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Abstract Five nickel hyperaccumulators belonging to the
Asteraceae are known from ultramafic outcrops in
South Africa. Phytoremediation applications of the
known hyperaccumulators in the Asteraceae, such as the
indigenous Berkheya coddii Roessler, are well reported
and necessitate further exploration to find additional
species with such traits. This study targeted the most
frequently occurring species of the Asteraceae on eight
randomly selected serpentinite outcrops of the Barber-
ton Greenstone Belt. Twenty species were sampled,
including 12 that were tested for nickel accumulation for
the first time. Although the majority of the species were
excluders, the known hyperaccumulators Berkheya nivea
N.E.Br. and B. zeyheri (Sond. & Harv.) Oliv. & Hiern
subsp. rehmannii (Thell.) Roessler var. rogersiana
(Thell.) Roessler hyperaccumulated nickel in the leaves
at expected levels. A new hyperaccumulator of nickel
was discovered, Senecio conrathii N.E.Br., which accu-
mulated the element in its leaves at 1695 ± 637 lg g�1

on soil with a total and exchangeable nickel content of
503 mg kg�1 and 0.095 lg g�1, respectively. This makes
it the third known species in the Senecioneae of South
Africa to hyperaccumulate nickel after Senecio anoma-
lochrous Hilliard and Senecio coronatus (Thunb.) Harv.,
albeit it being a weak accumulator compared with the
latter. Seven tribes in the Asteraceae have now been
screened for hyperaccumulation in South Africa, with

hyperaccumulators only recorded for the Arctoteae and
Senecioneae. This suggests that further exploration for
hyperaccumulators should focus on these tribes as they
comprise all six species (of 68 Asteraceae taxa screened
thus far) to hyperaccumulate nickel.
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Introduction

Nickel hyperaccumulation by plants is a worldwide
phenomenon spanning many higher plant families and
taxa (Severne 1974; Brooks and Radford 1978; Reeves
et al. 1999; Mesjasz-Przybylowicz et al. 2001; Reeves and
Adigüzel 2004) and is presumably mediated by the pri-
mary Fe2+ uptake transporter in plant roots (Nishida
et al. 2011). Hyperaccumulators have evolved active
responses at the molecular level to deal with stressors
associated with excessive metal accumulation (Sharma
and Dietz 2006; Gall and Rajakaruna 2013). Much
uncertainty exists regarding the adaptive significance of
metal hyperaccumulation; one hypothesis being that
hyperaccumulation, which results in metal toxicity, acts
as a defence mechanism against herbivory (Boyd 2004).

Plants will occasionally hyperaccumulate Ni when
they occur in environments where this metal is in
abundance and available for plant uptake (Shallari et al.
1998). However, most plants will exclude this metal, but
it is generally on Ni-rich soils where this ability to
accumulate has evolved numerous times world-wide
(Van der Ent et al. 2015; Galey et al. 2017). The ser-
pentinites of the Barberton Greenstone Belt in South
Africa are no exception (Morrey et al. 1989; Hughes and
Noble 1991) where five Ni hyperaccumulator species
have been previously discovered (Smith et al. 2001). One
of these species, Berkheya coddii, has become interna-
tionally renowned for its fast growth, high biomass and
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ability to hyperaccumulate, and has been advocated as
an ideal subject for phytoremediation and phytomining
(Robinson et al. 1997; Chaney et al. 2014).

Although the Ni hyperaccumulation trait is often
associated with species from ultramafic regions (Reeves
et al. 1999; Jaffré et al. 2013; Galey et al. 2017), and the
valuable industrial application of such species in local
green economies which encourages their discovery (El-
lery and Walker 1986; Robinson et al. 1997; Morgenthal
et al. 2004), few taxa with this ability have been identi-
fied from South Africa. Smith et al. (2001) tested 56 of
126 Asteraceae species tolerant of serpentinite in the
Barberton region and found five taxa to hyperaccumu-
late Ni. Considering that this family has undergone
extensive radiation in South Africa (2481 species;
Koekemoer 1996), of which many species have colonized
ultramafic soils (Siebert et al. 2002), it would seem that
Ni hyperaccumulation is poorly represented, especially
considering that hyperacumulation is well represented in
the family (Reeves and Baker 2000). Globally 0.2% of
the Asteraceae (approximately 50 species) have been
identified as Ni hyperaccumulators, contributing to
about 10–12% of the 450–470 known Ni hyperaccu-
mulators to date (pers. com. R.D. Reeves).

Cecchi et al. (2010) show that within evolutionary
lineages of Ni hyperaccumulating Alysseae (Brassi-
caceae), accumulation ability has been lost or gained
through independent events of microevolutionary
adaptation. According to Kruckeberg and Kruckeberg
(1990), once an evolving lineage has become metal-tol-
erant, evolution can continue on metalliferous soils by
adaptive radiation and would therefore imply that the
hyperaccumulation trait is tribe-, but more probably,
genus-specific. This study aims to test the following
hypotheses: (1) is hyperaccumulation restricted to the
Arctoteae and Senecioneae of the Asteraceae as pro-
posed by Smith et al. (2001), and (2) are certain genera
within these tribes more prone to develop the hyperac-
cumulation trait. In order to test these hypotheses, we
determined the Ni concentrations of leaf tissue of taxa
from different tribes and genera of the Asteraceae, and
their associated soils, collected from serpentinite out-
crops of the Barberton greenstone belt (BGB).

Methodology

Field sampling

Eight serpentinite outcrops were randomly chosen for
this survey (Fig. 1). During the first survey 2–3 fre-
quently occurring Asteraceae species were sampled from
each of these outcrops. In total, 20 species were sampled,
which included 12 species tested for Ni hyperaccumu-
lation in South Africa for the first time (not listed by
Smith et al. 2001). A second survey was conducted to
specifically target the populations of any species that
hyperaccumulated Ni at > 1000 lg g�1 in leaf tissue.

All plant species were identified and confirmed by the
National Herbarium in Pretoria (PRE), and voucher
species are housed at PRE and the A.P. Goossens
Herbarium (PUC).

Before sampling began, the centre of the outcrop was
visually determined and then, in four wind directions
away from this point, young leaves from active growth
points (five leaves per individual) of five individuals were
sampled per species; equating to one plant every 5 m in a
single direction and totalling ± 20 individuals sampled
per species per outcrop. Leaves were washed in the field
with deionized water to remove soil particles and inor-
ganic material. Thereafter, leaves were quickly washed
in 0.1 molar HCl solution in the laboratory and rinsed
three times with distilled water, before they were stored
in paper bags to dry under room temperature. Plant
tissue samples were then oven-dried at 70 �C for 48 h
and ground to a particle size less than 75 lm in a
tungsten carbide milling vessel.

At each site, one soil sample was taken from under-
neath the sampled plants in the centre of the outcrop
and in each of the four sampling directions. Samples
were taken up to a depth of 10 cm to coincide with the
predominant rooting depth of these species. The five
samples were pooled to make a composite sample. Soil
was stored in brown paper bags to air dry. Thereafter,
samples were slightly pulverized, and put through a
2 mm sieve to break down aggregates and remove any
gravel or organic material. Samples were ground into a
fine powder ( £ 75 lm) using a tungsten carbide ring
mill.

Soil and plant tissue analyses

The pH of each soil sample was estimated via 1:2.5 ex-
tract solution. Twenty grams of soil (< 2 mm particle
size) was weighed in a plastic beaker to which 50 ml of
deionized water was added. The suspension was stirred
for five seconds using a glass rod, and left for 4 h.
Thereafter the suspension was stirred again and left for
10 min. The pH was then determined by means of a pH
meter (Radiometer Copenhagen PHM 80). The elec-
trode was allowed to stabilize for three minutes in
solution before the pH was recorded.

The macro- and micro-nutrient content of the sam-
ples were determined with a 1:2 extract method. Three
drops (1%) of flocculant was added to 200 ml of
deionized water in a plastic shaking bottle. A soil solu-
tion of 100 ml was transferred systematically to the
bottle and shaken for 30 min. The clear supernatant was
then decanted to low speed centrifuge tubes, and cen-
trifuged for 10 min at 2000 rpm. The resultant super-
natant was then decanted into an Erlenmeyer flask. Two
high speed centrifuge tubes per sample was filled from
the flask and centrifuged for 12 min at 16,500 rpm.
Liquid from the high speed centrifuge tubes were then
filtered into two different bottles. Cations (Ca, Mg, K
and Na) were determined with Atomic Absorption
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Spectrometry (Varian SpecttAA.250 Plus). Anions (Cl,
NO3, NO2, F, SO4 and PO4) were determined with ion
chromatography (Metrohm 761 Compact IC).

Plant available phosphorus in the soil samples was
determined with the P-Bray 1 extraction method. P-Bray
1 solution was prepared by dissolving 2.22 g ammonium
fluoride (NH4F) in deionized water and was transferred
to a 2 L volumetric flask. Concentrated hydrochloric
acid (5 ml) was then added and the flask filled to volume
with deionized water. Ten grams of soil (< 2 mm par-
ticle size) was weighed in a Schott-bottle, to which 75 ml
of P-Bray 1 (20 �C) solution was added and immediately
shaken for 40 s. Two drops of flocculant was added to
the solution, which was then gently swirled. Immediately
after the suspension settled, the supernatant was filtered
into a clean Schott-bottle, and the concentration of
phosphate was determined using an Auto-Analyser
(Skalar San++).

The soluble/plant available trace metal concentration
of the soil samples was determined by means of the
ammonium nitrate (NH4NO3) solution method.
NH4NO3 is known to be chemically less reactive than
other extraction methods and, thus, more suitable for
the extraction of comparable fractions of mobile heavy
metals (Schöning and Brümmer 2008). We acknowledge
that more appropriate chelator based methods exist, and

our analyses are therefore limited to the very small
amounts of heavy metals in the exchangeable Ni ‘pool’
(Sabienë et al. 2004). Samples of 20 g each were placed
in a 150 ml shaking bottle, to which exactly 50 ml of the
NH4NO3 solution was added. The mixture was shaken
for 2 h at 20 rpm (25 �C). Solid particles were allowed to
settle for 15 min before the supernatant solution was
filtered with a 0.45 lm filter. The first 5 ml was disposed
of, and the solution that remained was collected in a
50 ml bottle for analysis. The samples were analysed
with Inductively Coupled Plasma–mass Spectrometry
(Agilent 7500) for soluble trace metals.

The total trace metal concentration of the soil and
plant tissue samples were conducted by means of acid
digestion. Soil samples of 25 g each were placed in a
150 ml beaker, to which 15 ml nitric acid (HNO3) was
added. The samples were immediately covered with
watch glasses and placed on a sand stove inside a fume
hood, which was set at medium temperature of ± 95 �
C. The mixture was left to reflux for an hour during
which fumes were generated. When the fumes dimin-
ished the samples were fully digested and the watch
glasses were removed. The acid was evaporated by
heating each sample until the volume was reduced
to ± 5 ml. Each sample was then cooled to add 3 ml of
30% hydrogen peroxide (H2O2). After cooling 10 ml of

Fig. 1 Localities of the eight serpentinite study sites along the Barberton Greenstone Belt in the Mpumalanga province of South Africa
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3 N HCl was added and then covered again with a watch
glass. The mixture was placed on the sand bath in the
fume hood and was refluxed for about an hour. After the
reflux the sample was cooled down to 25 �C. The mix-
ture was filtered through Whatman 40 filter paper into a
50 ml volumetric flask. The filter paper was washed with
deionized water. The volumetric flask was filled to vol-
ume with deionized water. Total trace metal concen-
trations in the samples were determined with Inductively
Coupled Plasma–mass Spectrometry. The detection limit
for Ni is soil samples was 0.0001 ppm.

Results

During the first survey, the leaf tissues of 20 species
belonging to the Asteraceae were tested for the accu-
mulation of metals: of these species only three were
found to accumulate Ni at concentrations that exceeded
1000 lg g�1 (Table 1). This meets the criterion for Ni
hyperaccumulation as defined by Van der Ent et al.
(2013). Two of these species, Berkheya nivea (3658 lg
g�1; Table 1) and B. zeyheri (1630 lg g�1; Table 1), are
known hyperaccumulators reported by Smith et al.
(2001), but the third species, Senecio conrathii
(1558 lg g�1; Table 1, Fig. 2), has not previously been
documented as being capable of hyperaccumulating Ni.
The remaining 17 species were found to be excluders
with much lower concentrations of Ni within the leaf
tissue, suggesting tolerance strategies to restrict metal
uptake or retain and detoxify the metals within the root
tissue (Rascio and Navari-Izzo 2011).

The localities Kaapsehoop, Noordkaap, Noordkaap
Railway and R40 Pass had the lowest Ni total and Ni
soluble values in the soil (Table 2). S. conrathii was

sampled at Kaapsehoop (soluble Ni at 0.095 lg g�1;
third lowest) and accumulated Ni above 1000 lg g�1

(Table 1). Kalkkloof, Mundt’s Concession, Nelshoogte
and Sassenheim had the highest Ni total and Ni soluble
values, with Ni-hyperaccumulating B. nivea and B.
zeyheri sampled from these areas (Table 1). Therefore,
at the local scale, it is clear that Ni bioavailability, and
not total soil Ni concentration, is the only prerequisite
for hyperaccumulation to take place if a species pos-
sesses the accumulation trait (of which S. conrathii is a
good example). Also, soluble Ni is not always a function
of total Ni in the soil (Noordkaap Railway is an example
thereof; low total and high soluble Ni) or pH (Table 2).
The Mg/Ca quotient (Table 2) of the soil from the three
localities where hyperaccumulators were found ranged
from 11.7 to 13.2, indicating the soil as typically ultra-
mafic (Proctor 1971).

A follow up, more comprehensive sampling process,
which focused on S. conrathii and B. zeyheri (as control),
confirmed that the Ni concentrations within the leaf
tissue of the two species repeatedly exceeded the
1000 lg g�1 criterion set for hyperaccumulation of Ni
(Van der Ent et al. 2013), and confirmed that S. conrathii
is indeed a Ni hyperaccumulator. All five analyses done
met the criterion, with an average of 1695 lg g�1 for S.
conrathii compared to the 1793 lg g�1 mean recorded
for B. zeyheri as a known hyperaccumulator (Table 3).

Nickel water soluble fractions from the eight locali-
ties (Table 2) were compared to the Ni concentrations in
the leaf tissue of the 20 sampled species (Fig. 3). The
concentrations of Ni within the plant leaves of the three
hyperaccumulator species showed a significant positive
relationship with the Ni water soluble fractions of the
soil (R2 = 0.915; P < 0.01; Fig. 3), but predictably not
so for the excluders (R2 = 0.013; P = 0.961; Fig. 3).

Table 1 Metal concentrations (lg g�1) in leaf tissue of 20 species sampled during the first survey; values in bold are indicative of
hyperaccumulation (*species tested for the first time)

Species Collection no. Outcrop Ni Fe Al Mn Zn Cu Cr

Berkheya echinacea* Frisby 2 R40 Pass 183 534 61.1 97.9 24.3 3.36 16.75
B. nivea Siebert and Rajakaruna 16 Mundt’s Concession 3658 207 10.8 32.1 6.8 3.9 3.16
B. setifera Siebert and Rajakaruna 4457 Kaapsehoop 2 36 15.7 15.1 4.7 1.17 0.73
B. zeyheri subsp. rehmannii Siebert and Rajakaruna 13 Sassenheim 1630 19 7.4 15.4 2.7 1.17 0.39
Campuloclinium macrocephalum* Siebert and Rajakaruna 14 Sassenheim 3 134 63.9 18.6 11.4 5.52 1.97
Haplocarpha scaposa Frisby 10 Sassenheim 26 146 54.5 30.5 7.9 10.88 3.5
Helichrysum acutatum* Siebert and Rajakaruna 23 Nelshoogte 29 33 15.7 49.4 10.1 2.27 1.18
H. aureolum* Siebert and Rajakaruna 20 Kalkkloof 8 129 19.2 41.7 36.6 7.59 5.9
H. miconiifolium* Frisby 4 Nelshoogte 3 716 87.7 53.4 14.7 2.59 1.44
H. subluteum* Frisby 1 R40 Pass 14 1230 251.7 70.8 34.8 16.56 15.66
H. umbraculigerum* Frisby 3 Nelshoogte 26 206 63.5 27.9 13.1 3.17 2.82
Hilliardiella aristata Siebert and Rajakaruna 19 Kalkkloof 12 188 34.3 23.2 12.1 7.09 3.74
H. sutherlandii Siebert and Rajakaruna 4456 Noordkaap Railway 13 33 20.3 17.5 3.6 1.0 0.77
Nidorella auriculata Frisby 5 Kaapsehoop 5 209 101.2 98.5 46.6 17.4 2.37
Pegolettia senegalensis* Frisby 9 Noordkaap 1 167 40.7 23.3 15.9 6.05 5.54
Psiadia punctulata* Frisby 8 Noordkaap 1 60 24.7 36.1 13.4 6.05 2.25
Senecio conrathii* Siebert 4485 Kaapsehoop 1558 64 6.7 7.4 0.9 0.41 11.89
S. gerrardii* Frisby 6 Kaapsehoop 22 92 51.9 161.7 22.5 9.34 2.02
S. latifolius Siebert s.n. Noordkaap Railway 1 22 5.7 5.7 4.7 1.49 0.63
S. venosus* Siebert and Rajakaruna 15 Mundt’s Concession 23 29 5.1 18.4 9.6 6.99 2.54
Mean 466 220 47.3 43.5 15.1 5.9 3.8
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Fig. 2 Voucher specimen of Senecio conrathii housed at the AP Goossens Herbarium (PUC). Locality: 25�33¢38¢’ S; 30�47¢31¢’ E,
Mpumalanga, Kaapsehoop: roadside, serpentinite outcrop. Collector: Siebert, S.J., no. 4485 (PUC0014007). Date: 2012/12/06

Table 2 Summary of relevant soil analyses from the eight localities along the Barberton Greenstone Belt

Locality Ni total Ni soluble pH Mg Ca Mg:Ca
lg g�1 lg g�1 mg/L mg/L Quotient

Kalkkloof 2530 0.416 6.3 2000 38 51.9
Mundt’s Concession 1874 0.817 6.2 957 82 11.7
Nelshoogte 1837 0.368 6.1 1707 173 9.7
Sassenheim 1297 0.220 6.2 1322 106 12.4
Noordkaap 793 0.059 6.2 1013 337 3.1
Noordkaap Railway 722 0.273 6.4 1245 143 8.7
Kaapsehoop 503 0.095 6.1 438 33 13.2
R40 Pass 198 0.039 6.5 1592 1047 1.5
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Discussion

The laboratory chemical analyses of the first survey
defined two groups within the twenty Asteraceae sam-
ples, namely excluders (17 species) and hyperaccumula-
tors (three species) of Ni. Two of the three species that
tested positive for hyperaccumulation of Ni were known
hyperaccumulators (Smith et al. 2001), whilst the third,
S. conrathii, had not previously been documented (Ta-
ble 1). Smith et al. (2001) had an 8% discovery rate of
Ni hyperaccumulators during their survey, which is
matched by this study (of the 12 Asteraceae species not
tested for Ni hyperaccumulation before, one tested
positive). The soil analysis of the study sites (Table 2)
showed that the two Berkheya species known to hyper-
accumulate Ni grew on soil that had high total and
soluble concentrations, whilst S. conrathii grew on soil
with lower total and soluble Ni concentrations (Ta-
ble 2).

One of the most important chemical characteristics of
ultramafic soil is that it has a high magnesium to calcium
quotient (Proctor 1971), usually > 1 (Rajakaruna et al.
2009). The Mg/Ca quotient of the soil in the locations
where the three hyperaccumulators were found ranged

between 11 and 13. Robinson et al. (1999) has shown
that higher, rather than lower, concentrations of Mg in
the soil, inhibits the uptake of Ni, especially when Mg is
interacting positively with Ca (Gabbrielli and Pandolfini
1984). Considering the low values of Mg at Kaapsehoop
(Table 2), it could therefore be expected that S. conrathii
should be able to accumulate high values of Ni despite
the low soluble concentrations thereof in the soil.

There are only a few studies to date that have used
phylogenetic methods to investigate evolutionary trends
in Ni hyperaccumulation (Mengoni et al. 2003; Burge
and Barker 2010; Cecchi et al. 2010). Nickel hyperac-
cumulation is generally a rare trait found only in selected
species, despite several other related species growing on
the same Ni-rich soils (Jaffré et al. 2013; Gall and Ra-
jakaruna 2013). In the phylogeny of angiosperms, the
evolution of high metal tolerance is also not homoge-
neously distributed over taxonomic groups, showing
differences not only within a taxonomic group, but even
among populations of the same species (Ernst 2006).

Six hyperaccumulators of Ni are now known from
South Africa, three in the Arctoteae (B. coddii, B. nivea
and B. zeyheri subsp. rehmannii) and three in the Sene-
cioneae (Senecio anomalochrous, S. conrathii and Senecio
coronatus). This syndrome is well known for the Aster-
aceae, and especially for the Senecioneae, with 17 species
of Senecio in the flora of Cuba having been confirmed as
Ni-hyperaccumulators (Borhidi 2001). This supports the
hypothesis that once a lineage evolves the hyperaccu-
mulation trait it possibly becomes tribe-, and in our case,
genus-specific (Kruckeberg and Kruckeberg 1990; Cec-
chi et al. 2010). This relationship between phylogeny and
hyperaccumulation ability is well-known for genera such
as Alyssum and Noccaea in the Brassicaceae (Gall and
Rajakaruna 2013). A similar pattern may exist for the
Senecioneae and would be worthy of further investiga-
tion.

Conclusion

We report that S. conrathii from South Africa is a
hyperaccumulator of Ni. Results from this and other
studies now indicate a high probability of hyperaccu-

Fig. 3 Relationship between Ni concentration in the leaf tissue and
soluble Ni in the soil for the three accumulator species
(R2 = 0.915) and the 17 excluder species (R2 = 0.013)

Table 3 Metal concentrations (lg g�1) in leaf tissue of two species sampled during the second survey from an additional four sub-
populations per species; values in bold are considered as hyperaccumulation

Species Locality Ni Fe Al Mn Zn Cu Cr

Senecio conrathii Kaapsehoop 1035 15.1 13.7 5.9 4.4 0.51 0.55
Kaapsehoop 2659 29.3 8.3 4.9 4.9 0.51 5.74
Kaapsehoop 1276 3.7 1.8 0.7 2.4 0.19 1.26
Kaapsehoop 1948 79.8 8.4 9.3 1.2 0.38 14.87

Mean (including survey 1) 1695 38.4 7.8 5.6 2.8 0.4 6.86
Berkheya zeyheri Nelshoogte 1549 94.4 17.5 10.9 9.2 5.52 1.23

Nelshoogte 1487 76.1 16.1 10.6 9.7 6.35 1.15
Sassenheim 2067 39.2 44.8 11.3 6.3 3.93 1.63
Sassenheim 2234 35.4 47.2 8.9 7.4 4.72 1.57

Mean (including survey 1) 1793 52.8 28.2 9.8 7.1 4.34 1.19
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mulation in Senecio (three of 14 species tested). Similar
to other known hyperaccumulators from the study area,
the Ni concentrations within plant tissue increased as the
amount of water soluble Ni within the soil increased. S.
conrathii is a hyperaccumulator of Ni on soils with lower
levels (total: 500 lg g�1; soluble: 0.1 lg g�1) compared
to surrounding ultramafic outcrops.

Our findings further corroborates that the Ni-hyper-
accumulation trait is present in the Asteraceae of South
Africa, especially in the Senecioneae. The Senecioneae
should be considered as an important tribe to screen for
Ni hyperaccumulators in South Africa. Further research
should evaluate the potential use of S. conrathii in
phytoremediation programs and as indicators of geo-
logical substrates. However, further research is required
to find the most suitable trait-bearing genotypes for such
applications, as it has been shown that the ability of S.
coronatus to transport and accumulate Ni is population
specific (Mesjasz-Przybyłowicz et al. 2007; Boyd et al.
2008).
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