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Abstract EcoPlate quantifies the ability of a microbial
community to utilize 31 distinct carbon substrates, by
monitoring color development of microplate wells during
incubation. Well color patterns represent metabolic
profiles. Previous studies typically used color patterns
representing average values of three technical replicates
on the final day of the incubation and did not consider
substrate chemical diversity. However, color fluctuates
during incubation and color varies between replicates,
undermining statistical power to distinguish differences
among samples in microbial functional composition and
diversity. Therefore, we developed a protocol to improve
statistical powerwith twoapproaches. First,we optimized
data treatment for color development during incubation

and technical replicates. Second, we incorporated chem-
ical structural information for the 31 carbon substrates
into the computation.Our framework implemented as the
protocol in the R environment is able to compare the
statistical power among different calculation methods.
When we applied it to data from aquatic microcosm and
forest soil systems, we observed substantial improvement
in statistical power when we incorporated temporal pat-
terns during incubation instead of using only endpoint
data. Using maximum or minimum values of technical
replicates also sometimes gave better results than aver-
ages. Incorporating chemical structural information
based on fuzzy set theory could improve statistical power
but only when relative color density information was
considered; it was not seen when the pattern was first
binarized into the presence or absence of metabolic
activity. Finally,wediscuss research directions to improve
these approaches and offer some practical considerations
for applying our methods to other datasets.
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Introduction

Various community profiling methods have been devel-
oped to understand ecological structures and functions.
DNA-based profiling techniques offer advantages for
characterizing the species composition of a community
(Woese et al. 1990; Giovannoni and Stingl 2005; Mina-
moto et al. 2012), whereas RNA-based methods allow
the evaluation of active genes in the ecosystem (Baldwin
et al. 2001; Moran 2015). Other profiling methods
broaden understanding of the in situ ecological and
ecosystem functions based on metabolic activities. These
latter methods include community-level physiological
profiling using the commercially available BIOLOGTM

microplate (Preston-Mafham et al. 2002), quantifying
multiple enzyme activities (Osono 2007; Siggins et al.
2012), and chemical profiling of plant secondary
metabolites, such as defense chemicals and volatiles
(Kuhlisch and Pohnert 2015). Common features of the
datasets employed by these methods are that they are
multivariate and used for calculating similarity (Ander-
son et al. 2011) and diversity indices (Petchey and
Gaston 2006; Villeger et al. 2008; Laliberte and Legen-

dre 2010). Standard statistical indices and methods have
been developed to extract ecological patterns (signa-
tures) in some fields, including metacommunity (Pillar
and Duarte 2010), microbial ecology (Ramette 2007;
Lozupone et al. 2011), chemical ecology (Kuhlisch and
Pohnert 2015), and biodiversity estimation (Legendre
and Gallagher 2001; Chao et al. 2014).

The statistical analysis of microbial metabolic profiling
using BIOLOGhas not been standardized (but see Garland
et al. 2007), despite increasing use of this method for eval-
uating functional composition andmultifunctionality (Miki
et al. 2014 and references therein). BIOLOG EcoPlate (Bi-
olog, Hayward, CA, USA) is generally used to measure the
ability of a bacterial community to utilize carbon substrates
(Choi andDobbs 1999).AnEcoPlate is a 96-wellmicroplate
composed of triplicates of 31 response wells with different
sole carbon sources (along with three blank wells as con-
trols). Utilization of each carbon source is quantified by
color development in each well (Fig. 1a). The pattern of
color development is treated as multivariate (e.g. functional
composition) but can be converted to univariate (e.g.
threshold-based multifunctionality) (Byrnes et al. 2014).

EcoPlate color development patterns are highly
variable due to variability in initial species composition,
variability in initial community size (inoculum size), and
temporal shifts in color development pattern (Fig. 1a)
and species composition (Konopka et al. 1998; Preston-
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Fig. 1 Examples of EcoPlate color development and its time evolution. a Example of temporal shifts in color development by EcoPlate.
b Color development normalized by blank wells. Data were from a forest soil sample obtained in July 2015
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Mafham et al. 2002; Stefanowicz 2006) during incuba-
tion. Due to its small volume (100 lL/well), the com-
munity size can be less than 10,000 individuals/well,
which is a source of nonnegligible stochasticity in initial
species composition among the 96 wells in a plate. This
situation could result in variation of color development
among triplicates of an identical substrate within a plate
(Zhou et al. 2013). Scientists tend to use the average
value from the triplicate to reduce uncertainty; however,
this averaging process may lead to loss of the ecological
signature. Even with identical species composition, the
difference in initial community size should affect color
development (Lawley and Bell 1998; Preston-Mafham
et al. 2002). The standard protocol recommends nor-
malizing the color of each well by the average well color
development (AWCD) (Garland et al. 2007). However,
the AWCD itself could be an ecological indicator of
microbial function, such that normalization may lead to
some loss of signature.

In addition, temporal shifts of species composition as
well as physicochemical conditions (e.g. oxygen concen-
tration, pH, and nutrient concentration) during incubation
add uncertainty and difficulty in interpreting the results. A
practical solution would be to incubate all samples at
common and relatively warm temperatures within a lim-
ited period; then, the developed color could be regarded as
the potential of the in situ species composition. However,
this approach could introduce new bias, because incuba-
tion under a common temperature would obscure the
temperature-dependent response of the community at the
in situ temperature. This problem is linked to another
concern, regarding when and how we should evaluate
color density (see Fig. 1b). Even if the final color density is
similar, the rate to reach the maximum depends on the
substrate. Some studies recommend fitting a logistic
growth curve and evaluating the slope of the growth and
the maximum color density (Garland et al. 2007; Muniz
et al. 2014). However, this approach is computationally
intensive and might lead to some loss of ecological signa-
ture owing to the need to fit a smooth curve.

Another issue regards whether it is ecologically rele-
vant to treat color development from the 31 carbon
substrates independently. The 31 substrates can be cat-
egorized into several distinct groups, such as amino
acids, carbohydrates, and polymers (Hai et al. 2016).
More specifically, some substrates are closely related to
each other according to metabolic pathways or genes
involved. Or more simply, the similarity in terms of
chemical structure may act as a simple proxy for meta-
bolic similarity. It is expected that bacteria respond
more similarly to the substrates with higher metabolic
similarity. Therefore, such dissimilarities among sub-
strates should be incorporated into differences in pro-
filing patterns, analogous to phylogenetic profiling. For
example, the Unifrac distance (Lozupone et al. 2011)
considers the evolutionary distance (on phylogenetic
trees) between species when evaluating the dissimilarity
of community composition. Such a method remains
unexplored for BIOLOG profiling patterns.

In this study, we focused on two questions. (1) How
to identify the best method for profiling the color
development pattern from 96-well microplates? (2) How
is the information of chemical structure of carbon sub-
strates incorporated, and does such incorporation im-
prove the profile of microbial functions? For the first
question, we compared results without using time-series
data (using data from the final day of incubation only)
to results obtained with time-series data (integrating
color development or taking the maximum value along
the time evolution). In addition, we compared perfor-
mances of three metrics (maximum, minimum, and
average) using triplicate measurements. We hypothe-
sized that using information along the time evolution of
color would improve the quantification. For the second
question, assuming that chemical structure similarity is a
proxy of metabolic similarity, we weighted the EcoPlate
patterns (Dixon 2003) using dissimilarity between car-
bon substrates, which we calculated based on chemical
structure using chemoinformatic tools (Guha 2007). We
hypothesized that including chemical dissimilarity would
improve quantification. Our objective is to illustrate a
framework allowing identify the best method for pro-
filing the color development pattern for a given dataset
from the 96-well microplate.

To illustrate our framework, we used two datasets:
field soil and aquatic microcosm systems. The basic idea
for the evaluation was to compare the explanatory power
(R2 values) under the same statistical model, Y � X1 +
X2 +…, where Xk is an explanatory variable (tempera-
ture or treatment) and Y is the univariate or multivariate
index calculated from EcoPlate patterns (e.g. multifunc-
tionality or functional composition). With different cal-
culation methods, we had different Y value sets, which
allowed comparison of explanatory power. Our frame-
work should be generalizable to other datasets.

Methods

Data source

Forest soil experiments

We collected soil samples from a pure Moso bamboo
stand in the National Taiwan University Experimental
Forest (23.6667N, 120.7833E), located in central Taiwan.
Three trenching plots (1 m · 1 m) along a 400-m2 plot
within the bamboo standwere established in January 2013
(Lin et al. 2017). Connections between living roots and
aboveground parts of the plot were cut off, and regrowth
of new root into the trenched plots was prevented.

To assess the seasonality of soil microbial function, we
collected soil samples in different months as representative
of different seasons: December 2014 for winter (dry peri-
od), March and May 2015 for early and late spring,
respectively (aboveground growing season), and July 2015
for summer. Soil was sampled from the upper layer
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(0–10 cm deep) with the soil core, litter was removed (if
present), and mixed well to reduce the heterogeneity of
microbial community composition. One core was collected
from each trenching plot, and three cores in total were
collected. Three cores also were collected from a control
plot outside the trenching plots. We prepared 1:1000
dilutions from 5-g subsamples, inoculated the EcoPlate
with these diluted subsamples, incubated the plates at
in situ temperature, and conducted daily measurements up
to 30 days. Detailed methods are available in Electronic
Supplementary Material (ESM1; Additional methods A)
and Hsieh et al. (2016).

Aquatic microcosm experiments

Aquatic microcosm experiments were detailed in Miki
et al. (2014). We used 20 isolated bacteria strains from a
eutrophic pond (33.8698N, 132.7718E, Matsuyama, Ja-
pan), which were isolated by R2A agar plates, to test the
effect of initial species loss (from 20 strains to 19 strains)
on bacterial multifunctionality under the controlled
environment; we did not intend to reconstruct any in situ
bacterial community in the pond. We prepared control
microcosms with 20 isolates and microcosms with 19
isolates (representing 20 species combinations). We
predicted the gene compositions for every microcosm
using phylogenetic information of these 20 isolates. For
EcoPlate incubation, concentration of each isolate was
around 103 cells per 100 lL, and the total concentration
of each well was around 104 cells per 100 lL. In this
study, the time series of EcoPlate color development
pattern was not available; we measured the pattern on
the final (seventh) day of the incubation only.

BIOLOG: EcoPlate

The first step was to inoculate samples into the BIOLOG
EcoPlate, either as aqueous samples or after suspension.
Utilization of each carbon source during incubation was
coupled with the conversion of triphenyl tetrazolium chlo-
ride to triphenyl formazan (TPF), such that carbon utiliza-
tion could be quantified by the color development of TPF in
each well. Color absorbance of eachwell was determined by
the optical density at 595 nmby using themicroplate reader
(MultiskanFC, ThermoScientific).Detailed information of
the EcoPlate, including a list of the 31 carbon substrates, is
available at http://www.biolog.com/pdf/milit/00A_012_
EcoPlate_Sell_Sheet.pdf.

Data processing

Data from EcoPlate time-series

All of the following processes were conducted in the R
environment (ESM1: Additional methods B). Each plate
corresponds to one sample. One experiment consisted of

measurements on multiple days from each EcoPlate
sample (Fig. 2a). We had three options for methods to
quantify the signals from the experiment: the temporal
maximum, final endpoint, or temporal integration
method. For the temporal maximum method, we took
the average, maximum, or minimum value of the tripli-
cate from each substrate for each measurement day
(Fig. 2b). This option generated a matrix (Fig. 2c), with
rows representing different measurement days and col-
umns representing different substrates (i.e., con-
trol + 31 substrates = 32 values). For each substrate
(and control) in this matrix, we chose only the maximum
values among measurement days. This method yielded
32 values for further analyses (Fig. 2d).

For the final endpoint method, we took the mea-
surement taken on the final day of the incubation only,
ignoring all other data in the time series. This method
yielded 96 values (triplicates of 31 substrates + tripli-
cate of the control) (Fig. 2e). For the temporal integra-
tion method, we calculated the cumulative amount of
color development by integrating the color density
development curve. For normalization, we divided the
integrated value by the integration period. This method
yielded 96 values (Fig. 2e). For the final endpoint and
temporal integration methods, the next step was to take
the average, maximum, or minimum of the triplicate
values from 96 values, which finally resulted in 32 values
(Fig. 2f). In summary, we had nine vectors depending on
the calculation method (Fig. 2d, f).

Basis for multifunctionality and functional dissimilarity

We first normalized the color values of substrates by the
color values of the control by subtraction, converting 32
values (Fig. 2f) into 31 values for each sample. This
normalization was applied to all samples (in different
treatments and/or measurement campaigns), resulting in
a matrix of sample number · 31 substrates, EC (Fig. 3a),
for each calculation method. Thus, we had nine matrices
representing different ways of calculation, as explained
in Fig. 2.

EC was used to develop various matrices for com-
paring multifunctionality (functional diversity) and
functional dissimilarity among samples, with the goal of
understanding the effect of environmental factors on
these indices. One option was to convert EC to binary
matrix EB

C through quantile-based binarization (Byrnes
et al. 2014). When color density exceeded the quantile-
based threshold value T, the value was converted to 1
(presence of metabolism) or 0 otherwise (absence of
metabolism). This binarization step, which was neces-
sary to calculate quantile-based (integer) multifunc-
tionality (Byrnes et al. 2014), yielded a vector MF of
1 · sample number (Fig. 3b). Summing the non-zero
elements gave an integer (0–31) multifunctionality.

Alternative approaches were to calculate the func-
tional dissimilarity matrix DF from EB

C via the Jaccard
dissimilarity measure (Fig. 3c), or to keep the continu-
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ous values (EC) and calculate the functional dissimilarity
matrix (DF) via, for instance, the Bray–Curtis dissimi-
larity measure. As baseline for the analysis, we used
these univariate vectors and multivariate matrices, de-
noted as MFUW (unweighted multifunctionality), DFBUW

(binarized unweighted functional dissimilarity), and
DFUW (continuous unweighted functional dissimilarity)
(see ESM1: Additional methods C). These methods do
not incorporate chemical structural information of the
substrates and, thus, assume that the substrates are
independent and equally informative.

Chemical similarity and clustering trees

To incorporate chemical structural information, we
needed to calculate pairwise dissimilarities among the 31
carbon substrates (Willett et al. 1998; Nikolova and

Jaworska 2004; Consonni and Todeschini 2012; Todes-
chini et al. 2012; Floris et al. 2014). As the first step, we
downloaded the two-dimensional structural data of each
substrate (Fig. 4a) as an sdf file from the public database
PubChem (or FooDB if data were not available in
PubChem). We compiled these files into a single sdf file
(Additional methods D). As the second step, we used the
complied sdf file as input for two chemoinformatic tools:
R package rcdk (which relies on the CDK Java library
for chemoinformatics) (Guha and Charlop-Powers
2016) and the online ChemMine Tool (Backman et al.
2011, http://chemminetools.ucr.edu/tools/). When using
rcdk, we applied standard and extended fingerprinting
methods to calculate pairwise dissimilarity. This step
resulted in two chemical dissimilarity matrices DC

(Fig. 4b), denoted chemical dissimilarities a and b, from
standard fingerprinting method and extended finger-
printing methods, respectively. Using the hierarchical
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Fig. 2 Diagram illustrating different ways of generating matrices
for further analysis. a Raw data with 96 wells · measurement days.
b Color density data for each well of each measurement day were
converted into numerical values of 96 values · measurement days.
There were nine different ways of generating matrices from this
dataset for further analyses. c For each measurement day, the
average, maximum, or minimum value of the triplicate was used,
yielding measurement days · numerical values of 32 (average,
maximum, or minimum) values (control + 31 substrates) (d).
From the time series of color density for each substrate

(+ control), the temporal maximum value during the measurement
period was selected and converted into 32 values, generating three
vectors of ‘‘temporal maximum’’ each for average, maximum, or
minimum of the triplicate. Alternatively, raw data were converted
into 96 numerical values (e) by integrating the color development
curve to calculate the cumulative color development or f by using
data from the final measurement day only. Values in e and f were
converted into 32 values by taking the average, maximum, or
minimum of the triplicate, resulting in three vectors of g ‘‘temporal
integration’’ or h ‘‘final endpoint’’
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clustering function in ChemMine tool, we obtained an-
other pairwise dissimilarity matrix (available in SI), de-
noted as chemical dissimilarity c.

As the third step, we converted dissimilarity matrix
DC into a hierarchically clustered TC tree with the for-
mat of phylogenetic tree (.ph) (Fig. 4c). To obtain the

(b)

31 binary values

Functional dissimilarity

Functional diversity

MF

31 substrates

Sa
m

pl
es

EC

EB
C

DF
Functional matrix

MFUW

DFBUW
DFUW

From Figure 2d,f

To statistical analysis

(sample_pre_data.xlsx)

To Figure 6

Temporal maximum

Avg Max Min

Temporal integration

Avg Max Min

Final endpoint

Avg Max Min

Control + 31 substrates

Control + 31 substrates

(a)

(c)

Quantile-based binarization with threshold T

Keep continuous values

Fig. 3 Diagram illustrating different approaches for calculating
multifunctionality and functional dissimilarity. a Functional matrix
EC, with number of samples · 31 substrate values (normalized by
control) was obtained from each of nine different methods for
processing raw data (Fig. 2d, f). Binarized functional matrix EB
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multifunctionality · number of samples (unweighted multifunc-
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DFBUW). Alternatively, continuous values of EC were used to
obtain the unweighted functional dissimilarity DFUW
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chically clustered chemical similarity tree TC and converted into
phylogenetic tree format. Open and filled circles are hypothetical
examples of functional composition for communities A and B,
respectively
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most informative tree, we chose the method that realized
the highest cophenetic correlation between distances on
tree TC and distance matrix DC (Petchey and Gaston
2006) among the eight clustering methods in function
hclust in the vegan package (Dixon 2003; Oksanen et al.
2017). These steps resulted in three tree-shapes (ESM2:
Fig. S1). The tree-a and tree-b were highly correlated
(Mantel correlation r = 0.972), whereas tree-c was less
correlated with the others (correlation with tree-a:
r = 0.3693, with tree-b: r = 0.3716).

Concept of chemically weighted index

To describe the ecological meaning of chemical dissim-
ilarity weighting, we considered the binary multifunc-
tionality (MFUW) as an example. Suppose that we have
two microbial communities with binarized multifunc-
tionality values equal to 10 (i.e., both microbial com-

munities can decompose 10 carbon substrates but with
different combinations). Considering the degree of
chemical dissimilarity between these 10 substrates
(Fig. 4c), we judge that the set of 10 substrates in com-
munity B has higher diversity than the set in community
A. Therefore, the chemically weighted multifunctionality
of A is smaller than that of B. The same rationale can be
applied for functional dissimilarity (Roberts 1986; Lo-
zupone et al. 2011).

Calculating chemically weighted multifunctionality
and functional dissimilarity

We applied the concept described by Faith (1992) to
chemical similarity trees TC (Fig. 5a) and binarized
functional matrix EB

C (Fig. 5b) through the function pd
in R package picante (Kembel et al. 2010), resulting in
the chemically weighted multifunctionality vector

From Figure 4
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Fig. 5 Diagram illustrating different approaches for incorporating
chemical information into functional indices. a Either the chemical
dissimilarity matrix or chemical similarity tree may be used to
compute chemically weighted functional indices. b From the
binarized functional matrix EB

C, the chemically weighted functional
diversity (multifunctionality) vector (MFCW�T) or the chemically
weighted functional dissimilarity matrix (DFBCW�T) can be

obtained by using the function pd or unifrac, respectively, in the
picante library. c From the functional matrix with continuous
values EC, the chemically weighted functional dissimilarity matrix
can be obtained in two different ways, by using the function
GuniFrac in the GuniFrac library (DFCWu�T) or the function in the
SYNCSA library (DFCF�T). The subscript T represents the
chemical dissimilarity a, b or c
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MFCW�T (T = a, b, or c) (Fig. 5b). We used three
methods to convert the functional matrix ( EB

C or EC)
into the chemically weighted functional dissimilarity
matrix. For the first method, we applied the Unifrac
distance (picante: unifrac) to the chemical similarity
trees TC (Fig. 5a) and the binarized functional matrix
EB
C (Fig. 5b), resulting in the binarized chemically

weighted functional dissimilarity matrix DFBCW�T

(T = a, b, or c) (Fig. 5c). For the second method, we
applied the weighted Unifrac distance (GuniFrac: Gu-
niFrac) (Chen 2012) with two different weights (u = 0.5
and 1.0) to the chemical similarity trees TC (Fig. 5a) and
continuous-valued functional matrix EC (Fig. 5c), gen-
erating the chemically weighted functional dissimilarity
matrix DFCWu�T (T = a, b, or c, u = 0.5, or 1). For the
third method, we directly used DC (Fig. 5a) to convert
the continuous value matrix EC via fuzzy-weighting
(SYNCSA: belonging) (Roberts 1986 and equation in
Additional methods D) into the weighted functional
matrix. This weighted functional matrix could be con-
verted to a functional dissimilarity matrix via, for
example, the Bray–Curtis dissimilarity measure
DFCWF�T (chemically weighed functional dissimilarity
matrix by fuzzy weight: T = a, b, or c) (Fig. 5c).

Statistical analysis

Statistical models

Depending on the target index (univariate vector MF for
multifunctionality or multivariate matrix DF for func-
tional dissimilarity) and dataset (forest soil or aquatic
microcosm system), we prepared different statistical
models. For the data from aquatic microcosm experi-
ments, we only had multifunctionality vectors. We tested
the hypothesis that the multifunctionality of the com-
munity would decrease linearly with decreasing func-
tional gene diversity in the community (MF � reduction
of functional gene diversity). For the data from forest
soil experiments, we had both MF and DF. We hypoth-
esized that both multifunctionality and functional dis-
similarity could be explained by treatment (control or
trenching), month, and their interactions. Therefore, we
had the univariate linear model (MF � treat-
ment + month + treatment · month) and multivari-
ate models (DF � treatment + month + treatment ·
month), respectively. For the multivariate models, we
used distance-based redundancy analysis (db-RDA)
with function capscale. For the univariate linear model,
we used R2 values to represent the performance of each
model. For db-RDA, we used the fraction of the con-
strained variation relative to the total variation. We do
not show results from PERMANOVA because the
resulting R2 values using the function adonis were
identical to the ratios of constrained relative to total
variations for db-RDA (see Additional methods B and
ecopl_comparison_EcolRes.R).

Permutation test for chemically weighted indices

A higher R2 value from the chemically weighted index
than from the chemically unweighted baseline does not
automatically imply that the incorporation of chemical
similarity improves statistical power. Theoretically, even
a randomly generated dissimilarity matrix DC or dis-
similarity tree TC can generate high R2 values because
the random weighting could reduce data dispersion,
resulting in higher R2 values, as occurs with logarithmic
transformation. To exclude this possibility, we shuffled
each element in dissimilarity matrix DC and generated
dissimilarity trees. These randomly generated matrices
and trees were used for the same statistical models to
obtain permutated R2 values ( R2

perm) and compared
with the original observed R2 values ( R2

obs). With 9999
permutations, we calculated the probabilities of
R2

perm ‡ R2
obs (denoted Pperm,U) and of R2

perm £ R2
obs

(denoted Pperm,L). When Pperm,U or Pperm,Ls was less
than 0.025, we interpreted R2

obs as being significantly
different from the random case (two-tailed test; see
Additional methods D for way of calculation). Note,
however, this permutation test cannot be used to com-
pare results with and without chemical information.

Results

When applying different calculation methods to the
binarized multifunctionality from the forest soil samples,
the temporal integration method performed best (high-
est R2 values) among the temporal integration, temporal
maximum, and final endpoint methods (Fig. 6a), for the
chemically unweighted approaches (MFUW). The tem-
poral maximum method performed better than the final
endpoint method. Among the average, maximum, and
minimum values of the triplicates, results using the
maximum values were generally the best. These results
indicate that the commonly used method (i.e., final
endpoint method with triplicate averaging) gave the
lowest performance. However, for microcosm experi-
ments, using the minimum value of the triplicates
(Fig. S2c in ESM2) performed better than using the
average or maximum value (Fig. S2a, b in ESM2).

Using chemically weighted multifunctionality did not
improve the performance for forest soil samples (Fig. 6
a) or microcosm experiments (Fig. S2 in ESM2). The
statistical power of the linear model with multifunc-
tionality calculated from chemically weighted data
(MFCW�T) was not significantly different from those
calculated with the randomly generated chemical
weights (Pperm > 0.05), with very few cases in which R2

values were significantly different from the random case.
Finally, multiple methods were applied to calculate

functional dissimilarity indices for the forest soil exper-
iments. Using integration with the maximum value of
triplicates performed best in both binarized (Fig. S3 in
ESM2) (DFBUW) and continuous (Fig. 6b) (DFUW)
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functional dissimilarity. Although including information
of chemical structure did not yield better performance in
the binarized cases (Fig. S3 in ESM2), fuzzy-weighting
of continuous color density data gave results that were
statistically different from those calculated with ran-
domly generated chemical weights (Fig. 6b). Only when
the data were integrated (i.e., temporal integration
method) did the fuzzy-weighting method result in higher
explanatory power than the chemically unweighted
cases.

Discussion

Overview

We provide a framework to evaluate performances of
multiple calculation methods for improving the statisti-
cal power of EcoPlate incubation experiments. The
statistical power of the temporal integration method was

greater than the power obtained from using data only on
the final date of incubation (Figs. 6, S3 in ESM2). This
result supports our first hypothesis that considering the
time evolution of color development would improve the
quantification of multifunctionality and functional
composition. Using the maximum value for each sub-
strate was the best choice for data processing of the
triplicate data within an EcoPlate for the forest soil
samples (Figs. 6, S2 in ESM2), whereas the minimum
value was the best choice for aquatic microcosms
(Fig. S3 in ESM2). The inconsistency of the statistical
performance from different processing of the triplicate
may indicate the need to identify the best solution for a
given system following our statistical framework. Or, it
is also possible that more conclusive recommendation
for best method may be reached if larger sets of data are
examined in the future.

For the second hypothesis, the ability of chemical
dissimilarity information to improve statistical power
depended on how the data were processed. When bina-

(a)

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5

Temporal integration
Avg Max Min Avg Max Min Avg Max Min

Temporal maximum Final endpoint

2

U
W

C
W

-a
C

W
-b

C
W

-c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold T

C
on

st
ra

in
ed

 fr
ac

tio
n

of
 v

ar
ia

nc
e

(b)

U
W

C
W

1-
a

C
W

1-
b

C
W

1-
c

C
W

0.
5-

a
C

W
0.

5-
b

C
W

0.
5-

c
C

W
F-

a
C

W
F-

b
C

W
F-

c

*** *
**

**

***

**
*

*

* * *
*

** *** ***
*

Fig. 6 Results of statistical models linking multifunctionality and
functional composition with month and treatment effects in forest
soils. a Statistical power (R2) of the linear model (binarized
multifunctionality � treatment · month) for different calculation
methods. b Statistical power (constrained fraction of variance) of
the distance-based RDA (redundancy analysis) model (functional
dissimilarity � treatment · month) for different calculation meth-
ods. Vertical and horizontal axes cross at a position corresponding

to the average statistical power from default calculation methods
(i.e., ‘‘Final endpoint and taking average of triplicates’’) in each
panel. T values (= 0.9. 0.7, and 0.5) represent quantile-base
threshold for banalization. Bar with asterisk indicates Pperm,U <
0.025 or Pperm,Ls < 0.025. Examples of permutation distribution
from a portion of the results (blue bar in panel a) are shown in
Fig. S6. The abbreviations are the same as in Fig. 5
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rized values were used for multifunctionality and func-
tional dissimilarity, the incorporation of chemical dis-
similarity information did not improve statistical
performance (Figs. 6a, S2, S3 in ESM2). When contin-
uous values were used to evaluate functional dissimi-
larity employing the temporal integration method, the
incorporation of chemical information via fuzzy-
weighting improved the results, whereas the generalized
Unifrac distance did not (Fig. 6b). In contrast, with
nonintegrated data (temporal maximum and final end-
point scenarios), fuzzy-weighting worsened the statisti-
cal performance.

One implication of this result is that fuzzy-weighting
should not be used in the absence of daily measurements
during incubation. However, the reason why the statis-
tical performance was worse with fuzzy-weighting re-
mains unclear. Another implication of our result is that
differences in microbial functions under different con-
ditions become less clear after incubation for several
weeks, and that such a functional convergence can be
more clearly detectable with the fuzzy-weighting meth-
od.

Practical remarks and cautionary notes on our method

When applying our protocol and the R script to new
datasets, we recommend researchers to carefully com-
pare the performances of all available calculation
methods. Our results do not imply that the best ap-
proach found in our case study is the best for all data-
sets; rather, the properties of the dataset and statistical
model (hypothesis) should be carefully considered. For
our datasets, we assumed that multifunctionality and
functional composition should be different depending on
explanatory factors (treatment, month, and gene diver-
sity), and we tried to find the method that generated the
highest statistical power. We strongly recommend com-
paring the performances of the proposed diverse calcu-
lation methods for each dataset (c.f. Anderson et al.
2011). Furthermore, our method does not resolve the
problem of temporal changes in species composition
along the incubation period. In addition, we used several
threshold values for calculating binary multifunctional-
ity. We recommend trying a continuous change of the
threshold value (Byrnes et al. 2014).

Resource availability

For comparing methods, we used the R environment,
with the script attached in ESM1 (Additional methods
B–D) and ESM3. All of the results, including analyses in
the ESM1, could be reproduced. Input datasets for the
script were the raw data of 96-well EcoPlate color
development patterns in text format. One does not need
to perform any pre-calculation using the microplate
reader software. Before applying the R script, one
should check the time evolution of AWCD during

incubation period. Instability of the AWCD might be a
sign of malfunction of incubation, due, for instance, to
drought of well waters or fluctuating temperature.

Theoretical remarks and future directions

While previous studies have used the average values of
triplicates within a plate, we found that the maximum
values of triplicates can gave better statistical power in
the case of soil experiment. It is reasonable to assume
that the EcoPlate color development pattern represents
the potential functionality rather than in situ-realized
functional rates. Therefore, the maximum of the tripli-
cate likely better represents the potential (maximum)
metabolic rate of the community for each substrate than
the average.

It is not immediately obvious why the minimum of
the triplicate performed better for the aquatic micro-
cosm samples. The integrating method gave higher sta-
tistical power by distinguishing fast and slow color
development rates even when the maximum color den-
sity was identical. One question regards how long the
optimal integration period should be. If the period is too
long after maximum color is achieved, then the rate
information will be masked. In addition, long incuba-
tion, which would be necessary for the natural samples
from low temperature environments (e.g., La Ferla et al.
2017), potentially confounds color development pattern
due to the production of secondary metabolites by
incubated bacteria or decomposition (oxidation) of the
reduced tetrazolium dye, as well as the temporal changes
in species composition (see ‘‘Introduction’’). Our addi-
tional analysis demonstrated that intermediate periods
(5–10 days) gave the highest R2 values from the soil
samples (Fig. S4 in ESM2). However, the optimal choice
may be highly dependent on datasets and incubation
temperature.

Another question regards how chemical dissimilarity
information improved statistical power. Chemical simi-
larity calculated from the two-dimensional molecule
structure does not necessarily imply similarity in inter-
actions between the chemical and organisms (Todeschini
et al. 2012). In fact, the shape of the similarity tree is
highly dependent on the method (Fig. S1 in ESM2). In
addition, we can generate similarity trees based on the
similarity of microbial response to different substrates
(Fig. S5 in ESM2). When we compared these two dif-
ferent types of trees (Figs. S1 vs. S5 in ESM2), we found
no correlation between them (Mantel correlation on
dissimilarity matrices, P > 0.05). This could be partly
explained by the gap between chemical structural dis-
similarity and metabolic dissimilarity. For example, in
the chemical dissimilarity tree (Fig. S1a in ESM2),
glycogen is clustered with other sugar molecules that
require different metabolic pathways to be processed
(e.g. Lactose and Cellobiose), while the close relation-
ship between glycogen and glucose-1-phophate in the
color development similarity (Fig. S5c in ESM2) linked
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to the fact that glucose-1-phosphate is the direct down-
stream product of glycogen in glycogenolysis. Another
confusing result is that indices obtained by using infor-
mation from a randomly generated similarity tree could
give greater statistical power (R2) than those without
chemical information (Fig. S6 in ESM2). This is why the
permutation test is needed to confirm if results with
chemical information are statistically different from
those with random trees (Fig. S6 in ESM2).

Future research should focus on improving our
method of calculating chemical dissimilarity. To this
end, we propose two methods. First, the similarity of
microbial response to different substrates (Fig. S5 in
ESM2) could be better defined if the EcoPlate color
development patterns from many isolate monocul-
tures rather than environmental assemblages were to
be used. Data compiled from past publications and/or
additional experiments using isolates will be needed.
Second, the similarity could be better defined if we
were to focus on the metabolic pathways involved in
metabolism of each substrate (e.g., KEGG; Kanehisa
and Goto 2000). Greater overlap between metabolic
pathways could indicate higher similarity in microbial
responses to different carbon substrates. Once we
obtain a highly reliable tool to evaluate similarity
between the 31 substrates in EcoPlate, we could apply
this tool to FF and GN plates (95 substrates) (Preston-
Mafham et al. 2002), and to much more diverse
chemical substrates for proposing a new combination
of 31 or 95 substrates to better characterize microbial
metabolism. Similarly, our approach of chemical-
similarity weighting could be applied to plant
metabolites to improve characterization (e.g., of plant
defense chemical diversity). These methods will be
developed for better quantification of the functional
patterns of various types of communities.
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