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Abstract Identifying the factors that contribute to spe-
cies distribution will help determine the impact of the
changing climate on species’ range contraction and
expansion. Ecological niche modelling is used to analyze
the present and potential future distribution of rubber
trees (Hevea brasiliensis) in two biogeographically dis-
tinct regions of India i.e., the Western Ghats (WG) and
Northeast (NE). The rubber tree is an economically
important plantation species, and therefore factors other
than climate may play a significant role in determining
its occurrence. To assist in future planning, we used the
maximum entropy model to predict plausible areas for
the expansion of rubber tree plantations under a
changing climate scenario. Inclusion of elevation, soil
and socioeconomic factors into the model did not result
in a significant increase in the model accuracy estimates
over the bioclimatic model (AUC > 0.92), but their
effect was pronounced in the predicted probability
scoring of species occurrence. Among various factors,
elevation, rooting condition, village population and
agricultural labour availability contributed substantially
to the model in the NE region, whereas for the WG
region, climate was the most important contributing
factor for rubber tree distribution. We found that more
areas would be suitable for rubber tree plantation in the
NE region, whereas further expansion would be limited
in the WG region under the projected climate scenario
for 2050.
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Introduction

To predict species distribution, the most commonly used
approach is ecological niche modelling of the species
(Austin 2002). An ecological niche can be defined as the
range of tolerance of a species in terms of several envi-
ronmental factors (Hutchinson 1957). In other words, a
species can survive and perpetuate within its ecological
niche without external intervention (Austin 2007). When
this concept is applied in a human-managed landscape,
species’ niche distribution can be modelled by deter-
mining the relationship between crop presence and
various factors contributing to the growth and devel-
opment of the crop (Heumann et al. 2013). Indeed, the
concept of the ecological niche was used to understand
and model anthropogenic impacts on species distribu-
tion (Peterson 2003). Among various predictive factors,
climate is expected to play a dominant role in deter-
mining the distribution of any species (Pearson and
Dawson 2003). Quantifying the contribution of various
factors is assessed from knowledge of the spatial distri-
bution of the species based on field occurrence which is
often called a realised niche (Guisan and Thuiller 2005).
Assessing the present distribution and predicting future
invasion has become possible because of the availability
of high spatial and temporal resolution climate data sets
(Pradervand et al. 2014).

Ecological niche models (ENMs) are used for pre-
dicting species distribution, wherein the basic assump-
tion is that species distributions are always in
equilibrium with contemporary climate (Araújo and
Pearson 2005). In general, there are two categories of
ENMs available that require either: (1) presence-absence
data for the target species, or (2) presence-only data for
prediction (Tsoar et al. 2007). Some modelling tech-
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niques use ‘pseudo-absence’ data for calibrating the
model initially, but these are classed as presence-only
methods because pseudo-absence locations cannot be
defined as actual sites where the species cannot occur
(Stockwell and Peters 1999; Engler et al. 2004). An
evaluation of 16 different methods of modelling based
on the distribution data of 226 species from six regions
of the world found that presence-only data were effective
for modelling species distribution for many species and
regions (Elith et al. 2006). Pearce and Ferrier (2000)
found that prediction of species distribution based on
presence-only data was reasonably accurate for species
conservation and other uses. However, in certain cases,
the assumption of species-climate equilibrium can be
violated by the influence of interactions of the species
with related factors other than climate (Brown et al.
1996; Pearson and Dawson 2003). Therefore, including
other factors related to species distribution can improve
the performance of the model prediction (Hanspach
et al. 2010).

The maximum entropy (Maxent) model, one of sev-
eral ENMs, uses presence-only data for training pur-
poses, in contrast with presence-absence data in the case
of the genetic algorithm for rule set prediction (GARP)
model (Phillips et al. 2006). Maxent was the method
preferred over presence-absence models because of
uncertainty over accurate absence data for rubber tree
plantations. Accurately modelling the probability of
presence of rubber tree species is challenging because as
a commercial crop the tree has adapted to wide range of
habitats. As rubber trees are often an introduced species,
there is a degree of uncertainty in finding the species
present in the most climatically suitable land because its
cultivation is decided not only by climate but also by
favourable local soil and topography. More impor-
tantly, the willingness of growers to establish rubber tree
plantations also needs to be taken into account (Jeschke
and Strayer 2008).

The predictive capability of the model is often eval-
uated through multiple methods, particularly when the
models are trained with presence-only data (Hernandez
et al. 2006; Peterson et al. 2008). The area under the
curve (AUC) is considered a composite measure of
model performance where weights for omission errors
(predicted absence in areas of actual presence) and
commission errors (predicted presence in areas of actual
absence) are equal. However, several authors have crit-
icised the use of AUC as a model accuracy estimator in
presence-only ENMs (Lobo et al. 2008; Peterson et al.
2008). Therefore, a modified form of AUC, partial AUC
is used for assessing the accuracy of Maxent model
(Barve 2008). The true skill statistic (TSS) has been used
in ecological studies as an alternative measure of model
accuracy (Allouche et al. 2006). The TSS, otherwise
known as Hanssen–Kuipers discriminant, compares the
number of correct forecasts minus those attributable to
random guesses, to that of a hypothetical set of perfect
forecasts (Allouche et al. 2006).

The rubber tree (Hevea brasiliensis) was chosen as the
target species for its economic importance as the only
source of natural rubber. According to an industry re-
port from the International Rubber Study Group
(IRSG), demand for natural rubber will continue to
grow globally (IRSG 2014). To meet market demand,
the Indian government has emphasised increasing the
production of natural rubber in India by bringing more
area under rubber tree plantations (Burger and Smith
2004). Therefore, knowledge about how the species will
adapt to changing climate is necessary to quantify new
regions suitable for rubber tree plantations. The rubber
tree, a native of Amazonia in Brazil, was introduced to
tropical Asia in 1876 through Kew Gardens in the UK
with the seeds brought from Brazil (Wycherley 1992;
Hong 1999). In India, rubber trees have been cultivated
in Western Ghats (WG) since the early twentieth century
and were introduced to the Northeast (NE) region in the
1960 s.

In predicting the future distribution of rubber trees
based on prevailing climate, we assumed that (a) the
species would not adapt to a changed climate (IPCC
2007) i.e., the climatic requirement of the species in 2050
remains same as present conditions, and (b) socioeco-
nomic factors would remain constant. These assump-
tions form the basis for assessing how the species will
react to changing climate and land suitability. Maxent
ecological niche model was used to assess the present
distribution pattern of rubber trees in the WG and NE
regions of India. The niche modelling approach has been
adapted to incorporate various climate and other factors
thereby evaluating the results from a habitat suitability
point of view (Slater and Michael 2012; Garcia et al.
2013). Here, our focus is also to find out the contribu-
tion of other factors in rubber tree distribution in both
the WG and NE regions. With this background, the
present study has been designed to: (1) identify and
quantify bioclimatic and other factors driving rubber
tree distribution; (2) simulate the current distribution of
rubber trees for future climate scenarios; and (3) assess
probable range expansion or contraction of rubber tree
plantations under projected climate scenarios by 2050.

Methods

Study area

The study area includes two rubber tree growing regions
in India i.e., the WG and NE (Fig. 1). These two regions
fall under three world biodiversity hotspot regions and
show distinct biogeographic characteristics. The WG is
situated in one biodiversity hotspot region, whereas the
NE region is located at the junction of two global bio-
diversity hotspots in India i.e., Indo-Burma and the
Himalayas. The WG ecosystem is disturbed by mining
activities, whereas the NE region is affected by shifting
cultivation, known as Jhumming (INCCA 2010).
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Extensive shifting cultivation by communities in the NE
has degraded local ecosystems, which in turn has af-
fected agricultural productivity. Rubber tree plantations
are seen as a way to provide alternative socioeconomic
support for the local community as well as providing
ecosystem services in the form of canopy cover over
cleared land (Maithani 2005).

In the WG, mean maximum temperatures during the
coldest months of December and January vary from
29 �C in parts of the peninsula to 18 �C in the north.
Mean minimum temperatures range from 24 �C in the
south to below 5 �C in the north. The months from
March to May are usually characterised by continuous
and rapid rises in temperature. Rainfall ranges from
3000 to 6000 mm across the region. Rubber trees have
been cultivated on the coastal slopes of the WG for more
than a century. The NE region of India receives an
average annual rainfall of 2450 mm. Precipitation in this
region occurs during the south-west monsoon from May
to October. The temperature varies from 15 to 32 �C
during summer and from 2 to 26 �C during winter (Das
et al. 2013). These two regions are the major rubber tree
growing areas of India with diverse local climatic, soil
and socioeconomic conditions.

Target species and occurrence data points

The study focuses on rubber trees as an introduced
plantation crop. India’s first commercial cultivation of
rubber trees began in 1902 in Kerala state, and then it
expanded rapidly in the WG region. Subsequently,
rubber tree cultivation was introduced in the NE region
of India particularly in the state of Tripura. The rubber
tree is deciduous in nature, reaching a height of
18–39 m, and grows on a wide variety of deep, well-
drained soils. The latex produced in the lactiferous
vessels in the soft tissue of the bark is extracted from
slanted cuts on the bark into containers attached to the
trunk (Wycherley 1992).

A total of 218 rubber tree plantation locations in the
WG and 127 in the NE regions, respectively, were se-
lected from ground-sampled locations that existed be-
fore 2000. The knowledge of field personnel from the
Indian Rubber Board was also used to locate rubber tree
plantations. While recording occurrence points, a patch
of a plantation, covering 1–5 ha with comparable
topography was recorded as a single point. However,
more points were used on larger estates occupying dif-
ferent topography, which were representative of actual

Fig. 1 Study area: Northeast
(NE) region and Western Ghats
(WG) region of India. The
Indian states representing the
NE region are Tripura, Assam,
Meghalaya, Mizoram, Manipur
and Nagaland. The WG region
is represented by parts of
Kerala, Tamil Nadu,
Karnataka Maharashtra states
and Goa

77



plantation distribution. The occurrence records of rub-
ber tree plantations were divided into training and test
samples: 25 % of total points were selected as test
samples using a random data splitting method.

Bioclimatic, topographic, soil and socioeconomic factors

Nineteen bioclimatic factors with 30 s (ca 1 km) spatial
resolution were downloaded from the WorldClim data-
set (www.worldclim.org/bioclim) and used in the Max-
ent model (Phillips et al. 2006). Other factors were
represented by seven geology and soil grids derived from
the Harmonized World Soil Database (HWSD (http://
webarchive.iiasa.ac.at/Research/LUC/External-World-
soil-database/HTML/SoilQualityData.html?sb=11). The
raster data layers on seven key soil properties important
for crop production, namely nutrient availability, nutrient
retention capacity, rooting condition, oxygen availability
to roots, excess salts, toxicities, and workability were used
as predictor inputs for the model. Rooting condition is
the term used in the HWSD to describe soil textures, bulk
density, coarse fragments, soil phases affecting root pen-
etration and soil depth and volume, whereas workability
indicates soil phases constraining field management such
as presence of stones, gravels, concretions and hardpans
(Fischer et al. 2008).

Four socioeconomic factors were included as predic-
tive variables i.e., the number of uninhabited villages per
district, the number of villages per district having a
population <500, the total number of marginal rural
workers per district and the number of agricultural
labourers per district. These factors were included in the
Maxent model based on the following hypothesised
relationships between the factors and the distribution of
rubber tree plantations. Uninhabited villages have no
permanent structures for human settlement and there
may be a seasonal population present during agricultural
crop harvesting time. There may be more area under
forest or waste land available, which otherwise can be
used for rubber tree plantations. Villages with popula-
tions <500 are assumed to have a greater scope for
combining rubber tree cultivation with other anthro-
pogenic activities. The number of marginal rural workers
(a marginal worker works for <6 months per year) and
agricultural labourers are indicative of the labour avail-
ability for plantation activities. District-level data on
these factors were obtained from the Indian Government
census data portal (http://www.censusindia. gov.in/
2011census/population_enumeration.aspx). There are
184 districts in the WG and 65 districts in the NE region
with sizes ranging from 174 km2 (Chennai, Tamil Nadu)
to 17,413 km2 (Ahmednagar, Maharashtra) in the WG
region and from 514 km2 (Thoubal district, Manipur) to
9129 km2 (Upper Dibang district, Arunachal Pradesh) in
the NE region.

Topographical factors such as elevation and slope
(%) were obtained from the shuttle radar topography
mission dataset. Rubber trees grow below 1100 m in

elevation and on <20 % slope (Priyadarshan et al.
2005). The source of the land use and land cover
(LULC) map was global land cover (GLC) 2000 data-
base, JRC (http://forobs.jrc.ec.europa.eu/products/
glc2000/data_access.php.). The Human Influence Index
is a measure of direct human influence on terrestrial
ecosystems, derived from nine other variables including
population density, built-up areas, roads, railroads, and
navigable rivers (http://sedac.ciesin.columbia.edu/data/
set/wildareas-v2-human-influence-index-geographic). All
predictor factors were resampled to a 1-km resolution in
WGS84 projection to match available climate variables
and used for both regions, and then converted to a
uniform ASCII format using ARC-GIS 9.3 software
(http://www.esri.com/) (Table 1).

Multi-collinearity in bioclimatic predictive factors

Most of the ENMs work on the basis of relationships
between the species occurrence records and climate
factors. The actual relationships may not emerge if the
input climate factors are spatially auto-correlated and
therefore, many combinations of bioclimatic factors can
explain the species distribution equally well. Therefore,
bioclimatic factors were subjected to multi-collinearity
tests using Pearson’s correlation coefficient (r) to
examine relationships among the factors. Bioclimatic
factors with a correlation coefficient of r > ±0.7 were
excluded from final model building (Yang et al. 2013).
Out of 19 bioclimatic factors, eight factors i.e., mean
diurnal range of temperature, isothermality, temperature
seasonality, minimum temperature during coldest
month, precipitation during driest month, precipitation
seasonality, precipitation during driest quarter and
precipitation during coldest quarter were retained and
used in the model run.

Ecological niche modelling

To map the potential distribution of rubber trees under
the climatic scenarios of both the WG and the NE, the
most recently available Maxent 3.3.3 k software was
used (Phillips et al. 2006). Maxent is a grid-based ma-
chine learning algorithm that follows the principle of
maximum entropy. The software takes species presence-
only data and chooses the distribution of a species under
study that is closest to a uniform distribution. It max-
imises entropy within distributions that satisfies the
constraints derived from species occurrence points.
Maxent is capable of incorporating complex dependen-
cies among the predictor factors, leading to better pre-
diction of species distribution compared with models
such as GARP and BIOCLIM as measured by higher
AUC values (Stockwell and Peters 1999; Elith et al.
2006; Wisz et al. 2008). Here, the choice of a presence-
only data model for the study was based on the uncer-
tainty involved in recording absence data for the rubber
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tree species. In a previous study, the Maxent model was
run for rubber tree distribution using only bioclimatic
factors as predictive input in same regions, without
incorporating soil and socioeconomic drivers (Ray et al.
2014).

The experimental design aimed to assess the impact
on model accuracy of: (1) only climate factors, and (2)
climate, soil, elevation and socioeconomic factors. By
default, the Maxent model determines the feature types
automatically based on the number of samples avail-
able for model training (Phillips and Dudik 2008). Ten
replications of the model were run, with 75 % of the
occurrence points as training sites and 25 % of the
points as test sites. The regularization multiplier was
retained as the default value of 1. The maximum iter-
ations were fixed at 1000 with a convergence threshold
of 0.00001 and a sub-sample replicated run type to
allow the program to run up to the sufficient threshold
levels.

Accuracy assessment

We used two different evaluation procedures for accu-
racy assessment of the model outputs: (1) the area un-
der the receiver operating curve (AUC), and (2) the true
skill statistic (TSS). The AUC was calculated using a
number of randomly selected sites equal to the number
of test presence sites. The AUC provides a quantitative
measure of model performance that ranges between 0
and 1, with 0.5 indicating no better performance than
random and values close to 1 indicating a reliable fit

(Fielding and Bell 1997). Models producing AUC val-
ues of 0.7–0.9 are considered to be useful models and
models with good discrimination ability usually pro-
duce AUC values more than 0.9 (Swets 1988). The
different modelling techniques use binary data of spe-
cies presence as the dependent variable and the models
produces a continuous probability of presence (P),
where 1-P represents the degree to which each case of
the model curve fits that of random curve, called the
partial AUC.

The TSS is increasingly preferred to the Kappa
statistic, which is a statistical measure of the accuracy of
presence and absence predicted by the model, because of
Kappa’s insensitivity to the prevalence of the species.
The TSS is measured as: TSS = Sensitivity + Speci-
ficity � 1. The TSS ranges from �1 to +1, where values
of 0 or less indicate a model performance no better than
random, and a value of +1 indicates perfect perfor-
mance (Allouche et al. 2006). Sensitivity is defined as the
probability that a model correctly classifies the presence
data, whereas specificity denotes the probability of
classifying correctly the absence data points. Jackknife is
a resampling technique that estimates the change in
variance due to the systematic omission of one set of
observations from the data sets (Tukey 1958). We used a
Jackknife test to identify the percent contribution of
various input factors into the model prediction of pre-
sent as well as future potential rubber tree distribution.
The logistic prediction of probability of rubber tree
occurrence in both regions was classified into three
categories representing different levels of habitat suit-
ability.

Table 1 Predictor variables used for the ecological niche model

Sl No. Input variables with respective codes Scale/resolution Source

1 Mean diurnal range of temperature (bio2) Climatic factors
30 arc sec (�1 km)

WorldClim series
(Hijmans et al. 2005)

2 Isothermality (bio3)
3 Temperature seasonality (bio4)
4 Annual temperature range (bio7)
5 Precipitation during driest month (bio14)
6 Precipitation seasonality (bio15)
7 Precipitation during driest quarter (bio17)
8 Precipitation during coldest quarter (bio19)
9 Nutrient availability (Nut_avail) Soil factors 30 arc sec (�1 km) Harmonised world soil

data base (Fischer et al. 2008)
10 Nutrient retention capacity (Nut_ret_cap)
11 Rooting conditions (Root_cond)
12 Oxygen availability to roots (Oxy_avail_roots)
13 Workability (Wrk)
14 No. of uninhabited villages per district (TUIV) District level feature class data converted to

similar scale of other raster variables
(�1 km) (social)

Census data 2011 of
Govt. of India

15 No. of villages less than 500 persons (VPL500)
16 Total marginal rural workers per district (TMW)
17 No. of agricultural labourers per district (ALR)
20 Elevation (ALT) 30 arc sec (�1 km) (Topography) SRTM
21 Slope (%) 30 arc sec (�1 km) SRTM
22 Land use and land cover (LULC) 30 arc sec (�1 km) GLC 2000 data base, JRC.
23 Human influence index (HII) 30 arc sec (�1 km) SEDAC
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Change detection analysis

The probability data of rubber tree distribution was
obtained in ASCII format from the model run, and
converted to raster using ARC-GIS 9.3. These raster
data, corresponding to two time periods, were used in
change detection analysis using ERDAS Imagine soft-
ware (http://www.hexagongeospatial.com/). The change
probability range varied from �1 to +1 where positive
and negative values relate to suitability and non-suit-
ability, respectively. Based on the probability of occur-
rence, both the study regions were categorised into three
suitability classes.

Results

Impact of soil, topography and socioeconomic input
factors on modelling species distribution

The results of the model predictions for rubber tree
distribution for the two districts are shown as follows:
(1) niche distribution with 2000 base year climate vari-
ables (Fig. 2a, b), (2) 2000 base year climate with soil,
topography and socioeconomic factors (Fig. 2c, d), and
(3) future climate (2050) with other non-climate factors
(Fig. 2e, f). The distribution map for the WG with cli-
mate variables showed the most suitable niche of the
rubber tree was in the southern WG extending up to
northern Kerala. The extent of suitable regions was re-
duced when other factors (soil, topography and socioe-
conomic conditions) were incorporated into the model
(Fig. 2a). In the NE region, the addition of other factors
into the model resulted in an increase in the extent of the
most suitable regions in the western parts of Assam, and
moderately suitable regions extended with >0.7 suit-

ability value the 2050 scenario. The extent of areas with
a >0.7 suitability value for the WG was smaller than in
the 2000 base year map especially in the northern Kerala
region. The mid-WG region also showed a reduction in
suitability. In the NE map of the 2050 scenario, suit-
able regions expanded towards upper Assam; and cer-
tain parts of Mizoram and Manipur became suitable,
while parts of southern Assam appeared to be less
suitable (Fig. 2f).

In the change detection map, the change in suitability
values obtained by subtracting the 2000 base year map
from the 2050 map varied from �1 to +1, where posi-
tive values are attributed to more suitable niches for
rubber tree plantations and negative values indicate non-
suitability (Fig. 3a, b). More negative values were ob-
served in the WG, whereas more positive values were
found in the NE region. The change detection map be-
tween the rubber tree distribution simulated with climate
alone and climate plus other factors indicated that there
were areas in parts of WG in Karnataka, some pockets
in Maharashtra, Northern Tripura, south of Mizoram,
and lower and Western Assam in the NE region where
the other factors had a positive impact (>0.5) (Fig. 3c,
d).

The addition of other factors (soil, topography and
socioeconomic conditions) to the ENM resulted in
prominent changes in the distribution map of the WG
for the base year 2000. The extent of suitable regions for
rubber trees predicted by the model with only climate
were 2756 km2 with a >0.7 suitability value 7295 km2

with a moderate suitability (0.5–0.7), 23,433 km2 with a
range of suitability of 0.3–0.5, and 27,399 km2 of the
least suitable area (0.1–0.3). Introducing other factors to
the model resulted in an increase of the least suit-
able area and moderately suitable area in the WG to
28,339 and 9191 km2, respectively. However, the other

Fig. 2 Maxent model-derived
rubber tree distribution map
showing the species distribution
predicted a with climate factors
for the base year 2000 in the
WG region; b the NE region
with climate factors for the base
year 2000; c with climate, soil
and socioeconomic factors for
year 2000 in the WG region;
d the NE region, with climate
(base year), soil and
socioeconomic factors with
projected climate factors of year
2050; e with projected climate
of year 2050, soil and
socioeconomic factors in the
WG; and f projected climate of
year 2050, other soil and
socioeconomic factors in the
NE region
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two category of suitable area (0.3–0.5 and >0.7 prob-
ability) decreased to 22,089 and 2588 km2, respectively
(Fig. 4).

Areas with a >0.7 suitability value showed an overall
decline compared with the model with only climate in
areas such as northern Mizoram, and parts of western
and lower Assam. However, some areas in northern
Assam became more suitable within the 0.3–0.5 range of
suitability values. Numerically, the most suitable area

(with >0.7 suitability value) of 4456 km2 in the climate-
only model was reduced to 3011 km2 in the climate and
other factors model. Similarly, the moderately suit-
able area with values of 0.5–0.7 decreased from
11,425 km2 in the climate-only model to 5692 km2 in
model when other factors were included. There was also
a decline in the total less suitable area (0.3–0.5) i.e.,
18,284 km2 and least suitable area of 51,459–12,144 and
36,347 km2, respectively in the model with climate and
other factors (Fig. 4). These results lead to the obser-
vation that inclusion of other factors such as soil,
topography and socioeconomic conditions into the
ENM have an additive impact on the model output. The
impact of these factors in the WG was not significantly
different compared with the model with only climate
factors. In the NE, there was a significant impact of the
other factors on the model output compared with the
climate-only model.

In the model with climate and other factors, the
cumulative contribution of climate variables and other
variables were determined separately for the WG and
NE regions. In the WG, the climate variables con-
tributed 65.2 % whereas other variables contributed
34.8 %. In the NE the model output with climate and
other factors showed a contribution by climate variables
of 48.5 % and by other factors of 51.5 % (Fig. 5). This
indicated that other factors have a dominant contribu-
tion in predicting the distribution of the rubber tree
species in the NE region, whereas the distribution of
rubber tree species in the WG was dominated by climate
variables with a lesser contribution from other factors.

Although use of the AUC alone as an indicator of
predictability of the Maxent model was not supported

Fig. 3 Change detection in
ecological niche distribution
maps of rubber tree species for
a the WG, and b the NE region
between the base year (2000)
and the 2050 climate scenario
with climate, soil, topography
and socioeconomic input
factors. Change detection maps
between the Maxent model
simulated rubber tree
distribution with climate,
climate plus other factors as
input variables in c the WG,
and d the NE, showing the
changes due to other factors.
Dark coloured patches are
indicative of positive changes,
light patches are negative
changes and white patches
indicate no change

Fig. 4 Changes in area of suitability as influenced by input factors
i.e., climate alone, and climate with other factors such as soil,
topography and socioeconomic conditions in both the WG and the
NE regions. The probability of species occurrence estimated by the
model between 0.7 and 1.0 represents most suitable region, 0.5–0.7
represents moderately suitable, 0.3–0.5 represents a suitable region
and 0.1–0.3 a less suitable region
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by some previous studies (Lobo et al. 2008), AUC was
considered here as a measure of confidence for predicting
the difference in rubber tree distribution from a random
distribution. However, model accuracy was also assessed
by TSS. The average AUC value of 10 replications of
model runs was found to be 0.923 (±0.02) with climate as
the sole predictor factors for the NE region in the base
year 2000 (Table 2). With the addition of soil and
socioeconomic factors in the Maxent model, the average
AUC value increased to 0.934 (±0.009) (Fig. 6a, b). A
higher AUC value is expected in the case of a highly
specialised species (Heumann et al. 2011). Although the
numerical increase in AUC values was not statistically
significant, the effect of including additional factors was
visibly prominent in the spatial output for the NE region.
The model simulation results from the WG region indi-
cated that there was no improvement of accuracy mea-
sures even with soil, elevation and socioeconomic factors.
The average AUC value was 0.964 (±0.011) with climate
factors alone and 0.972 (±0.007) with all other factors in
2000 base year scenario (Fig. 6c, d). The traditional AUC
and TSS methods of estimation of model accuracy, and
the partial AUC (curve AUC and random AUC) values
of all the models with different input factors ranged be-
tween 1.2 and 1.9, which indicated very good pre-
dictability for the models (Fig. 7).

Model validation with satellite image-derived rubber
tree species distribution map

The simulated rubber tree distribution from the Maxent
model in both the WG and NE region for the base year
2000 was validated with a satellite (IRS-P6 LISS III and
LISS IV) image-derived rubber tree distribution map of
two sample states, Tripura for the NE region and Kerala
for the WG region in a comparable time frame. The
model-predicted suitable regions, such as south and west
districts of Tripura state and southern part of Kerala
state, were found to be occupied by large areas of rubber
tree plantations (ISRO 2012; Meti et al. 2014).

Factors contributing to the geographical distribution
of rubber trees

The present results indicated that bioclimatic variables
contributed up to 65.2 % to the distribution of rubber
trees in the WG and 48.5 % in the NE regions. The
contribution of each variable to the model accuracy was
estimated using a Jackknife plot (Fig. 8). In the WG
region, the climate variables showed the greatest con-
tribution to the model. Precipitation of the coldest
quarter (bio19, 34.2 %), mean diurnal range of tem-
perature (bio2, 20.8 %), temperature seasonality (bio4,
6 %), and precipitation of the driest quarter (bio17,
4.2 %), were the major contributing climatic variables in
the WG. Among the socioeconomic factors, only the
availability of rural agricultural labourers contributed
3.1 % to rubber tree distribution. Precipitation in the
driest month (bio14, 28.3 %), temperature seasonality
(bio4, 15.7 %), elevation (19.8 %), rooting condition
(12.4 %), and village population (3.6 %) were the major
contributory variables to the Maxent model in the base
year 2000 climate conditions of the NE region. Apart
from bioclimatic factors, topographical and soil factors
such as rooting condition and socioeconomic factors
such as labour availability contributed to rubber tree
distribution in the NE region. In the NE region, there
was a high contribution of elevation (19.8 %) as a pre-
dictor variable. The wide variation in elevation here
seems to have limited the expansion of rubber tree
plantations. In contrast, in rubber tree growing areas in
the WG elevation contributed <9 % to the model
(Table 3).

Fig. 5 Comparison between the contribution (%) of climate and
other factors such as soil, topography and socioeconomic condi-
tions in modelling niche distribution of rubber trees in the WG and
the NE regions

Table 2 Area under curve (AUC) and true skill statistics (TSS) values generated by the rubber tree distribution model for the Northeast
(NE) and Western Ghats (WG) regions

Predictive variables Northeast (NE) Western Ghats (WG)

Base (2000)
climate

Projected (2050)
climate

Base (2000)
climate

Projected (2050)
climate

AUC TSS AUC TSS AUC TSS AUC TSS

Climate alone 0.923 0.671 0.927 0.781 0.964 0.753 0.965 0.789
Climate, soil and socioeconomic factors 0.934 0.677 0.944 0.704 0.972 0.715 0.966 0.725
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Among the socioeconomic variables, village popula-
tion and agricultural labour availability contributed
around 3.6 and 3.1 % to the species distribution mod-
elling of the NE and WG region respectively. The
association of percentage of forest area under each pixel
with rubber tree plantations contributed 3.3 % in the
NE region and 9.2 % in the WG region. Other factors
such as the Human Influence Index showed a contri-
bution of around 1 % in both regions. The findings

regarding the contribution of these socioeconomic fac-
tors to the model in both regions matched conditions on
the ground. Labour shortages were the main problem in
most of the small holdings of rubber tree plantations in
Kerala state (Ouseph 1996), but agricultural labour is
relatively cheaper in Tripura and other North Eastern
states (Sumitha 2012). Village population was consid-
ered as a proxy for land occupied by settlement and
therefore less populated regions may have more area
suitable for plantation activities. This assumes that
socioeconomic factors play an important role for species
suitability, if bioclimatic and soil factors are suit-
able (Ureta et al. 2012). In a similar study, it was indi-
cated that the dispersion of species is limited by historic,
biotic and sociocultural factors even when temperature
and precipitation have a favourable influence on its
distribution (Brush and Perales 2007).

The impact assessment of socioeconomic factors as
the drivers for rubber tree distribution was the key
component of this study. It was observed that city areas
and river banks could not be delineated while simulated
with only climate factors, whereas the inclusion of ele-
vation, soil and socioeconomic variables resulted in a
more detailed prediction of the species’ niche. The
changes in pixel level probability values in twelve sample
sites simulated with climate alone and climate with other
factors were compared (Table 4). The results showed
that inclusion of socioeconomic variables (CSAS) al-
tered the probability values assigned by other two
models where climate (CL), and soil and elevation
(CSA) data were added.

The change detection map between the outputs of the
model with only climate factors and the model with

Fig. 6 Area under curves (AUCs) for 10 replications of model runs
with a climate factors in the base year of 2000 in the NE; b climate
in the base year 2000 and other factors such as soil, topography and
socioeconomic conditions of the NE as predictor variables; c base
year climate of the WG region; and d climate of base year 2000 and
other factors in the WG. (white line indicates the mean AUC. The
dark area around the white line is the ± standard deviation (SD)
among the replicated runs of the model. The diagonal line indicates
the random prediction of the model.)

Fig. 7 Frequency distribution of AUC ratios derived from partial
ROC for models generated with different set of input variables of
the WG and the NE region. (I) base year (2000) climate of the WG;
(II) base year (2000) climate of the NE region; (III) present WG
climate along with soil, topography and socioeconomic factors;
(IV) present climate of the NE along with soil, topography and
socioeconomic factors; (V) future climate (2050) of the WG along
with soil, topography and socioeconomic factors; and (VI) future
(2050) climate of the NE climate along with soil, topography and
socioeconomic factors. Higher AUC ratios of the models with
climate and other ancillary factors in the NE region indicate higher
accuracy compared with only-climate models
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climate and other factors indicated that the impact of
other factors was lower in the southern parts of the WG.
Only southern parts of coastal Karnataka state and
some areas in the northern WG beneath the border of
Gujarat state showed a positive impact from other fac-
tors on the distribution of the rubber tree species
(Fig. 3c). In the NE region, the positive impact of other
factors was prominent in northern parts of Tripura,
southern parts of Mizoram, lower Assam and parts of
western Assam. Some areas in northern Mizoram and
western Meghalaya and western Assam were negatively
affected by the soil, topography and socioeconomic
factors for predicting rubber tree niches in the 2000 base
year climate (Fig. 3d).

Response curves of predictive factors

The response curves produced by the Maxent model
showed how the logistic prediction of rubber tree dis-

tribution varies with changes in the predictive variables,
keeping all other variables at the average sample points.
In the WG region, the greatest contributing factor for
the rubber tree distribution model was precipitation
during coldest quarter followed by the mean diurnal
range of temperatureg. According to the response curve,
the logistic probability of the species’ presence remained
high in those areas where mean precipitation during
coldest quarter (bio19) ranged from 1000 to 2500 mm
(Fig. 9a) and diurnal range of temperature (bio2) was
7–9 �C (Fig. 9b). Percentage forest area had a positive
correlation with the rubber tree presence probability
values indicating a good association between plantations
and forest area (Fig. 9c). A close association was ob-
served between the probability of rubber tree presence
and elevation up to 1100 m (Fig. 9d). Higher probabil-
ities of rubber tree presence were noticed with the tem-
perature change of 9–12 % coefficient of variation (CV)
over the year (seasonality, bio4) (Fig. 9e). Precipitation
during the driest quarter (bio17) showed a positive
relationship with the probability of rubber tree presence
in the WG region in the range of 20–140 mm, which was
explainable in the context of the local climate (Fig. 9f).

A higher probability of rubber tree presence was
observed with precipitation during the driest month
(bio14) ranging between 5 and 15 mm contributing the
most to rubber tree distribution in the NE region
(Fig. 10a). An elevation of 500–700 m was associated
with a higher probability of rubber tree presence
(Fig. 10b). Temperature seasonality of 10–17 % CV in
the NE region showed a probability of rubber tree
presence greater than 0.5 (Fig. 10c). Rooting condition
favoured the probability of species’ presence within the
range of 1.5–2.5 units (Fig. 10d). Slope showed a nega-
tive relationship with the probability of rubber tree
presence. The maximum probability was found within a
slope range of 5–15 % (Fig. 10e). The initial trend of the
response curve of the number of less populated villages
per district showed a relationship with the probability of
rubber tree presence, however, it decreased with further
increases in less populated villages (Fig. 10f). Precipita-
tion during the driest month was the most important
input factor for rubber tree distribution in the NE.
Monthly precipitation between 10 and 23 mm showed a
positive impact on the logistic probability of rubber tree
distribution but the response became saturated beyond
23 mm of monthly precipitation. The other important
factor in the NE region was elevation, where the re-
sponse curves clearly showed that the probability of tree
presence reduced with an increase in altitude. Elevation
up to 1000 m showed a probability of species’ presence
but model did not respond beyond 2000 m of elevation
(Fig. 6f). An important soil characteristic of the NE
which appeared to make a strong contribution to the
model was rooting condition. According to Fischer et al.
(2008) rooting conditions in the HWSD include effective
soil depth (cm) and effective soil volume (%) related to
the presence of gravel and stoniness. Rooting conditions
may be affected by the presence of a soil phase either

Fig. 8 Average Jackknife analysis results of training gain for 10
replications of model runs for a the NE and b WG regions in the
base year of 2000. The grey bar represents the training gain of the
model without the corresponding variable, whereas the dark bar is
the gain when only the corresponding variable is used as input
variable. The bottom bar is indicative of the gain when all the
variables were used
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limiting the effective rooting depth or decreasing the
effective volume accessible for root penetration. There-
fore, it showed a negative relationship with the logistic
probability of rubber tree presence.

Range shifting of rubber trees in future climate

Recent advances in ecological niche modelling have re-
sulted in a greater potential of presence-only models for
land suitability studies in agricultural crops (Heumann
et al. 2011, 2013). According to the results of the present
study, predicted base year distribution and future ranges
of rubber tree habitat are likely to be affected by climate.
The assumption of biophysical factors such as soil,
topographic and socioeconomic factors being

stable across the climate, facilitates analysis of the
interaction of climate and rubber tree species presence.
Based on the probability of species presence, the total
area predicted as moderately suitable was 5987 km2 in
the NE and 5752 km2 in the WG in 2000. The most
suitable regions were those niches with 70–100 %
probability of occurrence of rubber tree. The most
suitable area at present for rubber tree plantations was
2634 km2 in the NE and 2583 km2 in the WG. Highly
suitable plantation area will increase by 7.3 % in the NE
and 1.8 % in the WG by 2050. It appears that the rubber
tree plantations will benefit from future climate more
prominently in the NE region where suitable area will
increase by 1785 km2, compared with only 357 km2 in
the WG region by 2050 (Table 5). As per the official
records of the Indian Rubber Board, the area under

Table 3 Percentage contributions of predictive variables to the rubber tree niche model in base year (2000) and projected changed climate
by 2050 in NE and WG regions

NE (base year: 2000) WG (base year: 2000)

Variables Percent Variables Percent

Precipitation during driest month (bio14) 28.3 Precipitation during coldest quarter (bio19) 34.2
Altitude 19.8 Mean diurnal range of temperature

(bio 2)
20.8

Temperature seasonality (bio4) 15.7 Percent forest 9.2
Rooting condition 12.4 Altitude 9.0
Slope 4.8 Temperature seasonality (bio 4) 6.0
Number of villages less than 500 persons 3.6 Precipitation of driest quarter (bio17) 4.2
Percent forest 3.3 Number of agricultural labourers per district 3.1
Human influence index 1.0 Human influence index 0.9

NE (2050) WG (2050)

Altitude 28.1 Precipitation during coldest quarter (bio19) 23.5
Minimum temperature during coldest month (bio 6) 15.5 Mean diurnal range of temperature

(bio 2)
22.1

Temperature seasonality (bio 4) 10.8 Temperature seasonality (bio 4) 10.2

Table 4 Model predicted probability values of occurrence of rubber trees in different models using climate alone (CL), climate, soil and
topographic factors (CSA) and climate, soil, topography and socioeconomic factors (CSAS) as predictor variables

Geographic position Model predicted probability of Hevea
species presence with different variables

Ground observation

CL CSA CSAS

23.844N, 91.282E 0.44 0.08 0.13 City area
23.805N, 91.556E 0.28 0.14 0.18 High elevation
24.030N, 91.835E 0.19 0.07 0.29 Suitable area
24.114N, 92.019E 0.23 0.15 0.42 Hevea plantation
24.168N, 92.250E 0.33 0.08 0.21 High elevation
24.281N, 92.150E 0.31 0.15 0.43 Hevea plantation
24.181N, 92.358E 0.41 0.12 0.24 Not suitable
26.130N, 90.188E 0.78 0.00 0.00 River band
24.754N, 92.548E 0.22 0.02 0.56 Hevea Plantation
25.379N, 90.145E 0.40 0.22 0.49 Suitable area
24.833N, 92.932E 0.16 0.01 0.13 Agricultural land
25.444N, 90.111E 0.37 0.20 0.43 Suitable area
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rubber tree cultivation in the NE region is currently 1284
and 5594 km2 in the WG region (as of 2011–2012)
(Rubber Growers Companion 2014).

Discussion

Probable future expansion of rubber tree distribution
in India

At present, the WG has more than 5594 km2 of plan-
tations, whereas only 1284 km2 are located in NE region
(Rubber Statistics 2014). According to the model pre-
diction, more land area will become suitable for rubber
tree plantations in the NE compared with the WG by
2050. The present rubber tree plantation extension
activities of the Indian government indicate similar
findings. Emphasis has been given to the NE region,
particularly in the states of Assam, Tripura and
Meghalaya, to extend rubber tree cultivation. The
Maxent model simulation also generated similar infor-

mation regarding the scope of future expansion of rub-
ber tree plantations. Similar ecological niche studies with
Sal (Shorea rubusta) suggest a shift from central to
northeast India due to projected changes in climate by
2020 (Chitale and Behera 2012). Because the Maxent
model is being used for a wide range of species such as
agricultural crop species (Evans et al. 2010), invasive
species (Gallardo and David 2013) and pathogens
(Mischler et al. 2012), some additional factors such as
soil topography and socioeconomic factors have been
included in the model to make it more appropriate for a
plantation species like the rubber tree.

Bioclimatic factors in the rubber tree Maxent model

The Maxent model is most commonly used as a biocli-
matic model with inputs of biologically important cli-
matic factors which are derived from temperature and
precipitation measurements (19 bioclimatic factors of
Hijmans et al. 2005). Based on our present results, we

Fig. 9 Response curve of a precipitation during coldest quarter
(bio19); b mean diurnal range of temperature (bio2); c percent
forest cover; d elevation; e temperature seasonality (bio4); and
f precipitation during driest quarter (bio17) in the WG showing

their impact on model predictions. The grey line is the mean values
for 10 model replications whereas the darker area in all plots
indicates the standard deviation (SD) among the replicated runs
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cautiously infer that climate exerts a major influence on
rubber tree distribution in both regions. However, the
contribution of input factors to model output in the case
of a plantation species such as the rubber tree may result
from either correlation or causation. In the case of an
agricultural crop, the climate dependency of a success-
fully cultivated species may be influenced by human

intervention. Therefore, there is an on-going debate on
the applicability of ecological niche modelling in the
context of determining the niche of domesticated crop
species (Pearson and Dawson 2003; Dormann 2007;
Huntley et al. 2010 Araújo and Peterson 2012).

However, previous field studies on the climatic
requirements of rubber trees indicated that minimum

Fig. 10 Response curves of a precipitation during driest month
(bio14); b elevation; c temperature seasonality (bio4); d rooting
conditions; e slope (%); and f number of villages per district with
population less than 500 (VPL500) in the NE showing their impact

on model predictions. The grey line is the mean values whereas the
darker area in all plots indicates the standard deviation (SD)
among the replicated runs

Table 5 Changes in area of suitability for Hevea trees in NE and WG regions with respect to base year (2000) climate and projected
climate (2050) scenarios

Classes of probability
of species presence

Habitat
description

Area (km2) Area change
(km2)

NE WG NE WG

Base
(2000)

Projection
(2050)

Base
(2000)

Projection
(2050)

0–50 Unsuitable 321,284 319,499 807,959 807,602 �1785 �357
50–70 Moderately suitable 5987 7578 5752 6061 1591 309
70–100 Most suitable 2634 2828 2583 2631 194 48
Area under rubber cultivation as per
official records of the Rubber Board,
India (as per 2011–2012)

1284 5594

Net increase in overall suitable area (50–100 % probability of presence) 1785 357
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temperatures of <10 �C during peak winter season and
maximum temperature of >36 �C during peak summer
season limit annual growth and yield (Raj et al. 2005). It
was also observed that a temperature range of 17–35 �C
and 1500–2500 mm of annual rainfall are the optimum
climatic characteristics of areas with higher rubber tree
productivity (Rao and Vijayakumar 1992). In general,
Tripura and other parts of the NE region of India
experience humid climate conditions due to monsoon-
driven rainfall patterns (Sehgal et al. 1992). Soil water
deficits, experienced during winter in parts of the NE,
are comparable with those of South Kerala and appear
to affect rubber tree growth in both the regions (Raj
et al. 2005). The Maxent model simulation for rubber
tree distribution produced similar inferences based on
the Jackknife plots.

Role of soil factors

Modelling species shifts due to climate change usually
involves species distribution modelling with base year
climate factors and projections for future climate sce-
narios. Species distribution depends not only on climate
but also on land use, soil types, physiological traits and
cultural practices (Coudun et al. 2006). Changes in soil

type take place over a geological time frame and there-
fore any changes due to climate change are likely to be
minimal. In studies assessing the suitability of range
expansion for any plant species, evaluating soil con-
straints is important (Ehrenfeld et al. 2005). Interest-
ingly, only rooting condition was found to contribute to
the rubber tree distribution model. Many tree species
require a deep soil to accommodate genetic rooting
potential and this factor is likely to affect the distribu-
tion model of rubber trees (Moraes 1977).

Impact of socioeconomic factors on the rubber tree
Maxent model

The accuracy of species distribution modelling may be
affected by the functional limitations of ENMs due to
the contribution of many factors other than climate to
the distribution of the species (Garcia et al. 2013; Gal-
lardo and David 2013). Socioeconomic factors were
combined with climate factors in the Maxent model,
keeping the species’ background in mind (Mischler et al.
2012; Gallardo and David 2013). In our study, socioe-
conomic factors were included in the Maxent model
because of the dependency of rubber tree distribution on
acceptance by the growers as a profitable cash species.

Fig. 11 Socioeconomic conditions of two regions, the WG and the
NE: a annual growth (%) in gross domestic product (GDP);
b average per capita income (Rs.); c population; and d states’ own
tax revenue over various time scales (based on available data. (‘//’

indicates the missing data on 2000–2001). Data collected from the
Data Book of the Planning Commission of India, Government of
India
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For example, rubber trees were introduced to the NE
region as a means of rehabilitating land following
shifting cultivation in Tripura and subsequently the
species was adopted by native growers (Jacob et al. 1999;
Sinha 2010). As adoption progressed, other socioeco-
nomic factors such as the availability of a work force
and settlement pressure on barren land arose as con-
straints for bringing new areas under rubber tree plan-
tations in both traditional and non-traditional regions.

It was evident from our study that the inclusion of
socioeconomic drivers into the Maxent model can alter
the probability scores of a particular location for
growing a species. Therefore, the disparity in socioeco-
nomic conditions between two study regions as depicted
in terms of certain socioeconomic indicators will con-
tribute to the species distribution pattern (Fig. 11). Re-
cent advances in ecological modelling have resulted in
greater potential for presence-only models for land
suitability studies in agricultural species (Heumann et al.
2011, 2013). As the Maxent model is basically a species’
niche-based distribution model, the outputs of this
model show the distribution of rubber trees as a function
of their requirements of climate, soil conditions and
socioeconomic aspects. We created probability classes of
species’ presence, which are indicative of habitat suit-
ability for the rubber tree. For example, an interpreta-
tion of the species suitability scores indicates that in
areas with moderate suitability, farmers tend to cultivate
a particular species not due to environmental conditions,
but due to socioeconomic factors (Heumann et al. 2011).
Labour and land availability has not yet been a major
limiting factor in the NE yet unlike in the WG region.
Socioeconomic factors contributed 10–12 % to model
calibration in the WG in compared with 5–7 % in the
NE, which supports this hypothesis.

With this background, it was felt that socioeconomic
factors were important in combination with climatic
factors. However, inclusion of these factors did not af-
fect the high accuracy scores of the Maxent model as
also observed by Gallardo and David (2013). Inclusion
of these factors did, however, amplify the spatial pre-
diction of suitability for rubber tree distribution. Out of
several surrogate factors for socioeconomic factors, the
number of agricultural labourers per district taken from
Indian census (2011) report was found to contribute as
labour availability to the model. As the results in the
present study indicated, the influence of these non-cli-
mate factors varied across space and time. This could be
explained by the cultivation of the species in the WG
region for a long period of time as a result of which it
has reached a saturation point in species expansion. In
our opinion, there is scope for further research to
investigate other socioeconomic factors that may play a
role in determining rubber tree distribution. We also
anticipate that better utility of socioeconomic data may
improve model outputs.

Conclusions

In this study, we concluded that climate plays a major
role in rubber tree distribution. Topographic, soil and
socioeconomic factors made a significant contribution as
well, though this varied between regions. Among all the
bioclimatic factors, precipitation during the driest
month and temperature seasonality contributed the
most to explaining rubber tree distributions in the NE
region. Elevation, rooting conditions, labour availability
and village population factors also contributed to the
distribution of the species in the NE. Rubber trees in the
WG were mainly influenced by bioclimatic factors such
as mean diurnal range of temperature, temperature
seasonality, and precipitation during the coldest and the
driest quarter. This study clearly indicated that further
scope for expansion of rubber tree distribution will be
greater in the NE and limited in the WG region by 2050.
However, identification of more surrogate socioeco-
nomic drivers, which can simulate the constraints or
facilitators of rubber tree plantation development, can
help to improve the spatial predictability of the model.
This gives a new direction of future research and
attention may be focused on integrating process-based
models for natural rubber yield estimation with eco-
logical niche modelling. This will indicate site-specific
strategies applicable to rubber tree plantations in India.
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Araújo MB, Peterson TA (2012) Uses and misuses of bioclimatic
envelope modelling. Ecology 93:1527–1539

Austin MP (2002) Spatial prediction of species distribution: an
interface between ecological theory and statistical modelling.
Ecol Model 157:101–118

Austin MP (2007) Species distribution models and ecological the-
ory: a critical assessment and some possible new approaches.
Ecol Model 200:1–19

Barve N (2008) Tool for partial-ROC. Version 1. Lawrence, KS:
Biodiversity Institute. http://kuscholarworks.ku.edu/dspace/
handle/1808/10059. Accessed 3 Mar 2015

Brown JH, Stevens GC, Kaufman DM (1996) The geographic
range: size, shape, boundaries, and internal structure. Ann Rev
Ecol Syst 27:597–623

Brush S, Perales H (2007) A maize landscape: ethnicity and agro-bio-
diversity in Chiapas Mexico. Agric Ecosyst Environ 121:211–221

89

http://kuscholarworks.ku.edu/dspace/handle/1808/10059
http://kuscholarworks.ku.edu/dspace/handle/1808/10059


Burger K, Smith HP (2004) Natural rubber planting policies and
the outlook for prices and consumption. In: Jewtragoon P,
Thainugul W (eds) Full texts of the international rubber tree
conference

Chitale VS, Behera MD (2012) Can distribution of Sal (Shorea
robusta) shift in north-eastern direction in India due to chang-
ing climate? Curr Sci 102:1126–1137

Coudun C, Gégout J, Piedallu C, Rameau J (2006) Soil nutritional
factors improve models of plant species distribution: an illustra-
tion with Acer campestre (L.) in France. J Biogeogr 33:1750–1763

Das G, Reju MJ, Mondal GC, Singh RP, Thapliyal AP, Chaudhuri
D (2013) Adaptation of Hevea brasiliensis clones in three widely
different cold prone areas of northeastern India. Indian J Plant
Physiol 18:84–91

Dormann CF (2007) Promising the future? Global change projec-
tions of species distributions. Basic Appl Ecol 8(5):387–397

Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-
soil system. Ann Rev Environ Resour 30:75–115

Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, Guisan A,
Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J,
Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura
M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ,
Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J,
Williams S, Wisz MS, Zimmermann NE (2006) Novel methods
improve prediction of species’ distributions from occurrence
data. Ecography 29:129–151

Engler R, Guisan A, Rechsteiner L (2004) An improved approach
for predicting the distribution of rare and endangered species
from occurrence and pseudo-absence data. J Appl Ecol
41:263–274

Evans JM, Fletcher RJ, Alavalapati J (2010) Using species distri-
bution models to identify suitable areas for biofuel feedstock
production. GCB Bioenergy 2:63–78

Fielding AH, Bell JF (1997) A review of methods for the mea-
surement of prediction errors in conservation presence/absence
models. Environ Conserv 24:38–49

Fischer G, Nachtergaele F, Prieler S, Velthuizen HT, Verelst L,
Wiberg D (2008) Global agro-ecological zones assessment for
agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and
FAO, Rome, Italy

Gallardo B, David C (2013) The ‘dirty dozen’: socio-economic
factors amplify the invasion potential of 12 high-risk aquatic
invasive species in Great Britain and Ireland. J Appl Ecol
50:757–766

Garcia K, Lasco R, Ines A, Lyon B, Pulhin F (2013) Predicting
geographic distribution and habitat suitability due to climate
change of selected threatened forest tree species in the Philip-
pines. Appl Geogr 22:12–22

Guisan A, Thuiller W (2005) Predicting species distribution:
offering more than simple habitat models? Ecol Lett 8:993–1009

Hanspach J, Ingolf K, Sven P, Stefan K (2010) Predictive perfor-
mance of plant species distribution models depends on species
traits. Perspect Plant Ecol Evol Syst. doi:
10.1016/j.ppees.2010.04.002

Hernandez PA, Graham CH, Master LL, Albert DL (2006) The
effect of sample size and species characteristics on performance
of different species distribution modelling methods. Ecography
29:773–785

Heumann BW, Walsh SJ, McDaniel P (2011) An assessment of a
presence-only model for crop suitability mapping, Nang Rong,
Thailand. Ecol Inf 6:257–269

Heumann BW, Walsh SJ, Verdery AM, McDaniel PM, Rindfuss
RR (2013) Land suitability modeling using a geographic socio-
environmental niche-based approach: a case study from north
eastern Thailand. Ann Assoc Am Geogr 103:764–784

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005)
Very high resolution interpolated climate surfaces for global
land areas. Int J Climatol 25:1965–1978

Hong LT (1999) Rubber tree wood- processing and utilisation. In:
Hong LT, Sim HC (eds) Malayan forest records. Forest Re-
search Institute Malaysia, Kuala Lumpur, pp 1–15. ISBN
983-9592-27-0

Huntley B, Barnard P, Altwegg R, Chambers L, Coetzee BWT,
Gibson L, Hockey PAR, Hole DG, Midgley GF, Underhill LG,
Willis SG (2010) Beyond bioclimatic envelopes: dynamic spe-
cies’ range and abundance modelling in the context of climatic
change. Ecography 33:621–626. doi:
10.1111/j.1600-0587.2009.06023.x

Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor
Symp. Quant Biol 22:415–427

INCCA (2010) Climate change and India: a 4x4 assessment. Indian
Network For Climate Change Assessment. Ministry of Envi-
ronment and Forest, Government of India.
www.moef.nic.in/downloads/public-information/fin-rpt-
incca.pdf. Accessed 21 May 2014

IPCC 2007 Fourth assessment report: climate change 2007 (AR4).
Intergovernmental Panel for Climate Change, Geneva,
Switzerland

IRSG (2014) Rubber tree industry report. International Rubber
Tree Study Group, Singapore

ISRO 2012 Project report on geospatial technology for acreage
estimation of natural rubber and identification of potential
area for its cultivation, IRSO and Rubber Board, India,
pp 10–21. http://www.nrsc.gov.in/pdf/prubber.pdf. Accessed
12 Apr 2014

Jacob J, Annamalainathan K, Alam B, Sathik MBM, Thapliyal
AP, Devakumar AS (1999) Physiological constraints for culti-
vation of Hevea brasiliensis in certain unfavourable agrocli-
matic regions of India. Indian J Nat Rubber Res 12:1–16

Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models
for studying climate change and invasive species. Ann NY Acad
Sci 1134:1–24
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