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Abstract The sophisticated colony organization of eu-
social insects is attributed to their elaborate chemical
communication systems. Pheromones mediate most
behaviors involved in colony organization including
foraging, defense, brood care, and caste regulation. The
number of candidate compounds available to regulate
multiple systems may be biosynthetically finite and the
production of several compounds instead of a single one
may be more costly. Therefore, strong selection pres-
sures encourage the use of single natural products for
many purposes. Such versatility of signal substances is
especially characteristic of queen pheromones in eusocial
Hymenoptera. However, little is known about the mul-
tifunctionality of the recently identified termite queen
pheromone. Here, we demonstrate that volatile com-
pounds in the queen pheromone of a termite, Reticulit-
ermes speratus (Kolbe), have fungistatic properties.
Application of the pheromone compounds n-butyl-n-
butyrate and 2-methyl-1-butanol significantly reduced
the germination rates of the egg-mimicking parasitic
termite ball fungus. These pheromone compounds also
suppressed mycelial growth of the termite ball fungus
and some entomopathogenic fungi. However, the
inhibitory activity of each substance differed among
fungal strains. Termites likely employ these antimicro-
bial volatiles to protect eggs and queens, and secondarily
as communication agents informing queen fertility. This
study supports the notion of evolutionary parsimony,
wherein pheromones are originally used as defensive

compounds and their communicative function develops
secondarily, which is well-documented in social Hyme-
noptera.

Keywords Queen pheromone Æ Termite
ball Æ Semiochemical parsimony Æ Insect-fungal
interaction Æ Antimicrobial compounds

Introduction

Chemical communication is one of the most widespread
forms of communication occurring among bacteria,
fungi, plants, and animals (Wyatt 2003). Social insects
have evolved sophisticated societies, characterized by
efficient communication systems based on chemical sig-
nals (Wilson 1971; Vander Meer et al. 1998). The
capacity to synthesize chemical compounds is biosyn-
thetically finite and costly, potentially leading to strong
evolutionary pressure to use single products parsimoni-
ously for multiple purposes (Blum 1996; Steiger et al.
2011). Because various substances are emitted for non-
communicative purposes, these chemicals provide mul-
tiple starting points for the evolution of communication.
For example, cuticular anti-desiccation compounds are
also used for recognition in the social Hymenoptera
(Howard 1993; Greene and Gordon 2003; Steinmetz
et al. 2003; Howard and Blomquist 2005; Nehring et al.
2011). Most organisms emit a multitude of defensive
chemicals to protect themselves against enemies, such as
antimicrobial compounds against pathogens, and
repellents and venoms against predators. The secondary
use of defensive compounds, which are primarily emit-
ted for non-communicative purposes, as communication
signals for sex, aggregation, alarm, or trail following
occurs in a variety of insects (Blum and Brand 1972;
Blum 996; Nojima et al. 2005; de Brujin et al. 2006;
Geiselhardt et al. 2009).

Recently, a queen-produced volatile pheromone
consisting of n-butyl-n-butyrate (nBnB) and 2-methyl-1-
butanol (2M1B) was identified in the subterranean ter-
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mite Reticulitermes speratus Kolbe (Matsuura et al.
2010; Yamamoto et al. 2012). This queen pheromone
plays a variety of roles in reproductive regulation by
indicating queen fertility, including inhibition of neo-
tenic queen differentiation (Matsuura et al. 2010) and
regulation of colony-level egg production (Yamamoto
and Matsuura 2011). Importantly, the two volatiles in
the queen pheromone are also emitted by eggs (Matsu-
ura et al. 2010). These compounds indicate egg presence
and function as an orientation pheromone guiding
workers to care for eggs. The dual production of an
inhibitory pheromone by reproductive females and eggs
may provide a mechanism ensuring honest signaling of
reproductive status, with a close relationship between
fertility and inhibitory power (Matsuura 2012).

In social insect colonies, individual members coop-
erate to ensure colony growth, survival and reproduc-
tion; only a few individuals, the queens and their mates,
produce offspring, whereas most individuals perform
tasks such as foraging, nest construction, and offspring
care. The dependence of the colony on a small number
of reproductive individuals means that the fitness of all
members of the society is jeopardized when the queen
succumbs to a pathogen infection. Therefore, we would
expect that the queen in a social insect colony should be
subject to special protection, similar to germ lines that
are subject to immune privilege (Cremer et al. 2007).

Brood survivorship is another determining factor of
colony productivity. Brood protection is especially
important in Reticulitermes termites, since eggs cannot
survive in their microorganism-rich habitat without
being groomed by workers (Matsuura et al. 2000). Soon
after being laid by queens, eggs are carried into nursery
chambers and frequently groomed by workers, whereby
they are coated with saliva rich in antibiotic substances
that protect them from desiccation and pathogenic
infection. Brown fungal balls, called termite balls, are
often found in egg piles of various termite species
(Matsuura et al. 2000; Matsuura 2006) (Fig. 1). Termite
balls tended by Reticulitermes termites are the sclerotia
of an athelioid fungus (Basidiomycota, Agaricomycoti-
na) of the genus Fibularhizoctonia (Matsuura et al.
2000). To date, this egg-mimicking fungus has been
identified from seven Reticulitermes species in Japan and
the United States (Matsuura 2005; Yashiro and
Matsuura 2007), as well as from Coptotermes formos-
anus Shiraki (Matsuura and Yashiro 2010). By mim-
icking termite eggs chemically (Matsuura et al. 2009)
and morphologically (Matsuura 2006), the termite ball
fungus inhabits a nearly competitor-free habitat inside
termite nests. This fungus relies on termites for defense
against desiccation and other microorganisms, and the
frequent grooming by workers keeps the survival rate
near 100 %. In practice, most termite balls are inhibited
from germination, and the fungus rarely consumes the
eggs (Matsuura 2006). The evidence obtained to date
indicates that the interaction is parasitic, in that it is
beneficial for the fungus but costly for the host termites,
at least in the short term. In this sense, the termite ball

fungus is a sort of fungal cuckoo, taking advantage of its
host’s brood care through egg mimicry.

Considering the privileged status of queens and
brood in defense against parasites, together with the fact
that queens and eggs emit the same volatile compounds
in R. speratus (Matsuura et al. 2010), we hypothesized
that queen pheromone compounds were originally
antimicrobial defense chemicals that were later exapted
to function as queen fertility signals or neotenic queen
differentiation inhibitors. In this study, we examined the
antifungal activity of the R. speratus queen pheromone,
which contains nBnB and 2M1B, as a first step in testing
the antimicrobial-origin hypothesis of queen pheromone
evolution. We investigated the compounds’ influence on
the growth of the egg-mimicking parasitic fungus Fibu-
larhizoctonia sp., the closely related sclerotium-forming
fungus Athelia rolfsii (Curzi) Tu & Kimbrough, and the
distantly related sclerotium-forming fungus Sclerotium
tuliparum Klebahn. We also tested the entomopatho-
genic fungi Beauveria bassiana (Balsamo-Crivelli) Vu-
illemin, Metarhizium anisopliae (Metschnikoff) Sorokin,
and Isaria farinosa (Holmskjold) Fries. Pathogenicity of
these entomopathogenic fungi to R. speratus has been
demonstrated by laboratory bioassays (Shimizu and
Yamaji 2002). Additionally, we compared the inhibitory
effect of the queen pheromone compounds on the ger-
mination of termite balls harvested from different
strains.

Materials and methods

Bioassays for queen pheromone compound effects
on termite ball germination

We collected termite nests from rotten pinewood, Pinus
densiflora Siebold & Zuccarini, because both the host
termite R. speratus and the termite ball fungi Fibula-
rhizoctonia sp. are most commonly found there
(Matsuura et al. 2000; Matsuura 2005). When termites
were found, the nest wood was dismantled completely
to locate the reproductive center cells, which harbored
reproductive individuals, eggs, and larvae. Termite
balls used in this experiment were obtained from the
egg piles of three termite colonies (SE110810A,
KA110727A, KA110627A) collected in Okayama,
western Japan.

The termite balls collected from each termite colony
were placed in a 2 mL test tube, and washed three times
in sterilized distilled water (DW) using a vortex mixer.
Fifty termite balls were randomly chosen from each
colony and arranged on a moist unwoven cloth
(25 · 25 mm) (REED Healthy-Cooking Paper, Lion
Corp., Tokyo) placed on one side of a Petri dish
(90 · 15 mm) as shown in Fig. 2a. We placed a filter
paper square (10 · 10 mm) on a glass plate
(20 · 25 mm) in the other side of the Petri dish. We
applied 1 lL of a test chemical onto the filter paper as
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follows: (1) nBnB; (2) 2M1B; (3) 2:1 nBnB:2M1B mix-
ture; (4) 1:2 nBnB:2M1B mixture; (5) 1:1 nBnB:2M1B
mixture; and (6) DW as a control. The Petri dishes were
wrapped with two layers of Parafilm and incubated at
27 �C for 1 week. Germination rates were determined by
observing the termite balls under a stereomicroscope
(SZX7; Olympus Corp., Tokyo) every 24 h. Germina-
tion rates were analyzed using the Kaplan–Meier
method followed by a log-rank test with Bonferroni
correction. We used JMP 8.0.2 (SAS Institute, Cary,
NC, USA) for this analysis.

Bioassays for queen pheromone compound effects
on fungal growth

The termite ball strains (TMB strains I, II, III, and IV)
used in this bioassay were isolated from the termite
colonies HA100725A, TU100904A, SE110810A, and
KA110727A, respectively. Colonies HA100725A,
SE110810A, and KA110727A were collected in Oka-
yama, and TU100904A was collected in Tsukuba, Ja-
pan. To isolate termite ball fungi, we extracted 5–12
termite balls from each nest. These were rinsed with
sterilized DW, and then arranged on an agar plate
containing 200 ppm tetracycline soon after field collec-
tion. After germination, each termite ball was inoculated
on a potato–dextrose agar (PDA; BD Difco, Franklin
Lakes, NJ, USA) plate and incubated at 27 �C for
3 weeks. One newly developed sclerotium was re-iso-
lated from each plate and cultured on a new PDA plate.
The strains of the sclerotium-forming fungi A. rolfsii
(NBRC4476) and Sclerotium tuliparum (NBRC6168)
and of the entomopathogenic fungi B. bassiana
(NBRC5838), I. farinosa (NBRC8296), and M. anisop-
liae (NBRC31961), were provided by the Biological
Resource Center (NBRC), National Institute of Tech-
nology and Evaluation, Tokyo, Japan. These fungal
strains were cultured on PDA plates at 27 �C, as were
the strains of termite ball fungi.

Fig. 1 Termite balls in egg piles of the termite Reticulitermes
speratus. a An egg pile in a nest, b Close view of the egg pile.
Termite balls are light brown and spherical, whereas eggs are
transparent and ovoid, c Mycelial growth of the termite ball fungi
in the egg pile, where eggs are consumed by the fungus

Filter paper
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(Pheromone source)
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Fig. 2 Experimental set-up for the bioassay. a Germination test.
Fifty termite balls were arranged on moist unwoven cloth. We
added 1 lL of a test chemical to the filter paper, b Mycelial growth
test. A 5 mm diameter plug of growing mycelium was placed onto
potato–dextrose agar (PDA). We added 5 lL of a test chemical to
the filter paper
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The assay was performed by placing a 5 mm diameter
plug of growing mycelia from a 3-week-old culture onto
a Petri dish with each test chemical (Fig. 2a). We placed
a glass plate (20 · 25 mm) on PDA in the Petri dish
(Fig. 2b). A filter paper square (10 · 10 mm) was placed
at the center of the glass plate. We applied 5 lL of a test
chemical onto the filter paper as follows: (1) nBnB; (2)
2M1B; (3) 2:1 nBnB:2M1B mixture; (4) 1:2 nBnB:2M1B
mixture; (5) 1:1 nBnB:2M1B mixture; and (6) DW as a
control. The Petri dishes were wrapped with two layers
of Parafilm and incubated at 27 �C for 1 week. Five
replicates were done for each treatment of each fungal
strain. The radial growth of mycelia (colony diameter in
mm) in all plates was measured every 24 h after inocu-
lation. The means of two measurements of each growing
colony were used for analyses. We conducted measure-
ments for a maximum of 11 days, terminating observa-
tions when mycelial growth reached the edge of the Petri
dish or glass plate. Data were analyzed by repeated
measures ANOVA followed by Tukey’s HSD test. We
used STATISTICA 06 J (Stat Soft, Tulsa, OK, USA)
for this analysis.

Results

Inhibitory effects on termite ball germination

The germination rates of the termite balls were signifi-
cantly different among colonies (p < 0.0001, Fisher’s
exact probability test; Fig. 3). In the control treatment
(DW), termite balls obtained from colonies SE110810A,
KA110727A, and KA110627A showed germination
rates of 0.88 (44/50), 0.86 (43/50), and 0.32 (16/50),
respectively. Termite balls from the colony SE110810A
were significantly inhibited by queen pheromone sub-
stances (df = 5, overall x2 = 96.21, p < 0.0001, log-
rank test) in the order 2M1B = 2TO1 = 1TO2 = 1
TO1 > nBnB > DW (p < 0.05, log-rank test with
Bonferroni correction; Fig. 3a). There was a significant
difference among termite balls from KA110727A with
respect to chemical treatment (CT) (df = 5, overall
x2 = 65.66, p < 0.0001, log-rank test), wherein the
order of inhibition was nBnB = 2TO1 > 2M1B = 1
TO1 = 1TO2 > DW (Fig. 3b). Termite balls from
KA110627A had low germination rates in all treatments,
and none of the queen pheromone substances showed
significant inhibition (df = 5, overall x2 = 4.56,
p = 0.47, log-rank test; Fig. 3c).

Inhibitory effects on mycelial growth

The volatile compounds of termite queen pheromone
showed significant inhibitory effects onmycelial growthof
the termite ball fungus (CT: df = 5, F = 189.94,
p < 0.0001, repeated measures ANOVA; Fig. 4). The
interaction effect between CT and the TMB strain was

significant (Strain · CT: df = 15, F = 6.86,
p < 0.0001, repeated measures ANOVA), where nBnB
showed greater inhibition than 2M1B in strains I, II, and
III, but not in strain IV. In TMB strain I, the order of
inhibition was nBnB = 2TO1 = 1TO1 > 1TO2 > 2
M1B > DW (p < 0.05, Tukey’s HSD test; Fig. 4a). In
TMB strain II, the order was nBnB > 2TO1 = 1
TO1 > 1TO2 > 2M1B > DW(Fig. 4b). InTMBstrain
III, the order was nBnB = 2TO1 = 1TO1 = 1TO2 >
2M1B > DW (Fig. 4c). However, in TMB strain IV, the
order was nBnB = 2TO1 = 1TO1 = 1TO2 = 2
M1B > DW (Fig. 4d).
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Fig. 3 Effects of queen pheromone compounds on the germination
of termite balls. a Termite balls from colony SE110810A, b Termite
balls from colony KA110727A, c Termite balls from colony
KA110627A. Different letters indicate significant differences
(p < 0.05, log-rank test). nBnB n-butyl-n-butyrate, 2M1B
2-methyl-1-butanol
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Queen pheromone substances significantly inhibited
the mycelial growth of the other sclerotium-forming
fungi, S. tuliparum (CT: df = 5, F = 26.668,
p < 0.0001; Fig. 5a) and A. rolfsii (CT: df = 5,
F = 555.75, p < 0.0001, repeated measures ANOVA;
Fig. 5b). The order of inhibition was nBnB = 2
TO1 = 1TO1 = 1TO2 > 2M1B, DW, in both S. tu-
liparum and A. rolfsii (p < 0.05, Tukey’s HSD test).

Queen pheromone significantly inhibited the
entomopathogenic fungi M. anisopliae (CT: df = 5,
F = 147.06, p < 0.0001; Fig. 6a) and B. bassiana (CT:
df = 5, F = 51.42, p < 0.0001, repeated measures
ANOVA; Fig. 6b). In M. anisopliae, the order of inhi-
bition was nBnB > 2TO1 = 1TO1 > 1TO2 > 2
M1B > DW (Fig. 6a). In B. bassiana, nBnB showed
significant inhibition (p < 0.001), whereas 2M1B
showed no significant difference from DW (Fig. 6b). In
contrast, no CT significantly inhibited the entomopath-
ogenic fungus I. farinose relative to DW (Fig. 6c).

Discussion

Insects and fungi have a long history of association in
common habitats, where they share similar environ-
mental conditions (Vega and Blackwell 2005). The
remarkable diversity and ecological success of the social
insects has been attributed to their ability to cope with
the infectious microbial community inhabiting their
nests and feeding sites (Wilson 1971; Hölldobler and
Wilson 1990; Traniello et al. 2002). In addition to
behavioral adaptations to lower disease risk (Rosengaus
et al. 1999; Matsuura et al. 2002; Yanagawa et al. 2012),
social insects also rely on biochemical secretions
(Brough 1983; Beattie et al. 1986; Rosengaus et al. 2000;
Poulsen et al. 2002; Bulmer and Crozier 2004; Roseng-
aus et al. 2004; de Lima Mendonça et al. 2009). In this
study, the volatile compounds of a termite queen pher-
omone nBnB and 2M1B showed antifungal activities
against the entomopathogenic termite ball fungi M. ani-
sopliae and B. bassiana. Considering the parsimonious
evolution of pheromones (Blum 1996), it is reasonable
that pheromone compounds should have antimicrobial
activity in various organisms (Cole et al. 1975; Mat-
sumoto et al. 1979; Kuwahara et al. 1989; Vander Meer
and Morel 1995; Ruther et al. 2001; de Brujin et al. 2006;
Matsuura et al. 2007). Our results imply that the com-
pounds nBnB and 2M1B might have originally evolved
as antimicrobial defense, and that their function as ter-
mite queen pheromones might be secondary.

Germination of termite balls in egg piles imposes
enormous costs on the colony because the fungus con-
sumes surrounding eggs. The queen pheromone com-
pounds nBnB and 2M1B are known to also be emitted
by eggs (Matsuura et al. 2010). This study demonstrates
that the inhibitory effects of the compounds on termite
ball germination differ among colonies. Interestingly,
2M1B showed stronger inhibition than nBnB on termite
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Fig. 4 Effects of queen pheromone compounds on mycelial growth
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2-methyl-1-butanol
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balls collected from colony SE110810A (Fig. 3a),
whereas nBnB showed higher suppression than 2M1B
on balls from KA110727A (Fig. 3b). On average, a 2:1
ratio of nBnB and 2M1B, which matches that of queen
pheromone, yielded the most stable inhibition of termite
ball germination. Mycelial growth also indicated that
the inhibitory effects of nBnB and 2M1B were signifi-
cantly different among strains. This might explain why
the termite has evolved two compounds for queen
pheromones and egg volatiles.

In nature, most termite balls are inhibited from ger-
mination, and the fungus rarely consumes the eggs
(Matsuura 2006). Old termite balls become shrunken and
deformed. Such old, deformed, termite balls are removed
from the egg piles by workers and left in a corner of the
nest as garbage. The dumped termite balls germinate and
grow in the nest, and newly formed termite balls are car-
ried into egg piles. Variation in suppression level among
the strains of termite ball fungus suggests that the fungus
may be able to develop resistance to antifungal com-
pounds. A single termite colony can harbor multiple
strains of termite balls in its egg piles (Yashiro et al. 2011).
Therefore, there might be competition among termite ball
strains within a colony. If a strain were resistant to the

antifungal compounds, it would be able to germinate in
the egg pile and consume surrounding eggs, thereby
propagating more than other strains. However, such a
resistant strain would prevent reproduction by the host
termite and eventually exterminate the colony. Because
this fungus relies on the host for defense against desicca-
tion and othermicroorganisms, severely harming the host
termite would be disadvantageous for the fungus itself.
This type of multi-level selection might have determined
the chemical interactions between termite ball fungi and
their host termites.
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