.

Datasets that are inherently difficult to interpret within linear models may benefit from
immediate resort to machine learning. For instance, highly heteroskedastic data are
inherently opaque (Glejser 1969; Rigobon 2003). Machine learning can overcome uneven
variability within predictors, especially in time-series forecasting (Hassan et al., 2013).
Because even basic methods work well, perhaps even optimally, in high-dimensional
settings, machine learning may even transform the curse of dimensionality (Taylor 1993;
Trunk 1979) into an affirmative blessing (Gorban and Tyukin, 2018; Gorban et al., 2020).

In contrast, where the sign and scale of regression coefficients matter more than
predictive accuracy, machine learning might best play an ancillary role. At a minimum,
machine-learning deployments should include at least one generalized linear model and
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exploratory data analysis so that information such as positive and negative correlations
and confidence intervals can be obtained. In these settings, feature importances should
be regarded as complements for linear coefficients (whether standardized or not), rather
than substitutes.

Ultimately, the difference between cases where generalized linear methods dominate
machine learning or vice versa is not mathematical. Rather, the preference for one class
of methods versus the other is practical. By and large, OLS and other linear methods
offer superior interpretability, while machine learning promises, and typically delivers,
superior accuracy.

References

Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual
Review of Economics, 11, 685–725.

Banko, M. & Brill, E.D. (2001). Scaling to very, very large corpora for natural language disambiguation.
Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp. 26–33.
https://www.aclweb.org/anthology/P01-1005/

Ben-Hur, A., Horn, D., Siegelmann, H., & Vapnik, V. D. (2001). Support vector clustering. Journal of
Machine Learning Research, 2, 125–137.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(3), 123–140.
Breiman, L. (1998a). Arcing classifiers. Annals of Statistics, 26, 801–824.
Breiman, L. (1998b). Arcing the edge. Annals of Probability, 26, 1683–1702.
Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning,

36(1), 85–103.
Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16, 199–231.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New

York: Chapman & Hall/CRC.
Bullard, R. D. (2001). Environmental justice in the 21st century: Race still matters. Phylon, 49(3/4), 151–171.
Chen, T. & Guestrin, C.E. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
https://doi.org/10.1145/2939672.2939785

Clarke, B. R. (1994). Empirical evidence for adaptive confidence intervals and identification of outliers using
methods of trimming. Australian Journal of Statistics, 36, 45–58.

Dankers, F. J. W. M., Traverso, A., Wee, L., & van Kuijk, S. M. J. (2019). Prediction modeling methodology.
In P. Kubben, M. Dumontier, & A. Dekker (Eds.), Fundamentals of clinical data science (pp. 101–120).
Cham: Springer.

Dixon, W. J. (1960). Simplified estimation from censored normal samples. Annals of Mathematical Statistics,
31(2), 385–391.

Drucker, H., & Cortes, C. (1996). Boosting decision trees. Advances in Neural Information Processing
Systems, 8, 479–485.

Drucker, H., Burges, C. C., Kaufman, L., Smola, A. J., & Vapnik, V. N. (1997). Support vector regression
machines. Advances in Neural Information Processing Systems, 9, 155–161.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and its
application to boosting. Journal of Computer and System Sciences, 55, 119–139.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29,
1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38, 367–
378.

Geman, S., Bienenstock, É., & Doursa, D. (1992). Neural networks and the bias/variance dilemma. Neural
Computation, 4, 1–58.

Géron, A. (2019). Hands-on machine learning with SciKit-learn, Keras & TensorFlow: Concepts, tools, and
techniques to build intelligent systems. Sebastopol: O’Reilly.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3–42.

An Introduction to Machine Learning for Panel Data 15

https://doi.org/https://www.aclweb.org/anthology/P01-1005/
https://doi.org/10.1145/2939672.2939785


Glejser, H. (1969). A new test for heteroskedasticity. Journal of the American Statistical Association, 64, 316–
323.

Gorban, A. N., & Tyukin, I. Y. (2018). Blessing of dimensionality: Mathematical foundations of the statistical
physics of data. Philosophical Transactions of the Royal Society A, 376(2118), 20170237.

Gorban, A. N., Makarov, V. A., & Tyukin, I. Y. (2020). High-dimensional brain in a high-dimensional world:
Blessing of dimensionality. Entropy, 22(1), 82.

Greenland, S., Schlesselman, J. J., & Criqui, M. H. (1986). The fallacy of employing standardized regression
coefficients and correlations as measures of effect. American Journal of Epidemiology, 123, 203–208.

Halery, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE Intelligent Systems,
24(2), 8–12.

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of
Environmental Economics and Management, 5, 81–102.

Hassan, M., Hossny, M., Nahavandi, S. & Creighton, D. (2013). Quantifying heteroskedasticity using slope of
local variances index. 2013 UKSim 15th International Conference on Computer Modelling and
Simulation, pp. 107–111. https://doi.org/10.1109/UKSim.2013.75.

Hastings, C., Mosteller, F., Tukey, J. W., & Winsor, C. P. (1947). Low moments for small samples: A
comparative study of order statistics. Annals of Mathematical Statistics, 18, 413–426.

Ho, T.K. (1995). Random decision forests. Proceedings of 3rd International Conference on Document
Analysis and Recognition, 1, 278–282.

Kohavi, R. &Wolpert, D.H. (1996). Bias plus variance decomposition for zero-one loss functions. ICML ‘96:
Proceedings of the Thirteenth International Conference on International Conference on Machine
Learning, pp. 275–283. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4661

Kussul, E., & Baidyk, T. (2004). Improved method of handwritten digit recognition tested on MNIST
database. Image and Vision Computing, 22(12), 971–981.

Loh, W.-Y. (2008). Classification and regression tree methods. In F. Ruggeri, R. S. Kennet, & F. W. Faltin
(Eds.), Encyclopedia of statistics in quality and reliability (pp. 315–323). Hoboken: Wiley.

Loyola-González, O. (2019). Black-box vs. white-box: Understanding their advantages and weaknesses from
a practical point of view. IEEE Access, 7, 154096–154113.

Lusk, E. J., Halperin, M., & Heilig, F. (2011). A note on power differentials in data preparation between
trimming and Winsorizing. Business Management Dynamics, 1(2), 23–31.

Miller, T. W. (2015).Marketing data science: Modeling techniques in predictive analytics with R and Python.
Old Tappan: Pearson Education.

Müller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: A guide for data scientists.
Sebastopol: O’Reilly.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2, 183–197.
Newman, T. B., & Browner, W. S. (1991). In defense of standardized regression coefficients. Epidemiology,

2, 383–386.
Pintelas, E., Livieris, I. E., & Pintelas, P. (2020). A grey-box ensemble model exploiting black-box accuracy

and white-box intrinsic interpretability. Algorithms, 13(1), 17.
Python (2021). SciKit-Learn library. https://scikit-learn.org/stable/index.html (visited January 14, 2021).
Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85, 777–

792.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead. Nature Machine Intelligence, 1, 206–215.
Taylor, C. R. (1993). Dynamic programming and the curses of dimensionality. In C. R. Taylor (Ed.),

Applications of dynamic programming to agricultural decision problems (pp. 1–10). New York:
Westview Press.

Trunk, G. V. (1979). A problem of dimensionality: A simple example. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-1(3), 306–307.

Tukey, J. W. (1962). The future of data analysis. Annals of Mathematical Statistics, 33, 1–67.
Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8,

1341–1390.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Chen J.M.16

https://doi.org/10.1109/UKSim.2013.75
https://doi.org/https://www.aclweb.org/anthology/P01-1005/
https://doi.org/https://www.aclweb.org/anthology/P01-1005/

	An Introduction to Machine Learning for Panel Data
	Abstract
	Introduction
	Data: The Boston Housing Study
	Splitting and Scaling

	Distinct Statistical and Machine-Learning Cultures
	Dendrological Methods: Decision Trees and Forests
	The Bias-Variance Tradeoff
	Hyperparameter Tuning
	Training, Validation, and Test Data

	Ensemble and Boosting Methods
	Bagging and Pasting
	Random Forests and Extra Trees
	Adaptive and Gradient Boosting
	Support Vector Machines and Neural Networks

	Results
	Discussion
	Interpretability through Feature Importances
	Treatment of Outliers in Light of Lessons from Machine Learning

	Conclusion
	References


