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Abstract Forest management with N-fixing trees can
improve soil fertility and tree productivity, but have
little information regarding belowground carbon pro-
cesses and microbial properties. We aimed to evaluate
the effects of three forest management regimes, which
were Erythrophleum fordii (N-fixing tree), Pinus masso-
niana (non-N-fixing tree), and their mixed forest, on soil
respiration and microbial community composition in
subtropical China, using Barometric Process Separation
and phospholipid fatty acid profiles, respectively. We
found that the inclusions of N-fixing species in forests
significantly increased the soil respiration, but have no
effects on SOC and ecosystem total C stock. In addition,
soil microbial communities were obviously different
among the three forest management regimes. For in-
stance, total and bacterial PLFAs were higher in the E.
fordii and mixed forest than in the P. massoniana forest.
Conversely, fungal PLFAs in the P. massoniana forest
were elevated versus the other two forests. Soil total N,
nitrate-N and pH were the key determinants shaping the
microbial community composition. Our study suggests
that variations in soil respiration in the studied forests
could be primarily explained by the differences of root
biomass and soil microbial biomass, but not soil organic
carbon. Although soil fertility and microbial biomass
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were promoted, N-fixing plantings also brought on in-
creased CO, emissions in laboratory assays. The future
decision of tree species selection for forest management
in subtropical China therefore needs to consider the
potential influences of tree species on CO, emissions.
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Introduction

Soils are the largest reservoir for carbon (C) in terrestrial
ecosystems (Raich and Schlesinger 1992). The emission
of carbon dioxide (CO,) from soils through autotrophic
and heterotrophic respiration is recognized as one of the
largest fluxes and plays an important role in the global C
cycling (Schlesinger and Andrews 2000; Janssens et al.
2001). Soil respiration has been shown to be sensitive to
climate, vegetation composition, land-use changes, and
soil types (Briiggemann et al. 2005; Epron et al. 2006;
Shi et al. 2015a). Changes in forest management regimes
can substantially alter soil organic C (SOC) dynamics
and affect soil-atmosphere exchanges of CO, by chang-
ing tree species composition that influence litter’s quality
and quantity, decomposability of organic matter, root
system, and microbial activity (Janssens et al. 2001;
Tang et al. 2006; Sheng et al. 2010; Wang et al. 2010a;
Vesterdal et al. 2013; Yuan et al. 2013). Thus, tree spe-
cies selection in forest management and planting regimes
is closely related to the exchanges of CO, between soil
and atmosphere.

Microorganisms are treated as decomposers in soils,
that utilize organic matter primarily derived from above-
and belowground litters, root exudates, woody debris
and animal remains as their C sources. Soil microor-
ganisms have also been shown to play a unique role in
the processes of nutrient cycling and C and N turnover
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(Huang et al. 2014). In soils, it has been proposed that
the growth and activity of soil microorganisms is limited
by the substrate availability, especially for C availability
(Griffiths et al. 1998). Entry of organic matter into the
soil is therefore considered to be a key factor which
regulates the soil microbial community composition
(Griffiths et al. 1998). In terrestrial ecosystems, a sig-
nificant portion of soil organic matter (SOM) is respired
by microbes to generate energy for cellular processes
(i.e., microbial catabolic metabolism) or is assimilated
into soil microbial biomass (i.e., microbial anabolic
metabolism) (Keiblinger et al. 2010). As a result, soil
microbial communities would shape the effectiveness
and mechanisms of utilizing SOM by microbes (Balser
and Wixon 2009; Keiblinger et al. 2010). The size and
composition of soil microbial community may thus af-
fect the SOM decomposition and CO, production. In
addition, variations in N availability also determine the
soil microbial biomass and community structure (Ushio
et al. 2008; Cao et al. 2010). Previous studies have shown
that higher soil N availability or lower C/N ratio may
favour bacterial decomposers over fungal decomposers
(Lundquist et al. 1999; Williamson et al. 2005). More-
over, soil fungi generally are the primary decomposers of
recalcitrant organic compounds, whereas bacteria are
more efficient in coping with simple carbohydrates, or-
ganic acids, and amino acids than fungi (Myers et al.
2001; Hackl et al. 2005). Therefore, increased substrate
N availability may shift the soil microbial community
towards bacterial dominance, slowing the decomposi-
tion of recalcitrant organic matter and increasing the soil
C sequestration. Changes in forest management regimes
are accompanied by changes in tree species composition
and stand structure, and subsequently changes in soil
physiochemical properties and substrate’s quality and
quantity. A large amount of work has been conducted to
study the effects of forest vegetation composition on soil
microbial community structure (Hackl et al. 2005;
Hogberg et al. 2007; Wagai et al. 2011; Lucas-Borja
et al. 2012). These studies have underlined the impor-
tance of the substrate’s quality and quantity as well as
abiotic factors (e.g., soil temperature, moisture, bulk
density, pH and texture, etc.) to the soil microbial
community. Soil microbial properties can therefore be
considered as potential indicators to determine the
influences of forest management regimes on soils.

In order to satisfy the increasing requirements for
forest products while avoiding excessive harvesting of
natural forests, plantations have been rapidly expanding
as a major component of forest resources in the world
and playing a key role in sustainable forest management
(Wang et al. 2010a; Huang et al. 2014). Multi-objective
and well-designed plantations do not only reduce the
logging pressure on natural forests and keep some eco-
logical service functions provided by natural forests, but
also have a profound effect on the ecosystems’ C
sequestration (Paquette and Messier 2009). In areas of
subtropical China, commercial forests are extensively
managed through afforestation and reforestation. How-

ever, the large-scale selection and planting of single
coniferous tree species (e.g., Pinus massoniana and Cun-
ninghamia lanceolata) or exotic tree species (e.g., Euca-
lyptus) has caused a series of ecological problems, such as
the reduction of soil fertility, loss of biodiversity and
poor stability of ecosystem (Carnevale and Montagnini
2002; Liang 2007). Nitrogen-fixing tree species (e.g.,
Erythrophleum fordii and Acacia mangium) have been
widely used for mitigating soil nutrient deficiency and site
degradation due to their N-fixing capacity during forest
management in subtropical China. It has been proposed
that mixed-species management regimes with N-fixing
trees are likely to improve plantation yields (Binkley
et al. 2003; Forrester et al. 2004, 2006a), soil fertility
(Forrester et al. 2006b; Wang et al. 2010b; Huang et al.
2014), and C sequestration (Johnson and Curtis 2001;
Resh et al. 2002; Hoogmoed et al. 2014a; Shi et al.
2015b). However, to our knowledge, few reports are
available on belowground microbial characteristics
regarding N-fixing trees for forest management (Boyle
et al. 2008; Bini et al. 2013; Hoogmoed et al. 2014b;
Huang et al. 2014), and there appears to be no consistent
trends in soil microbial biomass and community struc-
ture. Soil microbial community composition has been
shown to be significantly different between N-fixing (4.
mangium) and non-N-fixing (E. urophylla) plantations,
and soil microbial biomass C has seemed to be obviously
higher in plantations of A. mangium than E. urophylla
(Huang et al. 2014). In contrast, there was no significant
difference in microbial community composition between
N-fixing and non-N-fixing plantings, such as Alnus rubra
vs. Pseudotsuga menziesii (Boyle et al. 2008); 4. dealbata
vs. E. camaldulensis (Hoogmoed et al. 2014b) or in
microbial biomass C or N under A. mangium compared
with E. grandis plantations after 20 months’ planting in
Brazil (Bini et al. 2013). Further, little is known about the
impact of microbial signature phospholipid fatty acids
(PLFASs) on belowground C dynamics in forest soils. In a
few related studies, there were some connections between
soil respiration and the concentration of the PLFA 16:0
and the ratio of gram-negative to gram-positive bacteria
PLFAs (Wang et al. 2013).

Understanding the response of soil microbial com-
munities to N-fixing and non-N-fixing plantings has
important implications for the restoration of soil fertility
and reestablishment of soil microbial ecological func-
tion. Furthermore, determining the biological mecha-
nisms controlling belowground C processes is essential
to predict the changes of soil C sequestration in response
to changes of forest management regimes. Here we
conducted a field-based study to compare the soil res-
piration and microbial community composition in
monoculture and mixed plantations of N-fixing and
non-N-fixing tree species in subtropical China. The
purposes of this work were (1) to explore how soil res-
piration and microbial community composition changed
with distinct forest management regimes, and (2) to
identify which soil properties were the significant drivers
for the variations in microbial community composition.



Materials and methods

Site description

The study site (106°42°E, 22°10’N, 120-210 m asl, 10°
slope) is situated at the Experimental Center of Tropical
Forestry, Chinese Academy of Forestry, Pingxiang City,
Guangxi Zhuang Autonomous Region, P.R. China. The
selected site is representative of the regional features of
afforestation and reforestation in southern China. This
region experiences a typical subtropical monsoon cli-
mate with an annual average temperature of 21.0 °C and
relative humidity ranging from 80 to 84 %. Annual
mean rainfall is ~1400 mm, occurring intensively during
the period of April to September and annual evapora-
tion averages 1261-1388 mm per year. The soils at the
study area is formed from weathered granite and clas-
sified as lateritic red soil in the Chinese system of soil
classification, which is equivalent to an oxisol in the
USDA Soil Taxonomy (State Soil Survey Service of
China 1998; Soil Survey Staff of USDA 2006).

Three plantations with different tree species compo-
sition were chosen for sample collection representing
three different forest management regimes: a monocul-
ture of E. fordii forest, a monoculture of P. massoniana
forest, and a mixed plantation composed of E. fordii and
P. massoniana. Historically, this area was vegetated with
a single coniferous species, P. massoniana; seedlings were
planted in 1983 on a deforested hill. In 2006, the current
plantations with the same density of 2500 trees hm >
were designed after clear-cutting of the P. massoniana
plantation to compare the tree productivity in short-
rotation forests of contrasting management regimes. E.
fordii and P. massoniana are main indigenous tree spe-
cies used for afforestation and reforestation in this area.
E. fordii is a leguminous N-fixing species well-adapted to
the local soil conditions and the subtropical climate. The
configuration of the mixed forest is 1:3 (i.e., 25 % E.
fordii + 75 % P. massoniana). The undergrowth vege-
tation is mainly characterized as Lygodium japonicum,
Dicranopteris dichotoma, Cyrtococcum patens, and Lo-
phatherum gracile.

Soil, litterfall and fine root sampling

Three replicate field sites were selected for sampling in
each of these three forest management regimes (i.c., 9
field sites in total). Seven soil cores were randomly col-
lected from each sampling site at a depth of 0-10 cm
using a stainless soil corer (6-cm diameter) in May 2013.
The seven soil cores from each sampling site were
composited as a homogeneous and representative sam-
ple and thus pooled to yield three composite samples per
plantation. During sampling within each site, the corer
was wiped clean of obvious soil particles with paper
towels. After the soil was sieved through a 2 mm mesh
to remove visible roots, stones, plant debris, and soil
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animals, all samples were placed in polyethylene bags in
duplicate and immediately transported to the labora-
tory. One was air-dried and sieved using a 0.25 mm
mesh for soil properties analysis, and the other was
stored at —20 °C prior to PLFA analysis.

Seven litter fall-traps (each of 1 m x 1 m) with a
mesh size of 1 mm were placed about 1 m above the
ground surface at each site (Wang et al. 2010a). Litterfall
was collected monthly from September 2012 to August
2013. Litterfall samples were oven dried at 70 °C until a
constant weight was achieved and a subsample was used
for C and N analysis. Fine root (diameter <2 mm)
biomass was investigated using sequential soil coring
method (Hertel et al. 2009). From September 2012 to
August 2013, seven soil cores from the upper 20 cm of
the soil were taken from each site monthly with a
stainless soil corer (6-cm diameter). The fine root sam-
ples were subsequently picked up and oven dried at
70 °C until a constant weight. A fine root subsample was
used for C and N analysis. The fine root biomass was
estimated by the average of fine root biomass of the 12
sampling times.

Soil, litterfall and fine root chemical analysis

Soil, litterfall and fine root chemical properties were
measured according to the procedures described by Lu
(2000). Organic C was determined using potassium
dichromate oxidation and titration with ferrous ammo-
nium sulfate. Total nitrogen (TN) was analyzed by mi-
cro-Kjeldahl digestion (UK 152 Distillation & Titration
Unit, Italy). The C/N ratio was calculated as the ratio of
organic C to TN. Soil samples were extracted with 2 M
potassium chloride (KCI) solution, and ammonium-N
(NH,"-N) and nitrate-N (NO; -N) in extracts were
determined with a flow injection auto-analyzer (FIA,
Lachat Instruments, USA). Soil pH was measured using
a 1:2.5 mixture of soil:deionized water suspension.

Soil temperature, moisture and soil respiration

The in situ soil temperatures 5 cm below the soil surface
were measured using a digital thermometer. Soil mois-
ture (0-10 cm) was estimated by the relative water
content as the percentage of water-filled pore space
(WFPS). Soil water content and bulk density were
determined gravimetrically by drying the soil samples at
105 °C for 24 h. Soil WFPS was calculated based on the
following formula (Franzluebbers 1999): WFPS = (
SWC x BD)/[1 — (BD/PD)], where SWC is the soil
water content (g g '), BD stands for soil bulk density
(g cm ), and PD denotes the soil particle density, which
was assumed to be 2.65 g cm .

Soil respiration was measured using a Barometric
Process Separation (BaPS) instrument (UMS GmbH
Inc., Germany) through laboratory incubations as de-
scribed by Ingwersen et al. (1999). From September 2012
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to August 2013, seven intact soil cores were randomly
collected from each sampling site bimonthly. The soil
cores were sealed with parafilm and transported at
coolers to the laboratory after sampling, where they
were processed immediately. The BaPS system has a
container holding a maximum of seven soil cores
introduced to determine soil respiration, nitrification
and denitrification. BaPS technique is based on the
measuring of air pressure and oxygen (O,) and CO,
concentrations in an airtight vessel by incubating an
intact soil core. In such an isothermal, gas-tight, closed
system, the processes of soil respiration, nitrification and
denitrification are the only relevant processes responsi-
ble for the changes of gas pressure. Based on the total
gas balance and inverse-balancing approach, the rates of
soil respiration, nitrification and denitrification can be
mathematically calculated. Briefly, the seven intact soil
cores were incubated in parallel in an isothermal water
bath at temperatures characteristic of those measured in
the field. After temperature equilibration, the top of the
container was closed gas tight by means of a container
lid, into which (1) a pressure sensor for the continuous
record of air pressure changes within the gas-tight closed
system, (2) a Vaisala probe for the measurements of air
temperature and relative humidity, and (3) a gas-sam-
pling port for the removal of gas samples from the
headspace above the soil core were inserted. Prior to
experiments, gas tightness of the incubation system
containing the soil cores was tested. The incubation time
for the soil cores in the closed system was typically 12 h.
The data were recorded on a PC using a data acquisition
system. For well-aerated soil samples, this method is a
time-saving and easy-to-apply alternative that allows for
minimizing any soil perturbation. Moreover, the rates of
soil respiration, gross nitrification and denitrification
can be determined simultaneously. For further details
about the BaPS technique and relevant measuring pro-
cesses see Ingwersen et al. (1999), Miiller et al. (2004),
Briiggemann et al. (2005), Chen and Huang (2006), and
Rosenkranz et al. (2010). Previous studies have shown
good agreement in the result of soil respiration measured
by BaPS and gas chromatography (GC) (Liu et al.
2005).

PLFA analysis

Soil microbial community composition was assessed by
the phospholipid fatty acid (PLFA) profiles (Frostegard
and Baath 1996; Bossio et al. 1998). Briefly, triplicate
fresh soil equivalent to 8 g dry weight were extracted for
2 h using 23 mL of chloroform:methanol:phosphate
buffer (1:2:0.8). The chloroform layer was decanted and
dried under N, at 32 °C. The extracts were sequentially
fractionated into neutral lipids, glyceride, and phos-
pholipids using chloroform, acetone, and methanol
using silica gel-filled solid-phase extraction cartridges.
The samples were then subjected to mild alkaline

methanolysis by dissolving them in 1 mL of methanol:-
toluene (1:1) and 1 mL of 0.2 mol L' KOH, and
heating them at 37 °C for 15 min. Subsequently, 2 mL
of H,O and 0.3 mL of 1.0 mol L™' acetic acid were
added. The resulting fatty acid methyl esters were sep-
arated, quantified, and identified by GC (N6890, Agi-
lent, USA) fitted with a MIDI Sherlocks microbial
identification system (Version 4.5, MIDI, USA).

For each soil sample, concentrations of each PLFA
were calculated based on the methyl nonadecanoate
(19:0) internal standard concentrations. Bacterial sig-
natures were identified by the following PLFAs: 114:0,
115:0, al5:0, 15:0, 116:0, 16:1w7c, 17:0, 117:0, al7:0,
cyl7:0, 18:1w7c and cy19:0. We calculated the sum of
PLFAs i14:0, i15:0, al5:0, 116:0, i117:0 and al7:0 as the
gram-positive bacteria, and the sum of PLFAs 16:1w7c,
cyl7:0, 18:1w7c¢ and cy19:0 as the gram-negative bacte-
ria. The PLFAs 18:1w9¢ and 18:2w6,9c were used as
indices for fungi, and PLFA 16:1w5c was used as a
marker for arbuscular mycorrhizal fungi (AMF). Acti-
nomycetes were identified using the PLFAs 10Mel6:0
and 10Mel7:0 (Frostegard and Baath 1996; Zelles 1997,
Baath and Anderson 2003). Other PLFAs such as 14:0,
16:0, 18:0, 16:1 20H, 16:1w9¢c, 17:1w8c and cy19:0w8c
were also used to analyze the microbial community
composition. All of the PLFAs indicated above were
considered to be representative of the total PLFAs of the
soil microbial community.

Statistical analysis

Soil, litterfall and fine root chemical properties and
microbial variables were analyzed using one-way anal-
ysis of variance (ANOVA) to evaluate statistical differ-
ences among the forest management regimes. Repeated
measures ANOVA was used to examine the effects of
forest management regime, sampling time, and their
interactions on soil respiration. Data were natural-log or
square root transformed when necessary to meet
assumptions of normality and homogeneity of variance.
All statistical tests were performed using SPSS 19.0
(SPSS Inc., Chicago, USA). Significant differences were
set as P < 0.05. PLFA biomarkers obtained from the
sampled soils were standardized before performing
principal component analysis (PCA) to ensure each
PLFA had the same weight in the analysis. Redundancy
analysis (RDA) was used to analyze the responses of soil
microbial community composition to chemical proper-
ties using CANOCO software (version 4.5, Microcom-
puter Power, Inc., Ithaca, NY) for Windows. Automatic
selection of means by Monte Carlo permutations was
used to test the significance of the variables (P < 0.05).
Additionally, Pearson’s test was used to analyze the
relationships between the microbial PLFAs and the soil
chemical properties, as well as the soil respiration and
microbial PLFAs. Figures were generated using Sig-
maPlot version 10.0.



Results
Soil, litterfall and fine root chemical properties

Significant differences were found among the three forest
management regimes for all soil, litterfall and fine root
chemical properties except for SOC and fine root C/N
ratio (Table 1). The concentrations of TN, NH, -N,
and NO3 -N tested from the E. fordii and mixed forest
were significantly higher than those in the P. massoniana
forest. In contrast, soils from the P. massoniana forest
had the highest C/N ratio and pH. The highest con-
centration of SOC was detected in the E. fordii forest
which was 6.6 % higher than in the mixed forest and
10.1 % higher than in the P. massoniana forest, respec-
tively, though differences among these three forest
management regimes were not significant. The litterfall
and fine root biomass, litterfall N and fine root C con-
tents of the E. fordii and mixed forest were significantly
higher compared with those of the P. massoniana forest.
However, the litterfall C/N ratio of the E. fordii and
mixed forest was significantly decreased by 46.7 and
61.5 %, respectively, relative to that of the P. massoni-
ana forest. In addition, there were no significant differ-
ences in ecosystem total C stock among these
management regimes.

Soil temperature, moisture and soil respiration

Soil temperature and WFPS measured from all forest
management regimes exhibited notable seasonal varia-
tions, with the highest values being observed in
September 2012 (the hot-humid season) and lowest
values in January 2013 (the cool-dry season) (Fig. 1a, b).
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The sampling time in November 2012 was a particularly
shorter wet episode in the cool-dry season. Considering
the historical climatic conditions in this region,
November 2012 was included in the cool-dry season.
There were no significant differences in soil temperature
and WFPS among forest management regimes within
each sampling time.

Soil respiration measured from all forest management
regimes also displayed a significant seasonal variation,
which was lower during the cool-dry season (from
November 2012 to March 2013) compared with the hot-
humid season (September 2012, May 2013, and July
2013) (Fig. 1c). Soil respiration varied between 2.3 and
259 mg C kg ! soil dry weight (SDW) day ! in the
three forest management regimes during the whole study
period. There were significant forest management regime
and sampling time effects on soil respiration. The soil
respiration in the E. fordii and mixed forest was 31.0 and
10.3 % significantly higher than that in the P. massoni-
ana forest, respectively.

The dynamics of soil respiration in all forest man-
agement regimes coincided with those of soil tempera-
ture and WFPS (Fig. 2). When each forest management
regime was considered independently, soil respiration
was significantly correlated with soil temperature and
WEPS. The response of soil respiration to temperature
could be well described with the exponential function
(R2 = 0.817—0.895, P < 0.001). Meanwhile, we found
a linear relation between soil respiration and WFPS
(R* = 0.287—0.336, P < 0.05).

Soil microbial PLFAs

The soil microbial biomass (represented by microbial
PLFAs) of total, bacteria, actinomycete, AMF, gram-

Table 1 Soil, litterfall and fine root chemical properties measured from the three forest management regimes

Chemical properties

Erythrophleum fordii forest

Mixed forest Pinus massoniana forest

Soil organic carbon (SOC, g kfgfl) 18.80 + 1.95a
Soil total nitrogen (TN, g kg™ ') 1.43 + 0.06a
Soil ammonium-N (NH, " -N, mg kg™ 8.08 £ 0.24a
Soil nitrate-N (NO3; ™ -N, mg kg™ ") 2.32 + 0.04a
Soil C/N ratio 13.10 = 0.98b
Soil pH 4.51 £ 0.04b
Litterfall biomass gg m~2 year ') 389.5 + 13.4a
Litterfall C (g kg™ ) 483.6 £ 6.89b
Litterfall N (g kg™ 342 + 0.16a
Litterfall C/N ratio 14.13 + 0.21c
Fine root biomass (g m~?) 170.5 £ 15.8a
Fine root C (g kg™ ") 602.7 + 8.48a
Fine root N (g kg™") 8.38 £+ 0.52a
Fine root C/N ratio 72.6 £ 5.55a
Above-ground C stock (Mg hm™2)* 18.25 + 1.08b
Below-ground C stock (Mg hm’z)B 115.8 £ 5.04a
System C stock (Mg hm2)€ 134.1 + 4.55a

17.64 £ 1.11a 17.07 £ 2.52a
1.28 + 0.14a 1.01 + 0.02b
7.56 = 0.31a 5.10 = 0.35b
1.88 £ 0.04b 1.65 + 0.08c
13.86 £ 1.90ab 16.94 + 2.83a
4.57 £ 0.02b 4.67 £ 0.04a
3543 + 9.1a 336.7 + 7.5b
508.0 + 5.06a 509.7 £ 5.90a
19.2 £ 0.33b 139 + 0.22¢
26.49 £ 0.71b 36.67 £ 0.23a
150.2 £ 10.3a 110.7 £ 8.9b
532.5 + 9.44b 487.4 £+ 7.55¢
7.62 £ 0.17b 7.44 + 0.05b
69.87 £ 0.49a 65.54 £ 1.45a
27.99 + 1.02a 28.31 £ 3.35a
109.8 + 3.76ab 102.8 £ 6.72b
137.8 + 4.08a 131.1 £ 9.92a

Different lowercase letters indicate significant differences among forest management regimes (P < 0.05). Values are mean £ SE (n = 3)

A Tree + understory + litterfall
B From 0 to 100 cm soil layer
€ Above-ground + below-ground
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Fig. 1 Dynamics of soil temperature (a), water-filled pore space
(WFPS), (b) and soil respiration (¢) measured in the three forest
management regimes. SDW soil dry weight. Error bars show
standard errors (n = 3). P, forest management regime effects; Ps,
sampling time effects; Pk s, interactions effects of forest manage-
ment regime X sampling time

positive bacteria, and gram-negative bacteria signifi-
cantly increased in E. fordii and mixed forest, whereas
those of fungal biomass and F/B ratio decreased. Spe-
cially, the highest total PLFAs were found in the FE.
fordii forest (11.91 nmol g~'), which were 10.2 % higher
than that in the mixed forest (10.81 nmol g~'), and
27.2 % significantly higher than those in the P. masso-
niana forest (9.36 nmol g~'). The bacterial PLFAs,
actinomycetic PLFAs, AMF PLFAs, gram-positive
bacterial PLFAs, and gram-negative bacterial PLFAs in
the E. fordii forest increased by 9.7, 12.5, 17.6, 10.3 and
7.7 % compared with those in the mixed forest,
respectively, and significantly increased by 33.8, 49.1,
80.3, 34.7 and 31.5 % than those in the P. massoniana
forest, respectively. However, the fungal PLFAs for the
P. massoniana forest (1.54 nmol g~') was higher than
that in the mixed forest (1.40 nmol g~ ') and significantly

35
(@) « Erythrophleum fordii forest .
30—
o Mixed forest 0
25 | e
v Pinus massoniana forest 8

Soil respiration (mg C kg_1 SDW day_1)

WEPS (%)

Fig. 2 Relationships between soil respiration and soil temperature
(a) and water-filled pore space (WFPS), (b) in the three forest
management regimes

higher than that in the E. fordii forest (1.24 nmol g ).
The F/B ratio in the P. massoniana forest reached the
highest of 0.34, which was significantly higher than that
in the E. fordii forest (0.21) and mixed forest (0.26).

There was no significant relationship between the
SOC and all soil microbial PLFAs. Total N and pH
were all significantly correlated with all microbial
PLFAs except for actinomycetic PLFAs. The C/N ratio
was significantly and negatively associated with bacterial
PLFAs and actinomycetic PLFAs, but was significantly
and positively related with the F/B ratio. The NH, " -N
and NOj3 -N concentrations were all significantly cor-
related with all microbial PLFAs except for fungal
PLFAs.

Soil microbial community composition

The data concerning the individual relative concentra-
tion (mol%) of the 21 most common PLFAs were sub-
jected to a principal component analysis (PCA; Fig. 3).
The first principal component (PC1) explained 63.0 %
of the total variance in soil microbial communities, while
the second, PC2, only explained 19.6 % of the total
variance. The PCA biplot revealed that the soil micro-
bial communities from the three forest management re-
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Fig. 3 Principal component analysis (PCA) biplots of the phos-
pholipid fatty acid (PLFA) composition of microbial community in
the soil samples from the three forest management regimes.
Bacterial PLFAs: i14:0, 115:0, al5:0, i16:0, 16:1w7c, 17:0, i17:0,
al7:0, cyl7:0, 18:1w7c; Actinomycetic PLFAs: 10Mel6:0 and
10Mel17:0; Fungal PLFAs: 18:1w9¢c and 18:2w6,9¢; Arbuscular
mycorrhizal fungal PLFA: 16:1w5c; Other PLFAs: 14:0, 16:0, 18:0,
16:1 20H, 17:1w8c, cy19:0w8c

gimes were compositionally distinct from each other.
The E. fordii forest with higher PC1 scores was observed
on the right of the axes 1. By their loading values it is
evident that the fatty acids associated with bacteria,
including i14:0, 115:0, al15:0, 16:1w7c, cyl7:0, 18:1w7c,
AMF PLFA biomarkers (16:1w5c), and one of actino-
mycetic PLFA biomarkers (represented by 10Mel6:0)
were all most important for the separation of the FE.
fordii forest. The axes 2 separated the P. massoniana
forest from the other two forest management regimes,
and the higher PC2 scores were observed for P. masso-
niana forest on the upper of the axes 2. Specifically, the
P. massoniana soil was abundant in two fungal PLFAs
biomarkers: 18:1w9¢ and 18:2w6,9¢c (Fig. 3).

Redundancy analysis (RDA; Fig. 4) of relationships
between soil microbial community composition and soil
chemical properties showed that the first axes (RD1) and
second axes (RD2) explained 62.5 and 27.2 % of the
total variance of the relationship, respectively. The sig-
nificance of soil environmental factors (SOC, TN, C/N
ratio, NH, "-N, NO; -N, and pH) present in the ordi-
nation was determined by Monte Carlo permutation
tests, which demonstrated that the TN (P = 0.0006),
NO; -N (P = 0.010), and pH (P = 0.035) were the key
factors in shaping the soil microbial community com-
position under these forest management regimes assayed
in this study.

Relationships between soil respiration and microbial
PLFAs

Correlation analysis showed that soil respiration was
significantly correlated with the microbial PLFAs of the
total, bacteria, actinomycete, AMF, gram-positive bac-
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Fig. 4 Redundancy analysis (RDA) of relationships between soil
microbial community composition and chemical properties. The
solid lines represent the soil chemical variables and the dashed lines
represent the phospholipid fatty acid (PLFA) biomarkers. SOC soil
organic carbon, TN total nitrogen, C/N the ratio of soil organic
carbon to total nitrogen. Bacterial PLFAs: 114:0, 115:0, a15:0, 116:0,
16:1w7c, 17:0,117:0, al7:0, cy17:0, 18:1w7¢c; Actinomycetic PLFAs:
10Mel6:0 and 10Mel7:0; Fungal PLFAs: 18:1w9¢ and 18:2w6,9c¢;
Arbuscular mycorrhizal fungal PLFA: 16:1w5c; Other PLFAs:
14:0, 16:0, 18:0, 16:1 20H, 17:1w8c, cyl19:0w8c. The P values
presented in figure resulted from the Monte Carlo permutation test

teria, and gram-negative bacteria (R® = 0.52 — 0.71,
P < 0.05 or P < 0.01). However, no strong relation-
ship was found between the soil respiration and the
fungal PLFAs and the F/B ratio (P > 0.05).

Discussion

The temporal and spatial variations of soil respiration in
the three forest management regimes in subtropical
China were first described. We found that temporal
variations of the soil respiration were accompanied by
considerable differences in soil temperature as well as
soil moisture in all forest management regimes (Figs. 1,
2), indicating that soil temperature and moisture exert
crucial effects upon the temporal variations of soil res-
piration. Similar results were also observed in other
forest ecosystems (Tang et al. 2006; Sheng et al. 2010;
Wang et al. 2010a). Significant differences in soil respi-
ration have also been observed among different forest
management regimes (Fig. 1¢). Soil CO, emissions from
soil respiration primarily generate from heterotrophic
(microbial) respiration and autotrophic (root) respira-
tion (Janssens et al. 2001; Shi et al. 2015a). It has been
proposed that much of the spatial variations in soil
respiration could be explained by differences of soil or-
ganic matter, root biomass and soil microorganisms
(Ryan and Law 2005; Epron et al. 2006; Sheng et al.
2010; Wang et al. 2010a). The substrate C availability
has been reported to have a strong impact on soil res-
piration or its components (Sheng et al. 2010; Wang
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et al. 2013; Shi et al. 2015a). For soil organic C, how-
ever, no apparent differences were observed among these
forest management regimes in our study (Table 1).
Therefore, the observed differences in soil respiration
among these particular regimes cannot be directly as-
cribed to soil organic C. With regard to fine root bio-
mass, it varied significantly with management regime
(Table 1). The fine-root biomass in the E. fordii and
mixed forest was significantly greater than that in the P.
massoniana forest, indicating that root respiration may
be higher in the E. fordii and mixed forest compared
with that in the P. massoniana forest (Yang et al. 2007;
Hertel et al. 2009; Sheng et al. 2010). Aside from root
biomass, the observed differences in soil respiration in
these forest management regimes may be associated with
soil microbial biomass. First, there were abundant mi-
crobes (e.g., bacteria, AMF and actinomycete) in the E.
fordii and mixed forest which would potentially con-
tribute to the increase in microbial respiration and thus
in soil respiration. Second, soil of P. massoniana forest
with higher fungal biomass also resulted in lower soil
respiration, which might due to fungi incorporating
more substrate C into biomass in comparison with
bacteria (Sakamoto and Oba 1994; Austin et al. 2004),
and the C turnover is generally slower in these ecosys-
tems (Priha et al. 1999; Six et al. 2006). Additionally our
correlation analysis also showed that soil respiration was
significantly correlated with most of the microbial
PLFAs groups. A previous study in a coniferous forest
showed that the soil microbial community controls the
forest soil respiration, which supported our finding
(Wang et al. 2013). An additional factor explaining the
relatively low soil respiration in the P. massoniana
plantation may be partially due to the high C/N ratio of
the litter (Table 1). Xu and Hirata (2005) emphasized
that litter C/N ratio, as a good indicator of litter quality,
is an important factor regulating soil microbial activity
and thus influencing soil CO, emissions. The previous
study showed that tree species with a high litter C/N
ratio could decrease soil respiration in subtropical
plantations (Wang et al. 2010a). The litterfall C/N ratio
was higher in the P. massoniana plantation than that in
the other two plantations (Table 1), indicating that soil
CO, emissions may be lower in the P. massoniana
plantation.

A vast majority of studies have focused on the effects
of different forest ecosystems on soil microbial com-
munities (Hackl et al. 2005; Ushio et al. 2008; Lucas-
Borja et al. 2012), yet few of them tried to explore the
response of soil microbial biomass and community
composition to N-fixing tree ecosystems (Boyle et al.
2008; Bini et al. 2013; Hoogmoed et al. 2014b). In the
present study, the measured soil total PLFAs from these
forest management regimes are roughly comparable to
other forest studies (Lucas-Borja et al. 2012), but less
than those measured from some tropical and subtropical
forests (Baath and Anderson 2003; Ushio et al. 2008;
Cao et al. 2010; Huang et al. 2014), and higher than
those of 12 representative natural forests in the eastern

part of Austria (Hackl et al. 2005). The observed dif-
ferences in total PLFAs in different studies possibly arise
from some complex factors, such as climate, vegetation
composition, temporal and spatial variations in soil
characteristics. The forest management with different
tree species had different effects on soil microbial com-
munity composition, indicating that tree species play an
important role in influencing soil microorganisms.
Compared with the P. massoniana plantation, the
monoculture and mixed N-fixing tree plantations in-
creased the soil microbial biomass of different groups.
Consistent with our results, Huang et al. (2014) observed
similar increases in soil microbial biomass in the
0-10 cm soil within mixed forest of 4. mangium and E.
urophylla plantation. Similarly, an earlier study con-
cluded that total microbial biomass as well as actino-
mycetic biomass in rhizosphere soil in monoculture and
mixed culture of legumes were significantly higher than
those in non-legumes (Chai et al. 2004). Nevertheless,
Boyle et al. (2008) reported that microbial biomass did
not vary between A. rubra and P. menziesii forest soils,
where the average N concentrations were 6.3 and
4.7 g kg~', respectively. It could be speculated that the
inherently high soil N status may exceed the threshold
for microbial N limitation, consequently may result in
no significant response of soil microbes.

In the present study, we found that the soil microbial
communities from the three forest management regimes
were compositionally distinct from each other (Fig. 3).
This could be mainly attributed to the variations of the
quality and quantity of litter, soil nutrient availability,
and root exudates. Further RDA revealed that the key
factors acted on the soil microbial community compo-
sition were TN, NO3; -N and pH (Fig. 4). At least three
aspects could be explained for this situation. First, the
litters from N-fixing tree species are easily decomposed
because of their optimal chemical properties (e.g., high
N and low C/N ratio). Therefore, soil organic matter
and nutrient input rates and properties would signifi-
cantly affect soil microbial biomass and community
structure (Mendham et al. 2002; Cao et al. 2010). Sec-
ond, the N-fixing plants might enhance microbial bio-
mass via greater root exudation compared to non-N-
fixing plants or specific root exudates from N-fixing
plants (e.g., flavonoids) (Martin 1971; Mathesius 2001).
Moreover, soil acidification caused by nitrogen fixation
and nitrification under N-fixing tree plantations can be
responsible for the pH decrease (Yamashita et al. 2008),
which further altered the soil microbial community
composition. In addition, our study site is located in an
area of degraded soil fertility resulting from successive
planting of monocultures of coniferous tree species, and
the soil has low N content and may be nitrogen-limiting
to microbes. However, forest management with N-fixing
tree species may alleviate the microbial nitrogen-limita-
tion.

In our study, total PLFAs, which are used to estimate
the total microbial biomass, were significantly and pos-
itively related to TN, but were not associated to SOC



and C/N ratio, which indicated that TN might account
for the variation in total PLFAs. Previous studies also
concluded that high soil fertility could stimulate micro-
bial growth in the forest soils (Mendham et al. 2002;
Ushio et al. 2008; Wagai et al. 2011). Nevertheless, it
was also reported that total PLFAs could be negatively
related to SOC and TN (Grayston et al. 2004). Soil types
and their associated soil characteristics, such as available
phosphorus, pH, texture, and soil moisture has varied in
different studies, which might account for the inconsis-
tent relationships between total PLFAs and SOC and
TN. Additionally, we found that N-fixing tree planta-
tions increased the bacterial biomass whereas P. mas-
soniana plantation increased the fungal biomass. One of
the explanations is that the fungi generally have lower N
demand (microbial C/N = 4 for bacteria, and 10 for
fungi) (Austin et al. 2004), therefore might develop well
under N-poor conditions in P. massoniana plantation
(Carreiro et al. 2000). However, soil nutrients under
N-fixing tree plantations provided abundant substrates
for bacterial growth, and bacteria adapt to nutrient-rich
conditions and use low C/N ratio substrates more effi-
ciently than fungi (Lundquist et al. 1999; Williamson
et al. 2005). Another reason for the high prevalence of
fungi in the pine P. massoniana plantation may be that
fungi are presumably more adapted to decompose pine
litter as bacteria (Hackl et al. 2005). Pine litter contains a
great amount of recalcitrant organic compounds (e.g.,
lignin and tannins), and fungi are the organisms prin-
cipally responsible for the degradation of these com-
pounds (Dix and Webster 1995). In addition, low
amount of PLFA 16:1w5c, indicating arbuscular myc-
orrhizal fungi, may be related to the low but easily uti-
lized soil C in the P. massoniana plantation, since a
decline in this fatty acid has also been observed after the
depletion of easily available C sources in an incubation
experiment (Frostegard et al. 1996).

Soil pH is one of the major factors influencing the
soil microbial community composition (Frostegard
et al. 1993; Baath and Anderson 2003; Hogberg et al.
2007; Lucas-Borja et al. 2012). The observed increase in
the total PLFAs with decreasing pH parallels results
from Ushio et al. (2008) and Cao et al. (2010). The
microbial biomass of AMF, gram-positive and gram-
negative bacteria increased with decreasing pH de-
scribed in our study which is consistent with the results
from a tropical montane forest ecosystem (Ushio et al.
2008). It has been proposed that pH is positively related
to bacteria and is negatively related to fungi (De Vries
et al. 2006; Hogberg et al. 2007; Rousk et al. 2009;
Lucas-Borja et al. 2012; Dong et al. 2014). One poten-
tial explanation for this phenomenon could be that high
concentrations of hydrogen ion hinder bacterial growth
while low concentrations of hydrogen ion limit fungal
growth (Rousk et al. 2009). In our study, however, we
found the pH was negatively related to bacteria and a
positive correlation was observed to fungi, despite the
narrow pH range (Table 1) in our experimental sites.
Our findings are contrary to previous studies about the
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effect of pH on these microbes, and the reason is still
unclear.

Conclusions

The inclusions of N-fixing species in forests significantly
increased the soil C emission, but have no effects on SOC
and ecosystem total C stock. In addition, soil microbial
communities were compositionally distinct among the
three forest management regimes. Soil total and bacterial
PLFAs in the monoculture and mixed N-fixing tree
plantations were significantly higher than in the P. mas-
soniana plantation, whereas fungal PLFAs were higher in
the P. massoniana plantation than in the other two
plantations. Differences observed in soil microbial com-
munity composition were related to the soil chemical
properties such as total N, NO3; ™ -N, and pH. Our study
suggests that elevated soil respiration in the N-fixing tree
plantations could be primarily explained by the increase
of root biomass and soil microbial biomass, but not soil
organic carbon. Given that soil fertility and microbial
biomass were promoted, forest management with N-fix-
ing trees resulted in no significant increase in ecosystem
total C stock but caused further CO, production in
laboratory assays. The future decision of tree species
selection for forest management in subtropical China
therefore needs to take into account the potential impacts
of tree species on CO, emissions.
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