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Abstract We analysed bearded vulture (Gypaetus bar-
batus) occurrences collected through long-term moni-
toring (from 1993 to 2010) in the Western Alps (1) to test
whether ecological niches shift due to individual devel-
opment and (2) to verify whether these patterns could
reflect their spatial distribution. Thus, we compared the
distribution patterns of three age classes (‘young’, ‘sub-
adults’ and ‘adults’) through the K-select analysis. We
then computed ten species distribution models (SDMs)
and their average prediction to test for differences in age
class distribution. The K-select analysis showed highly
significant differences in the ecological niche among all
the age classes and we also found highly significant
differences in all the SDMs among the three age classes
considered. Our results quantitatively showed that target
species exhibits age specific shifts in the ecological niche
and changes in the spatial distribution of individuals.
Our methods are potentially widely applicable for test-
ing differences among age classes of other species and
thus, defining the best conservation actions (such as re-
introduction) by taking into account different require-
ments in different stages of the individuals’ life.

Keywords Age-specific ecological niche Æ Ensemble
prediction Æ Functional response Æ K-select analyses Æ
Species distribution models

Introduction

Dissimilarities between the age-stage of a population,
such as life-history characteristics (Swab et al. 2012), are
rarely considered in habitat selection studies (Burns
et al. 2013). However, age-specific characteristics are
strictly related to resource selection, because individuals
experience different environments and make different
life-history decisions which are important for population
and evolutionary dynamics (Evans et al. 2012).

Niche-based models are widely used to identify the
factors affecting a species’ ecological niche (Guisan et al.
2013) and could provide a useful tool for verifying
changes in the ecological niche during an individual’s
development. Niche models typically associate the
locations of a species’ occurrence with multiple envi-
ronmental factors (Calenge et al. 2005), and two main
types of niche models can be distinguished: hindcasting
and forecasting (Morrison et al. 1992). While hindcast-
ing is the process intended to emphasize important
variables which determine the current occurrence of a
given species, forecasting is the process of fitting statis-
tical models using data from the present distribution of a
species and then estimating its potential distribution
(Calenge et al. 2005; Pearman et al. 2008).

Species distribution models (SDMs, also commonly
referred as ecological niche models ENMs, Guisan et al.
2013) show high efficiency in both hindcasting and
forecasting species’ distributions (Rebelo and Jones
2010; Franklin 2013). These approaches have been
widely used in landscape ecology as a support tool for
landscape management (Guisan et al. 2013), invasive
species risk assessments (Beaumont et al. 2009), esti-
mating the impacts of climate change on biota (Hof
et al. 2012), and identifying suitable areas for species
conservation (Engler et al. 2004; Johnson et al. 2004).
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Nevertheless, neither hindcasting nor forecasting niche-
based models have been carried out to evaluate ecolog-
ical niche shift during the life history of individuals to
date.

Thus, our aims are (1) to test whether ecological niche
shifts due to an individuals’ development occur and (2)
to verify if these variations could be reflected in their
spatial distribution. We expect that different age groups
show different selections of habitat features. Young
individuals should mostly maximize the use of more
profitable habitats for foraging. Instead, adults are also
committed to reproduction; the same can be true for
sub-adults approaching reproductive age; these last two
classes must also take into account habitat suitability for
nesting. Our dataset consists of the locations of wild
bearded vultures (Gypaetus barbatus) successfully rein-
troduced into the Alpi Marittime Natural Park (Italy)
and the Mercantour National Park (France), Western
Alps (Bogliani et al. 2011).

Methods

Study area

Our study area was located in Marittime Alps, including
two contiguous protected areas: the Alpi Marittime
Natural Park, Piedmont, Italy, and the Mercantour
National Park, France. The area covers a surface of
7784 km2 and shows high habitat diversity as the result
of a wide altitudinal range from 490 to 3297 m a.s.l.
(Figure 1). Alpine habitats, pastures, and open lands
(28 %), coniferous forests (22 %), and rocks and gla-

ciers (10 %) occupy most of the area; uncultivated fields
and shrubs (10 %), beech (12 %), and mixed woods
(8 %) characterise the mountains; while human activi-
ties are concentrated in a few villages in the lower por-
tions of the main valleys (9 %). Rivers, streams, and
lakes constitute only 1 % of the total area. The envi-
ronmental heterogeneity, the expansion of natural
habitats, and re-introduction projects explain the high
diversity of the community of wild ungulates: alpine ibex
(Capra ibex), alpine chamois (Rupicapra rupicapra), red
deer (Cervus elaphus), roe deer (Capreolus capreolus) and
wild boar (Sus scrofa). Domestic ungulates, mostly cows
(Bos taurus), sheep (Ovis aries) and goats (Capra hircus)
are free ranging in high-altitude pastures during the
summer months (Parco Alpi Marittime 2000; Parc Na-
tional du Mercantour 2002).

The validation phase was carried out on data col-
lected in the Gran Paradiso National Park, located in
the north-western Italian Alps, 105 km from the Alpi
Marittime and Mercantour area. It covers a surface of
720 km2 with an altitude ranging from 700 to 4061 m
a.s.l. The area is mostly covered by alpine habitats such
as meadows, rocks, and glaciers; forests cover less than
20 % and human activities are concentrated only in a
few villages. The availability of carrion from large
ungulates is high as the park and surrounding areas host
large populations of alpine ibex and alpine chamois, as
well as roe deer and wild boars. Wild ungulates mostly
die from winter starvation, avalanche casualties and
predation by wolves (Canis lupus) since 2006. Domestic
livestock are also present in the park and the sur-
rounding areas during the summer months and some of
them die from disease or wolf predation.

Fig. 1 Study area. At the upper left corners thick black lines
indicate the border of the Gran Paradiso National Park, at the
lower left corner thick black lines indicate the border of the Alpi
Marittime Natural Park and the Mercantour National Park. Fine

black lines indicate the national borders. In both the panels
altitudinal ranges in bright–dark grey indicates higher–lower
altitude
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Data collection

Data collection in the Marittime Alps was carried out
from October 1993 to December 2010 by trained per-
sonnel from the Alpi Marittime Natural Park and the
Mercantour National Park and by volunteers external
observers. In the Gran Paradiso National Park, sighting
records were collected inside the park borders from 1989
to 2007. Each observation was recorded on field data
sheets, marked on a detailed map, or in recent years by
GPS (Global Position System), and the age class of the
individuals was specified. The observed vultures were
thus classified as young (Y; <3 years-old), sub-adults
(S; 3–5 years-old), or adults (A; >5 years-old) on the
basis of their plumage and moult, similar to the classi-
fication of Bogliani et al. (2011) and Margalida et al.
(2011). Data were then georeferenced in the UTM
WGS84 32 N coordinates system using ARCGIS 10.1
(ESRI, Redlands, California: http://www.esri.com/
software/arcgis).

Moreover, we accounted for a spatially biased sam-
pling effort (Stolar and Nielsen 2014) through Gaussian
kernel density analysis based on all sampling locations
(grouping all bearded vulture locations collected; Elith
et al. 2010; Fourcade et al. 2014). We used the kernel
density probability for each cell of the resulting sampling
effort map to weight bias-adjusted model estimates
(Stolar and Nielsen 2014; Milanesi et al. 2015; see be-
low): ten-thousand random points within the resulting
95 % kernel density surface were thus generated to serve
as background data.

Identifying which areas are available for vulture dis-
tribution is crucial due to the wide dispersal capacities
and the ability to cross sub-optimal and unsuitable en-
vironments shown by the target species (Hirzel et al.
2004). Without considering habitat availability, we
could potentially introduce a source of bias in the
analysis (Calenge et al. 2008), and thus, we derived the
minimum convex polygon (MCP) around all bearded
vulture locations collected, similarly to Calenge et al.
(2005).

Predictor variables

For the entire study area, we collected data on ecologi-
cal, topographic, and anthropogenic features (Table 1).
Land cover types were obtained from the Coordination
of Information on the Environment (CORINE Land
Cover 2006; http://www.eea.europa.eu/data-and-maps/
data/clc-2006-vector-data-version-3), the European land
cover database. We obtained topographic variables,
namely altitude, slope, and landscape roughness from a
Digital Elevation Model (DEM) with a spatial resolu-
tion of 15 m (ASTER GDEM; http://gdem.ersdac.
jspacesystems.or.jp/). Moreover, we considered the dis-
tance from anthropogenic elements (i.e. urban areas,
villages, roads, railways). Our study area included two
States and three Regions, each with different availability
(or deficiency) of data on both wild and domestic
ungulates. Therefore, even if prey abundance has been
previously used to forecast the distribution of the vulture
(Hirzel et al. 2004), we did not include these predictor
variables in our models to avoid biased estimates of the
densities due to dissimilarities in the census techniques
applied in different parts of the study area. Similarly to
Hirzel et al. (2004), we re-sampled all the variables to a
common resolution of 100 · 100 m cell size using Arc-
GIS 10 (ESRI, Redlands, California: http://www.esri.
com/software/arcgis).

Modeling methods

Data exploration was the first step of our analyses. To
avoid biases due to collinearity among predictor vari-
ables, we carried out Pearson correlation tests
(Table S1), considering a threshold value of |r| > 0.7
(Dormann et al. 2014). Moreover, we assessed the
presence of outliers in the data (Fig. S1) with multi-panel
Cleveland dotplots (Zuur et al. 2010) and tested spatial
autocorrelation among all bearded vulture locations
collected (Fig. S2) with Moran’s I correlogram (Dor-
mann et al. 2007). In the latter analysis, which provides

Table 1 Variables used in the development of bearded vulture hindcasting and forecasting models, average values in the whole study area
and in the used cells

Feature Variable Unit Available area Used cell

Young Sub-adult Adult

Land cover Forests Percentage (%) 14.11 (13.85) 6.91 (2.95) 6.07 (2.04) 9.46 (4.47)
Grasslands Percentage (%) 18.79 (17.27) 23.99 (10.56) 29.52 (12.21) 20.41 (16.77)
Rocky areas Percentage (%) 9.51 (8.29) 21.04 (19.43) 14.68 (14.16) 10.87 (10.21)
Shrub-lands Percentage (%) 10.23 (8.64) 17.47 (16.66) 17.11 (16.62) 23.81 (11.72)

Topography Altitude meters a.s.l. (m) 1433 (653) 1971 (447.37) 1951 (387) 1907 (410)
Slope Degrees (�) 23.94 (10.58) 28.08 (9.74) 27.32 (9.48) 25.24 (9.59)
Roughness Ratio of isoipses’ average

length in the grid derived
by grid side length

0.029 (0.015) 0.044 (0.032) 0.043 (0.028) 0.043 (0.033)

Anthropogenic
factors

Distance to
human settlements

meters (m) 6405 (4258) 8644 (4610) 9617 (5212) 12,289 (5718)

Standarddeviations (S.D.) are in parentheses
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useful information for discarding related observations,
we considered all the bearded vulture locations (group-
ing locations of all age classes) to avoid the potential
‘attractive’ effect of adults on sub-adults and young
individuals which occurred at least twice during the
study period (Luca Giraudo, personal observation).

Since hindcasting should necessarily precede fore-
casting and, as a given statistical approach would not
necessarily be as efficient for both objectives, we pri-
marily applied the K-select analysis (Calenge et al. 2005)
for hindcasting studies; while, to forecast the potential
distribution of each age class, we carried out ten SDMs
and their average prediction (ensemble prediction, EP;
Araùjo and New 2007; Coetzee et al. 2009; Jones-Far-
rand et al. 2011).

Hindcasting modelling To investigate life-history
changes in habitat selection for each age class of loca-
tions, we compared used and available sites through
niche-based approaches. We carried out a K-select
analysis widely used in hindcasting models (Calenge
2006; Hansen et al. 2009; Pellerin et al. 2010; Tolon et al.
2012; Rauset et al. 2013; Nicholson et al. 2014). This
method assumes that utilisation of available resources
can be defined by environmental variables in a multi-
dimensional niche-space (sensu Hutchinson 1957) and is
particularly suitable for use-availability data (Hansen
et al. 2009). K-select is a multivariate analysis that
provides a marginality value which is one measure of
habitat selection. Marginality is a criterion that mea-
sures the squared Euclidean distance between the aver-
age habitat conditions used by organisms and the
average habitat conditions available to them. We per-
formed an eigenvalue-analysis of the marginality vectors
to summarize the habitat selection common to all the
age classes, using a randomization test with 10,000
replicates (Calenge et al. 2005). K-select analysis also
provides the coefficients of all the environmental vari-
ables and thus lets us identify the effect of each predictor
on the presence of each age class.

Forecasting modelling To verify differences in the
spatial distribution among age classes, we developed ten
SDMs: (1) maximum entropy algorithms (MAXENT;
Phillips et al. 2006), a density-based model that calcu-
lates several functions to identify the best approximation
between the distributions of predictors at occurrences of
each age class and those of the rest of the study area, (2)
factorial decomposition of Mahalanobis distances
(MADIFA; Calenge et al. 2008), based on a decompo-
sition of Mahalanobis distances into uncorrelated axes
of which the first axes are then selected to compute
scores of habitat suitability, (3) generalised linear models
(GLM; McCullagh and Nelder 1989), a logistic regres-
sion model that relates occurrences of each age class and
pseudo-absences with predictors, (4) boosted regression
trees (BRT; Friedman 2001), a regression model that
combines regression trees and boosts methods resulting
in an additive regression model in which individual
terms are simple trees, (5) generalized additive models
(GAM; Hastie and Tibshirani 1990), a regression model

which involves smoothing functions derived by predictor
variables to estimate parametric components of linear
predictors, (6) classification tree analyses (CTA; Brei-
man et al. 1984), a recursive partitioning algorithm that
applies splitting rules to develop decision trees and
partition the data to reduce the conditional variation in
the response variable, (7) artificial neural networks
(ANN; Ripley 2007), a non-linear regression model
based on hidden variables (derived by linear combina-
tions of the predictors), (8) flexible discriminant analyses
(FDA; Hastie et al. 1994), a discriminant analysis based
on mixture models, (9) multivariate adaptive regression
splines (MARS; Friedman 1991), a non-linear regression
that automatically models non-linearity interactions
between variables, (10) random forests (RF; Breiman
2001), an ensemble classifier that consists of many
decision trees which constitute ‘‘the forest’’.

We also calculated the average of the predictions of
the ten single methods (ensemble prediction, EP). The
values of the cells of the resulting distribution maps
ranged from 0 to 1, and we considered a threshold of 0.5
to distinguish areas suitable for bearded vultures (Bailey
et al. 2002; Fukuda et al. 2013). The values of the
sampling effort map (see above) were used as weights in
K-select and MADIFA as a bias grid in MAXENT and
as case weights in all other methods (Elith et al. 2010;
Stolar and Nielsen 2014; Milanesi et al. 2015). Finally,
we tested for residual spatial autocorrelation with
Moran’s I correlogram (1—predicted SDMs values for
each location; De Marco et al. 2008).

Model validations and comparisons

To assess model efficiencies, we compared the predicted
values with originals through the use of (1) Area under the
ROC (Receiver Operator Characteristics) Curve (AUC;
Fawcett 2004; Ko et al. 2011) and (2) the Boyce Index (BI;
Boyce et al. 2002). AUC varies from 0 (worse than a
random model with the value 0.5) to 1 (perfect model),
while BI varies from �1 to 1 (positive values indicate
predictions consistent with the evaluation data set, 0
indicates that the model is similar to a randommodel. To
classify the accuracy of validation, we followed Swets
(1988): 0.90–1.00 = excellent; 0.80–0.90 = good;
0.70–0.80 = fair; 0.60–0.70 = poor; 0.50–0.60 = fail.
For each age class, we carried out ten k-fold cross-vali-
dations using a random sub-sample of 50 % of locations
alternatively to calibrate the models and the remaining
50 % to validate them (Boyce et al. 2002). We also used
new field data (N = 577) collected from January 2011 to
December 2012) in the Marittime Alps and an external
data set provided by the Gran Paradiso National Park
(N = 1,787) collected from July 1989 to June 2007 in the
north-western Alps (Italy) to validate the models after the
projection of SDM predictions in this area. Finally to test
for differences in the distribution of age classes, we com-
pared the resulting distribution maps and the ratio be-
tween the predicted distribution areas of three age-classes
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by paired t tests. All the statistical analyses carried out in
this paper were computed in the open-source software R
(v. 3.1.2 http://www.R-project.org/).

Results

A total of 5068 observations of bearded vultures were
collected from January 1993 to December 2010 in the
Marittime Alps. Identified individuals, and (conse-
quently) age-assignment, represented 87.39 %
(N = 4,429) of the total observations. Of the total
observations, 51.59 % were Y (n = 2285), 34.84 %
(n = 1543) were A and 13.57 % (n = 601) were S.

Pearson correlation tests showed low collinearity
among predictor variables (Table S1), and thus, we con-
sidered all the predictors for further analyses. We also
removed outliers (Fig. S1) and autocorrelated locations
(between a distance of 150 m; Fig. S2), and thus we
developed hindcasting and forecastingmodelswith a total
of 1564 bearded vulture locations. The proportion of
locations for each age class was similar to those of the
initial dataset: 54.02 % were Y (n = 845), 31.21 %
(n = 488) were A and 14.77 % (n = 231) were S.

K-select analysis showed how habitat use differed
significantly for all the age classes (P < 0.0001), as
indicated by the randomisation tests carried out on the
marginality vectors (Table 2), and eigenvalues indicated
that the first axis explains most of the marginality pre-
sent in the dataset (k1 = 7.177, P < 0.0001; Table 2).
Specifically, altitude, landscape roughness and forest
cover showed significant opposite patterns in Y com-
pared to S and A (Table 2). Moreover, shrub-lands were
more highly selected by S and A than by Y (Table 2).
Grasslands were positively selected among the three age
classes while slope and rocky areas were negatively se-
lected (Table 2).

SDMs showed that both the size and the number of
suitable areas for bearded vultures in our study area
were different for the three age classes considered
(Fig. 2). The minimum surface area suitable for the
vulture was predicted by MAXENT in all the three age
classes considered. Actually, 419 km2 (5.39 % of the
study area) resulted suitable for young individuals,
1013 km2 (13.02 % of the study area) were suitable for
sub-adults and 1194 km2 (15.35 % of the study area) for
adults (Fig. 2). On the other side, MADIFA showed the
widest suitable areas for all three age classes considered.

Fig. 2 Species distribution maps of the age classes a young, b sub-
adult and c adult obtained with ensemble species distribution
models (bright–dark grey indicates higher–lower species occurrence

probability) in the Alpi Marittime Natural Park (ITA) and in the
Mercantour National Park (FR)

Table 2 Results of the randomisation tests of marginality on bearded vulture age classes (a) and relative coordinates of marginality
vectors on habitat variables (b)

Young Sub-adult Adult

(a) Tests of the marginality (Bonferroni_level = 0.05/3 = 0.0166)
Marginality 0.052 1.055 7.177
Randomisation test (P value) <0.0001 <0.0001 <0.0001
(b) Selection of habitat variables by each age class (Bonferroni_level = 0.05/18 = 0.0027, two-tailed test)
Altitude 0.01 �0.12* �0.64*
Distance to human settlements 1.25* 1.53* 1.68*
Forests 0.23* �0.61* �0.44*
Grasslands 0.39* 0.43* 0.53*
Shrub-lands 1.59* 2.14* 2.41*
Slope �0.83* �0.91* �0.91*
Rocky areas �0.53* �0.59* �0.58*
Roughness �0.19* 0.35* 0.29*

* P < 0.0001
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A total of 3115 km2 (40.03 % of the study area) was
classified as suitable for young individuals while
3821 km2 (49.09 % of the study area) for sub-adults and
finally adults reached the maximum suitable surfaces,
3895 km2 (50.05 % of the study area), among the three
age classes considered (Fig. 2). GLM classified the
minimum number of continuous areas suitable for the Y
vulture (N = 762), while ANN those of S (N = 378)
and A (N = 1,017). RF showed the maximum number
of suitable continuous areas for Y (N = 5472), while
MAXENT and CTA showed those of S and A
(N = 6799 and N = 6205, respectively).

Paired t tests showed significant differences in all
SDMs per cell among the three age classes considered
except for MADIFA (Table 3). By excluding MADIFA,
highly significant differences were recorded between S
and Y and between A and Y in all the SDMs (Table 3),
while between A and S only CTA and BRT showed
highly significant differences (Table 3). Similarly, paired
t-tests showed significant differences (P < 0.0001) con-
sidering the ratio between the predicted distribution
areas of three age-classes between S and Y and between
A and Y in all the SDMs.

K-fold cross-validations, carried out with sub-samples
of the original data, showed significant values for all the
evaluation methods of all distribution models in the
three age classes considered (Table 4; Fig. S3), high-
lighting the high predictive accuracy of our models.
Similarly to the original data, model validation carried
out with new field data collected in the Marittime Alps
showed significant values for both AUC and BI statistics
of all the distribution models among the three age classes
of bearded vulture (Table 4; Fig. S3). This suggests that
our models were accurate also in predicting the occur-

rences of our target species in a different temporal range.
Moreover, we recorded a high predictive accuracy of all
the distribution models when also projecting their pre-
dicted values in the Gran Paradiso National Park
(Fig. 3). In fact, the validation with external dataset
showed significant values for both the validation statistic
for all the three age classes (Table 4; Fig. S3), meaning
that our models were accurate also in predicting occur-
rences of bearded vulture derived by an independent
dataset.

Considering the residuals of all the SDMs in the three
age classes, Moran’s I values were <0.05 and statisti-
cally non-significant at each distance indicating no
autocorrelation.

Discussion

Even if niche models and SDMs were widely used in
landscape ecology to achieve a variety of objectives
(Guisan et al. 2013), this study represents their first
application for verifying different patterns in the eco-
logical niche of different age classes. In fact, we showed
significant differences both when hindcasting the eco-
logical niche and when forecasting the potential distri-
bution of the three age classes considered, and thus, we
encourage researchers to further investigate ecological
niche shift between age classes to promote the best
conservation and management actions.

Different patterns in ecological niche and spatial distri-
bution of age classes

Since we considered the same set of predictor variables
for developing both hindcasting and forecasting models,
as well as the same available area for the three different
age classes of bearded vultures, we verified that differ-
ences among ecological niches were due to differences in
the distribution patterns of individuals of different age
classes.

As suggested by several authors (e.g. Dormann et al.
2007; Zuur et al. 2010) to reduce biased estimations, we
discarded autocorrelated and outlier species locations to
reduce biased estimation and only used unrelated pre-
dictors to develop our models. In fact, when modelling
the ecological niche of species, deep data exploration, as
undertaken in this study, is fundamental in avoiding
biased estimations resulting from various factors (e.g.
spatial autocorrelation among species occurrences,
incidence of outliers and collinearity among predictor
variables; Dormann et al. 2007; Zuur et al. 2010).
Moreover, we used a sampling effort map to equally
weight pseudo-absences to presences in the development
of reliable hindcasting and forecasting models, because
pseudo-absences equally weighted to presences yield the
most reliable distribution models (Barbet-Massin et al.
2012).

Table 3 Values of the t-statistic derived by pairwise t tests of ten
distribution models (MAXENT maximum entropy algorithms,
MADIFA factorial decomposition of Mahalanobis distances, GLM
generalised linear models, BRT boosted regression trees, GAM
generalized additive models, CTA classification tree analyses, ANN
artificial neural networks, FDA flexible discriminant analyses,
MARS multivariate adaptive regression splines, RF random for-
ests) and their ensemble prediction (EP) among three age classes
considered (A adults, S sub-adults, Y young)

Model A vs. S S vs. Y A vs. Y

MADIFA 0.98 1.06 1.21
MAXENT 61.83* �172.58*** �233.82***
GAM 53.31* �138.88*** �197.17***
FDA 47.41* �165.81*** �216.37***
ANN 79.18* �157.49*** �237.06***
MARS 52.05* �155.05*** �210.77***
GLM 25.51* �186.41*** �217.01***
CTA �117.91*** �303.04*** �178.72***
BRT 104.79*** �179.73*** �281.44***
RF �51.64* �229.27*** �176.37***
EP 28.67* �190.31*** 215.287***

For abbreviations of species distribution models see materials and
methods section
*** P < 0.0001; * P < 0.05
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Considering hindcasting models, the K-select analysis
led us to identify the main features of the habitat se-
lected by the different bearded vulture age classes. Thus,
we detected a functional response in habitat selection,
i.e. a variation of the habitat selection according to the
age classes considered. This analysis is therefore suit-
able for defining several groups of animals that select the
same habitat characteristics (Calenge et al. 2005).
Actually, we showed that all three age classes have sig-
nificantly different (P < 0.0001) patterns of distribution
compared to random ones. Moreover, we found that
sub-adults and adults, while significantly different
(P < 0.0001), shared similar patterns, especially when
considering altitude, distance to human settlements,
forest cover, and shrub-lands.

Forecasting models also showed differences among
the age classes considered. In fact, SDMs showed dif-

ferent patterns in the potential distribution of the three
bearded vulture age classes. Similarly to the K-select
analysis, we found that sub-adults and adults were more
similar, while significantly different (P < 0.05), poten-
tial distribution patterns than the young individuals did,
except for CTA and BRT. Thus, in agreement with the
hindcasting model, forecasting models showed that
young individuals had different patterns of distribution
compared to the other two age classes. These differences
can be explained by the behaviour of young individuals.
In fact, large vultures often do not secure territories until
they are several years old due to their exploratory be-
haviour (Phipps et al. 2013), and thus they can show
different patterns in their distribution (Krüger et al.
2014). Immature birds are mainly concerned with find-
ing and tracking food resources, whereas sub-adults and
adults have additional ecological requirements that are

Table 4 Model validation of ten species distribution models (MAXENTmaximum entropy algorithms,MADIFA factorial decomposition
of Mahalanobis distances, GLM generalised linear models, BRT boosted regression trees, GAM generalized additive models, CTA
classification tree analyses, ANN artificial neural networks, FDA flexible discriminant analyses, MARS multivariate adaptive regression
splines, RF random forests) and their ensemble prediction (EP) developed for the three age classes considered (A adults, S sub-adults,
Y young)

Model AUC BI

A S Y A S Y

Original data (average of ten subsamples)
RF 0.987*** 0.964*** 0.975*** 0.988*** 0.979*** 0.988***
BRT 0.922*** 0.874*** 0.856*** 0.998*** 0.998*** 0.998***
MAXENT 0.913*** 0.859*** 0.843*** 0.998*** 0.998*** 0.988***
CTA 0.911*** 0.793*** 0.854*** 0.983*** 0.998*** 0.998***
MARS 0.903*** 0.871*** 0.828*** 0.952*** 0.964*** 0.998***
GAM 0.898*** 0.889*** 0.851*** 0.988*** 0.998*** 0.998***
FDA 0.898*** 0.852*** 0.861*** 0.976*** 0.976*** 0.988***
GLM 0.887*** 0.924*** 0.863*** 0.998*** 0.976*** 0.988***
ANN 0.870*** 0.895*** 0.864*** 0.964*** 0.931*** 0.988***
MADIFA 0.745*** 0.740*** 0.777*** 0.956*** 0.904*** 0.952***
EP 0.936*** 0.885*** 0.866*** 0.988*** 0.997*** 0.988***
New field data
RF 0.859*** 0.799*** 0.844*** 0.964*** 0.966*** 0.964***
BRT 0.844*** 0.811*** 0.816*** 0.831*** 0.964*** 0.976***
MAXENT 0.836*** 0.792*** 0.789*** 0.952*** 0.852*** 0.976***
CTA 0.796*** 0.789*** 0.794*** 0.717*** 0.943*** 0.762***
MARS 0.849*** 0.801*** 0.806*** 0.794*** 0.758*** 0.976***
GAM 0.817*** 0.779*** 0.802*** 0.806*** 0.879*** 0.964***
FDA 0.839*** 0.804*** 0.801*** 0.915*** 0.952*** 0.927***
GLM 0.816*** 0.771*** 0.781*** 0.831*** 0.806*** 0.927***
ANN 0.816*** 0.751*** 0.768*** 0.903*** 0.855*** 0.964***
MADIFA 0.725*** 0.731*** 0.761*** 0.883*** 0.842*** 0.942***
EP 0.851*** 0.786*** 0.812*** 0.855*** 0.916*** 0.915***
External data
RF 0.758*** 0.835*** 0.827*** 0.828*** 0.837*** 0.836***
BRT 0.758*** 0.869*** 0.831*** 0.811*** 0.855*** 0.773***
MAXENT 0.78*** 0.857*** 0.824*** 0.897*** 0.815*** 0.858***
CTA 0.712*** 0.771*** 0.781*** 0.817*** 0.824*** 0.845***
MARS 0.752*** 0.818*** 0.814*** 0.855*** 0.945*** 0.918***
GAM 0.785*** 0.824*** 0.819*** 0.873*** 0.727*** 0.982***
FDA 0.762*** 0.818*** 0.806*** 0.819*** 0.818*** 0.855***
GLM 0.742*** 0.787*** 0.787*** 0.818*** 0.827*** 0.801***
ANN 0.819*** 0.763*** 0.772*** 0.814*** 0.773*** 0.864***
MADIFA 0.713*** 0.732*** 0.699* 0.864*** 0.824*** 0.733***
EP 0.929*** 0.878*** 0.846*** 0.835*** 0.816*** 0.818***

Area Under the Curve (AUC) varies from 0 (worse than random model, 0.5) and 1 (best discriminating model). Boyce’ Index (BI) varies
from �1 to 1 and higher values indicate good agreement between predictions and data with 0 corresponding to random agreement
*** P < 0.0001; * P < 0.05
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not uniquely trophic (Hirzel et al. 2004). The forests of
our study area, which are more used by young bearded
vultures, are not very dense and can be explored by
individuals which roam far from potential nesting areas
in search of prey remains. Several large mammals,
including red deer, roe deer, alpine chamois, alpine ibex
and wild boar, locally reach high density inside open
forests, where they are preyed upon by the wolf (Canis
lupus), which recolonized the Western Alps and reach
fairly high density as well. All birds include pre-
dictable sources of food into their home range. This is
particularly important in the case of young, inexperi-
enced birds, which stay in the exploration phase for long
periods (Gil et al. 2014).

In fact, even if all ten SDMs and their EP showed
differences among models in the prediction of suit-
able areas (e.g. extent, distribution, and number), we
found overall different patterns of distribution among
age classes confirming that they all had a high efficiency
in describing age class occurrences. Differences among
SDMs were due to different assumptions, complexities
of algorithms, methods to relate the response, and the
predictor variables (Tsoar et al. 2007; Warren and Sei-
fert 2011). Since there is no consensus regarding the best
method to forecast species’ distribution (Qiao et al.
2015), we strongly suggest to test for multiple SDMs
and, in order to avoid single model uncertainty, their
ensemble prediction (Araùjo and New 2007; Coetzee
et al. 2009; Jones-Farrand et al. 2011).

However, like with all biological models, we strongly
encourage carefulness in interpreting our results due to
variability in natural ecosystems and bias in data used to
develop the models, as well as uncertainty in model
predictions, which could increase the uncertainty of the
results (Pauly and Christensen, 2006; D’Elia et al. 2015).
Moreover, while available, additional factors such as
distribution and density of food resources, the degree to
which threats have been eliminated or reduced, density
of competitors, and nest predators should be included
and tested in the analyses. Contrary to what expected by
Hirzel et al. (2004), we have not noticed an effect of
mineral composition of the substrate. We did not ob-
serve a scarcity of the species in landscapes dominated

by silicate substrates. Additionally, the collection of
new field data will increase our ability to identify
remaining areas of unoccupied but suitable habitat
across both neighbouring and distant regions. How-
ever, we showed that SDMs had high predictive
accuracy, suggesting that our models might be useful
for forecasting the presence of individuals of different
age classes. Indeed, our models retained strong pre-
dictive performance also across geographic space and
time, as highlighted by the high values of the validation
statistics derived by the two external datasets. There-
fore, even if the bearded vulture is recolonising part of
its historical range, both hindcasting and forecasting
models produced useful results despite the violation
of the species-environment equilibrium assumption
(Cianfrani et al. 2010).

Thus, in agreement with several authors (González
et al. 2006; Morrison and Wood 2009; Krüger et al.
2014), we found that the spatial distribution differed
according to an individual’s age. The majority of niche
and distribution models for vultures thus far so not
disentangle age specific characteristics at occurrence
points (e.g. Donázar et al. 1993; Hirzel and Arlettaz
2003; Margalida et al. 2008; Bogliani et al. 2011). Indeed
for the first time, our research increased model precision
in identifying age specific threat areas to prioritise threat
reduction measures. In fact, the ecological niche and
requirements of the bearded vulture differed significantly
among the three age classes considered in the Western
Alps. Therefore, our age specific models offer a more
detailed description of the vulture’s ecological niche in
contrast to models with grouped occurrence data and
showed a better interpretation of the comparison of
different vulture habitats in geographic space. This
information is also essential identifying the most suit-
able sites for conservation and reintroduction of a spe-
cies that requires different, but proximal, ecosystems to
survive and reproduce. Moreover, our findings are par-
ticularly important for species that take a long time to
mature (Penteriani and Delgado 2009), and knowledge
of these differences may further contribute to ensuring
that management actions are targeted appropriately
(Krüger et al. 2014).

Fig. 3 Projection of the results of the ensemble species distribution models (bright–dark grey indicates higher–lower species occurrence
probability) for the age classes a young, b sub-adult and c adult in the Gran Paradiso National Park (IT)
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Indeed, the exploratory behaviour of young vultures
may expose them to multiple threats, therefore, young
individuals can be exposed to different threats or dif-
ferent levels of threat than those found for sub-adults
and adults (Penteriani et al. 2005; Penteriani and Del-
gado 2009; Krüger et al. 2014). In large vultures, non-
adults form a large proportion of the population (Ken-
ward et al. 2000), thus conservation measures designed
to protect breeding birds only may not be sufficient for
safeguarding the population as a whole (Penteriani et al.
2005; González et al. 2006; Krüger et al. 2014) and vice
versa.

Age-specific niche modeling may also be useful for
species that use different environments in different stages
of their life history which is essential for species’ survival
and reproduction. We concluded by strongly encourag-
ing the separate testing and modelling of ecological
niche age specific patterns because it is assumed (often
incorrectly) that individuals achieve their needs during
the life without variations of requirements.
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Burns ES, Tótha SF, Haight RG (2013) A modeling framework for

life history-based conservation planning. Biol Cons 158:14–25
Calenge C (2006) The package adehabitat for the R software: a tool

for the analysis of space and habitat use by animals. Ecol Model
197:516–519

Calenge C, Dufour A, Maillard D (2005) K-select analysis: a new
method to analyse habitat selection in radio-tracking studies.
Ecol Model 186:143–153

Calenge C, Darmon G, Basille M, Loison A, Jullien J (2008) The
factorial decomposition of the Mahalanobis distances in habitat
selection studies. Ecology 89:555–566

Cianfrani C, Lay GL, Hirzel AH, Loy A (2010) Do habitat suit-
ability models reliably predict the recovery areas of threatened
species? J Appl Ecol 47:421–430

Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ,
Thuiller W (2009) Ensemble models predict Important Bird
Areas in southern Africa will become less effective for con-
serving endemic birds under climate change. Global Ecol Bio-
geogr 18:701–710

D’Elia J, Haig SM, Johnson M, Marcot BG, Young R (2015)
Activity-specific ecological niche models for planning reintro-
ductions of California condors (Gymnogyps californianus). Biol
Cons 184:90–99

De Marco P, Diniz-Filho JA, Bini LM (2008) Spatial analysis
improves species distribution modelling during range expan-
sion. Biol Lett 4:577–580
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