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Abstract Understanding and predicting the dynamics of
organisms is a central objective in ecology and conserva-
tion biology, andmodelling provides a solution to tackling
this problem. However, the complex nature of ecological
systems means that for a thorough understanding of eco-
logical dynamics at hierarchical scales, a set of modeling
approaches need tobe adopted.This review illustrates how
modelling approaches can be used to understand the
dynamics of organisms in applied ecological problems,
focussing on mechanistic models at a local scale and sta-
tistical models at a broad scale. Mechanistic models
incorporate ecological processes explicitly and thus are
likely to be robust under novel conditions. Models based
on behavioural decisions by individuals represent a typical
example of the successful application of mechanistic
models to applied problems. Considering the data-hungry
nature of such mechanistic models, model complexity and
parameterisation need to be explored further for a quick
and widespread implementation of this model type. For
broad-scale phenomena, statistical models play an
important role in dealing with problems that are often
inherent in data. Examples includemodels for quantifying
population trends from long-term, large-scale data and
those for comparative methods of extinction risk. Novel
statistical approaches also allow mechanistic models to
be parameterised using readily obtained data at a
macro scale. In conclusion, the complementary use and
improvement ofmultiple model types, the increased use of
novel model parameterisation, the examination of model
transferability and the achievement of wider biodiversity
information availability are key challenges for the effective
use of modelling in applied ecological problems.
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Introduction

As ecologists, we aim to understand the dynamics of
organisms and their relationships with their surround-
ings. We also bear a crucial responsibility to understand
human impacts on, and predict future trajectories of,
global biodiversity. In particular, given that the loss of
biodiversity and ecosystem services is an ongoing crisis
throughout the planet, the efficiency of the approaches
we take matters; we need to understand what is going on
with global biodiversity and take appropriate measures
as soon as possible. Thus, the problem is how we can
promote our understanding of ecological systems and
project the future of biodiversity in an efficient, yet
effective way (Starfield 1997; Evans 2012).

Modelling should be able to provide a solution to
tackling this problem (Evans et al. 2012). Modelling has
now become an important tool in the study of ecological
systems for developing hypotheses, explaining existing
data, conducting experiments, formulating predictions
and consequently guiding research (Levin et al. 1997;
Starfield 1997; Green et al. 2005). Typical examples in-
clude species distribution models, which aim to describe
the dynamics of species spatial distribution, and popu-
lation dynamics models, which are targeted to the
temporal dynamics of population sizes. The critical
importance of ecological modelling is well illustrated in,
for example, studies on ecological phenomena at a large
spatial and temporal scale. Widespread concerns about
the impact of global environmental changes, including
climate change, on biodiversity and ecosystem services
have led to an urgent need to predict the future state of
biodiversity at a global spatial scale and a temporal scale
of decades to centuries for establishing effective poli-
cies (Green et al. 2005; Kerr et al. 2007). Large-scale
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ecological studies, however, are logistically more difficult
to conduct than are small-scale studies (Root and
Schneider 1995). Consequently, at a large scale, avail-
able information is usually spatially and temporally
heterogeneous, often containing unknown levels of bias
and large errors (Graham et al. 2004; Guisan et al.
2006). Modelling currently provides the most compre-
hensive and flexible approach to understanding and
projecting the dynamics of organisms at a broad spatial
scale while dealing with such problems that are inherent
in large-scale ecological studies (Guisan and Thuiller
2005; McMahon et al. 2011).

Ecological systems, however, comprise complex net-
works of individuals interacting with each other and
with their environment at multiple scales and, thus, can
hardly be explained accurately in every aspect of time
and space from a single, albeit complex, model (Guisan
and Zimmermann 2000; Porté and Bartelink 2002). For
example, the dynamics of organisms are affected by a
wide range of environmental factors at hierarchical
scales (Wiens 1989; Levin 1992), such as patch compo-
sition and configuration at a landscape scale (Dunning
et al. 1992; Wiens et al. 1993) and climate and topog-
raphy at a macro scale (Hawkins et al. 2003; Davies
et al. 2007; Yamaura et al. 2011). The relative impor-
tance of different processes in governing ecological
dynamics also differs among scales (Root and Schneider
1995; Vellend 2010). For instance, at small spatial and
temporal scales, the spatial distribution of animals is
driven by patch use and within-patch movements of
individuals (Bernstein et al. 1988; Mueller and Fagan
2008). At a landscape scale, resource utilisation, dis-
persal, colonisation and population extinction compose
spatial population dynamics (Turner 1989; Dunning
et al. 1992; Hanski 1999) while niche shifts and conser-
vatism, speciation and species extinction are important
processes that govern species dynamics at broad spatial
and temporal scales (Willig et al. 2003; Wiens and
Donoghue 2004). Our survey approaches, and conse-
quently available data, are also restricted by the scale of
focal processes. Detailed information on organisms’
dynamics, such as individuals’ behaviour or life-history
events, can usually be obtained at small spatial and
temporal scales through direct observation or experi-
ments (Sutherland et al. 2004). On the other hand, in
macroecological studies, which are usually conducted at
large spatial and temporal scales, available information
is limited to readily measurable variables, for example,
body size, abundance or geographic range for well-
studied groups of organisms, such as terrestrial birds,
mammals and plants (Brown 1999).

This scale-dependent nature of ecological systems
and survey approaches means that it is crucial to adopt a
set of modelling approaches suited to ecological pro-
cesses at hierarchical spatial and temporal scales. The
importance of integrative approaches in ecological
studies is not a novel idea but has been argued repeat-
edly by earlier studies (Lawton 1999; Simberloff 2004),
including those focussing on ecological models (Levins

1966; Guisan and Zimmermann 2000). However, few
reviews to date have focussed on integrative approaches
to modelling ecological dynamics in the field of applied
ecology. Given the urgent necessity to promote the
understanding of biodiversity status and human impacts
on it at the global, regional and national level (Balmford
et al. 2005), such integrative approaches would achieve
the maximum effect in tackling applied ecological
problems. Although Evans (2012) is a rare exception in
that it reviews existing approaches to ecological model-
ling for understanding the ecological impact of envi-
ronmental change, the review does not explicitly focus
on the difference in dynamics, processes and available
information among scales, and the consequent advan-
tages and disadvantages of different modelling
approaches.

Thus, this review focusses on how modelling
approaches can be used to understand the dynamics of
organisms for the purpose of tackling applied ecological
problems. The aim of this review is not to cover a whole
range of ecological models but to introduce applications
at opposite ends of the spectrum: mechanistic models
targeted to local-scale dynamics of organisms, and sta-
tistical models for macro-scale dynamics. Reviewing the
pros and cons of these two extremes would highlight the
necessity of integrative modelling approaches to tackling
ecological processes at hierarchical spatial and temporal
scales.

Mechanistic models for local-scale dynamics

Mechanistic models explicitly capture hypothetical eco-
logical processes (Guisan and Zimmermann 2000) and,
thus, are likely to be robust under new environmental
combinations in new locations, but are usually limited
by the availability of data for model parameterisation
(Porté and Bartelink 2002; Jongejans et al. 2008; Kear-
ney and Porter 2009). Ecological studies at a local scale
have a long history (Wiens 1989; Wu and Loucks 1995)
and consequently, a wide variety of survey techniques
have been established for obtaining detailed information
on ecological processes at a local scale. Therefore,
mechanistic models provide a powerful approach to
tackling ecological dynamics at a local scale. Examples
of mechanistic models in the field of applied ecology
include matrix population models (Akçakaya et al.
1999), metapopulation models (Hanski 1999) and indi-
vidual-based models (Grimm and Railsback 2005). The
following section introduces actual applications of such
mechanistic models, focusing on models based on
behavioural decisions by individuals.

Behaviour-based models as an example of mechanistic
models

Ecological dynamics at a local spatial scale are usually
governed by processes that occur at a short temporal
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scale, and for animals, behavioural decisions by indi-
viduals play a fundamental role in shaping spatial pop-
ulation dynamics at a relatively small spatial scale
(Dunning et al. 1995; Sutherland 1996). One advantage
of understanding the behavioural decisions made by
individuals is that it is possible to predict their behaviour
and consequent spatial population dynamics in novel
environments such as those resulting from environ-
mental change (Sutherland 1998). There are also unex-
pected but critical findings of management consequences
that cannot be derived without considering detailed
behavioural processes in individuals (e.g., Goss-Custard
et al. 2004). Thus, models based on behavioural deci-
sions are a particularly powerful approach for a wide
variety of applied problems in ecology (e.g., projecting
spatial distribution: Railsback and Harvey 2002; Bar-
David et al. 2005, assessing extinction risks: Schiegg
et al. 2005; Rossmanith et al. 2006; Revilla and Wiegand
2008, measuring landscape connectivity: Kramer-Schadt
et al. 2004; Revilla et al. 2004, predicting home ranges:
Mitchell and Powell 2004, 2007, predicting the impact of
deforestation: Satake and Rudel 2007).

Although models based on behavioural decisions by
individuals have been adopted for a wide range of taxa
and purposes, an outstandingly successful example of
such models is the application to understanding
anthropogenic impacts on the populations of bird spe-
cies, particularly in coastal and farmland habitats (Ste-
phens et al. 2003; Stillman and Goss-Custard 2010).
These models are often spatially explicit individual-
based models that project changes in the spatial distri-
bution of target species and population consequences
(Fig. 1). Although bahavioural processes can be incor-
porated in individual-based models either as empirically
derived decision rules or as optimality rules (Feró et al.

2008), models of the latter category, where behaviour is
predicted on the basis of short-term proxies for fitness or
long-term fitness considerations, have usually been
adopted by studies of birds in coastal and farmland
habitats (hereafter, behaviour-based models, Goss-
Custard and Sutherland 1997; Sutherland 2006). Model
structures and parameters are based on knowledge ac-
quired from intensive studies about the behavioural
ecology of the target species, such as the functional
response showing the relationship between food density
and intake rate (Goss-Custard et al. 2006b; Stillman and
Simmons 2006; Smart et al. 2008), diet and patch
selection (Vickery et al. 1995; Gill 1996; Nolet et al.
2002; Amano et al. 2006a), resource dynamics (Nolet
et al. 2001), interference competition (Caldow et al.
1999; Triplet et al. 1999), exploitative competition
(Rowcliffe et al. 2001; Nolet et al. 2006b), behavioural
responses to human disturbance (Gill et al. 2001; Still-
man and Goss-Custard 2002; Amano et al. 2004),
migratory behaviour (Bauer et al. 2006, 2008; Moriguchi
et al. 2010) and theoretical frameworks that integrate the
revealed processes (Sutherland and Anderson 1993;
Sutherland and Dolman 1994). The developed models
have been applied for making a wide range of predic-
tions such as regarding carrying capacities (Sutherland
and Allport 1994; Stillman et al. 2000; Nolet et al.
2006a), and the impact of habitat loss (Pettifor et al.
2000; Goss-Custard et al. 2006a), agricultural practices
(Johst et al. 2001; Amano et al. 2007; Butler et al. 2010;
Catry et al. 2012), human disturbance (West et al. 2002;
Klaassen et al. 2006), fisheries (Stillman et al. 2001) and
climate change (Durell et al. 2006; Bauer et al. 2008).

Limitations of and challenges for mechanistic models

Despite the success in the examples above, the relatively
limited variety of species to which behaviour-based
models have been applied to date clearly points to a
drawback of mechanistic models. Typical behavioural-
based models require detailed information on interac-
tions both between individuals and between an
individual and its environment, as well as the dynamics
of prey populations, which may limit quick and wide-
spread implementation (Bradbury et al. 2001; Feró et al.
2008). Therefore, in order to make the best use of
mechanistic models like behaviour-based models, two
issues—model complexity and parameterisation—need
to be explored further in future studies, as highlighted by
Bradbury et al. (2001).

First, the level of model complexity should be explored
carefully. The strength of inferences from mechanistic
models depends on the identification of key limiting
processes (Elith et al. 2010; Kearney et al. 2010); incor-
porating unnecessarily detailed processes would make it
difficult to parameterise models and interpret outputs
(Van Nes and Scheffer 2005). Comparing the perfor-
mance of models with different degrees of complexity,
as has been done in some studies (Stephens et al. 2002;

Fig. 1 Simplified sketch of processes, factors and their interrela-
tionships included in typical behaviour-based models. Note that
this schematic diagram does not necessarily represent all potential
factors and processes
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Goss-Custard et al. 2003), should be encouraged further
(Orzack 2012). For example, Amano et al. (2006b)
developed four different behaviour-based models for
white-fronted geese Anser albifrons with and without the
assumptions of (1) individuals’ complete knowledge of
foraging patch quality, and (2) benefits of group foraging,
and tested the ability of these models to reproduce the
observed patterns in spatial distribution and fat deposi-
tion parameters, concluding that both the assumptions
are necessary to predict the spatial and temporal
dynamics of foraging goose populations accurately. For
applied problems, the choice of the most appropriate
model also depends on the management objectives
(Jongejans et al. 2008). For instance, to investigate the
effect of the type of agricultural land-use on the breeding
success of lesser kestrels Falco naumanni, Rodrı́guez et al.
(2006) used individual-based models that assume that
individuals exploit only one patch type. Catry et al. (2012)
expanded this model to include the dynamics of multiple
land-use types and optimality-based patch selection by
individuals, successfully evaluating the impact of spatial
and temporal changes in agricultural practices in Portu-
gal. Model complexity translates to cost in terms of
computing resources and increased error propagation
and, thus, the construction of unnecessarily complex
models should be avoided (Clark and Gelfand 2006;
McMahon et al. 2011).

Second, a novel approach to model parameterisation
has recently opened the door to a quick and widespread
implementation of mechanistic models. Although tradi-
tional mechanistic models have used parameters that are
estimated statistically from different studies or sources
(Fig. 2a), the novel approach integrates the traditionally
disparate treatment of ‘mechanistic understanding’ and
‘statistical parameter estimation’ into a single process,
making it possible to account for uncertainties in models
and parameters (Fig. 2b, Clark 2005; Clark and Gelfand
2006). Typically, Bayesian methods and maximum
likelihood methods (Patterson et al. 2008; Schick et al.
2008), but also other methods such as artificial neural
networks (Dalziel et al. 2008) and signal processing
(Boettiger et al. 2011), have been applied to parameterise
mechanistic models incorporating various behavioural
parameters from readily obtained distributional and
trajectory data without direct behavioural observations
(Table 1). Although many of these statistical approaches
are based on the direct calculation of likelihoods, our
ability to work out the likelihood functions is sometimes
severely constrained by mathematical difficulties, par-
ticularly in models of complex stochastic systems, such
as individual-based models with many hidden states
(Beaumont 2010; Hartig et al. 2011). In such a case, a
technique using ‘Stochastic Simulation Models’ is a
powerful alternative approach to parameterising mech-
anistic models from data (see Fig. 2 in Hartig et al.
2011). Instead of calculating likelihoods directly, Sto-
chastic Simulation Models usually take the following
three steps: (1) calculate summary statistics of observed
and simulated data, (2) approximate the likelihood of

obtaining the observed data from the model with
parameters based on the calculated summary statistics,
and (3) estimate the shape of the approximate likelihood
as a function of the model parameters using computa-
tionally intensive techniques, such as Approximate
Bayesian Computing (Beaumont 2010; Csilléry et al.
2010) or Bayesian calibration (van Oijen et al. 2005).
Pattern-Oriented Modelling (Wiegand et al. 2003;
Grimm et al. 2005) does not explicitly approximate
likelihoods but also applies the same concept. For
example, Martı́nez et al. (2011) developed an individual-
based model that considers basic demographic processes
and interactions such as competition and facilitation in
alpine tree-line ecotones, and successfully parameterised
the model using the Stochastic Simulation Model
approach based on Bayesian methods. Although
uncertainties in model parameters, error propagation
and ad hoc methods of model selection have been the
major points of criticism against complex mechanistic
models like individual-based models (Wiegand et al.
2003; Grimm and Railsback 2005; Grimm et al. 2005),

Fig. 2 a The approach in traditional mechanistic modelling, where
parameters are estimated statistically from different studies or
sources (shaded boxes) and then used in mechanistic models as
inputs. b The novel approach with mechanistic models, which
integrates the traditionally disparate treatment of ‘mechanistic
understanding’ and ‘parameter estimation’ into a single process,
making it possible to account for uncertainties in models and
parameters simultaneously. Models are usually parameterised
based on either the likelihood (maximum likelihood/Bayesian
methods) or approximated likelihood (Stochastic Simulation
Models: see main text)
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the implementation of Stochastic Simulation Models
provides a robust framework that allows such statistical
inference even for complex mechanistic models (Hartig
et al. 2011; Martı́nez et al. 2011).

Statistical models for macro-scale dynamics

Widespread concerns over the possible impacts of global
environmental changes on biodiversity have led to the
increasing importance of understanding spatial and
temporal dynamics of organisms at broad (typically
from country to global) scales (Kerr et al. 2007; Kühn
et al. 2008). This is also well reflected in recent global
efforts to assess the status of global biodiversity and
ecosystem services, such as the Convention on Biological
Diversity’s 2010 target (UNEP 2002) and the Millen-
nium Ecosystem Assessment (2005). Macroecology,
which searches for ecological patterns in the spatial and
temporal dynamics of organisms at broad spatial scales
and develops theoretical explanations for these patterns,
is a powerful approach to tackling applied problems at a
broad spatial scale (Brown and Maurer 1989; Lawton
1999). Macroecological studies often rely on readily
obtainable data, such as abundance, distribution or
phenology of common species (Graham et al. 2004;
Dickinson et al. 2010). Data-hungry mechanistic models
are not necessarily easy to develop with such data
(Urban 2005; Wiens et al. 2009). More importantly, such
data are usually based on citizen science or natural
history collections and suffer from sampling bias and
errors (Dickinson et al. 2010; Snäll et al. 2011), which
should be addressed to identify ecological patterns
accurately. Statistical models thus play an important
role in dealing with problems that are often inherent in
macroecological data.

Statistical approaches to assessing the status
of populations and species

For example, assessing the status of populations and
species at a macro scale typically comprises two steps:
quantifying population trends (changes in population
sizes), and identifying drivers that are responsible for the
revealed trends (Fig. 3). Population trends of species at a
broad spatial scale are quantified using long-term, large-
scale count data, which usually include several problems
that have recently been recognised increasingly, such as
spatial autocorrelation (Kissling and Carl 2008),
incomplete samples (ter Braak et al. 1994), differences in
observers’ abilities (Sauer et al. 1994) and imperfect
detection of species (Royle et al. 2005). Consequently, a
wide range of statistical models have been applied to
quantifying population trends while dealing with those

Table 1 Examples of studies where behavioural processes were estimated by directly fitting mechanistic models to data

Behavioural processes incorporated Data type Methods for parameterisation References (target species)

Movement modes Trajectories Bayesian method Morales et al. 2004;
Fryxell et al. 2008 (elk)

Trajectories Bayesian method Jonsen et al. 2005 (hooded seal), 2007
(leatherback turtle)

Trajectories Bayesian method Eckert et al. 2008 (loggerhead turtle)
Trajectories Bayesian method Block et al. 2011 (tuna, shark, sea turtle,

seal and whale)
Habitat specific mortality
and survival rates

Mark-recapture Bayesian method Ovaskainen et al. 2008
(Glanville fritillary butterfly)

Distribution Bayesian method Kuroe et al. 2011 (harvest mouse)
Responses to resource distribution,
disturbances and predators

Trajectories Maximum likelihood method Forester et al. 2007 (elk)
Trajectories Artificial neural networks Dalziel et al. 2008 (elk)
Trajectories Signal processing Boettiger et al. 2011 (African elephant)

Responses to edges/barriers Mark-recapture Bayesian method Ovaskainen et al. 2008
(Glanville fritillary butterfly)

Trajectories Bayesian method Pedersen et al. 2011 (Bluefin tuna)
Spatial memory Trajectories Artificial neural networks Dalziel et al. 2008 (elk)
Conspecific interaction Trajectories Maximum likelihood method Moorcroft et al. 2006 (coyote)
Density-dependent colonisation Distribution Bayesian method Bled et al. 2011 (Eurasian collared-dove)

Fig. 3 A statistical approach to assessing the status of populations
and species at a macro scale, which typically comprises two steps: a
quantifying population trends, and b identifying the drivers
responsible for the revealed trends
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problems. Conventional approaches have used either
generalised linear models or generalised additive models
to estimate population trends from data with missing
values (ter Braak et al. 1994; Fewster et al. 2000). More
recently, hierarchical models have had a wide applica-
tion for overcoming a number of problems that had not
been addressed in the conventional approaches when
estimating population trends (Table 2). These statistical
models have contributed successfully to assessing the
status of populations and species at national (Conrad
et al. 2004; Battersby and Partnership 2005; Van Dyck
et al. 2009; Amano et al. 2010; Baillie et al. 2010;
Kasahara and Koyama 2010; Sauer and Link 2011),
regional (Van Strien et al. 2001; Gregory et al. 2005) and
global scales (Collen et al. 2009; Butchart et al. 2010).

Once population trends are quantified, the underlying
drivers can be explored effectively by comparative
methods of assessing extinction risk, which aim to
identify factors associated with species showing serious
population declines (Fisher and Owens 2004). Factors
related to the risk of decline and extinction include
species life-history and ecological traits, such as body
mass or geographical range (Bennett and Owens 1997;
Reynolds 2003), evolutionary history (Purvis et al. 2000;
Purvis 2008), external anthropogenic threats (Cardillo
et al. 2004, 2005) and large-scale climate variability
(Brander 2007; Waite et al. 2007). Statistical models
again play an important role in untangling the effects of
these multiple drivers of population decline. For exam-
ple, since related species cannot be assumed to be
independent data points, phylogenetic generalised least-
squares models (Grafen 1989; Martins and Hansen
1997) have been adopted in comparative methods to
identify correlates of population decline while dealing
with phylogenetic non-independence among species
(Shultz et al. 2005; Amano and Yamaura 2007; Purvis
2008).

Recently, comparative methods of extinction risk
have shown further development in two aspects. First,
an increasing number of studies has found that there are
non-linear effects of species characteristics (Cardillo
et al. 2005) and interaction effects of intrinsic and
external factors (Murray et al. 2010) on species extinc-
tion risk. Such non-linearities and interactions of
potential drivers can be explored effectively by machine

learning methods (Olden et al. 2008). Tree-based models
such as Decision Trees (De’ath and Fabricius 2000) and
Random Forests (Liaw and Wiener 2002) have been
applied in particular to a wide range of ecological topics
(Olden et al. 2008). In fact, recent studies have applied
tree-based approaches successfully to model population
declines (e.g. Jones et al. 2006b; Sullivan et al. 2006;
Davidson et al. 2009; Murray et al. 2010). However,
although for practical purposes it is an advantage that
tree-based models do not require phylogenetic infor-
mation, which is often difficult to obtain (Davidson et al.
2009), the inability to account for phylogenetic non-
independence also means that tree-based models cannot
reduce the influence of clade-specific relationships in
data (Bielby et al. 2010). Thus, tree-based models may
be used effectively as a first step in identifying non-
linearities and interaction terms of drivers for inclusion
in phylogenetic generalised least-squares models in
future efforts to assess species susceptibility to extinction
(Bielby et al. 2010).

Second, disentangling the effects of species traits,
phylogeny and spatial context on population decline and
species extinction would be a challenge to be addressed
in comparative methods (Purvis 2008). Species traits,
phylogeny and space are related closely to each other
through phylogenetic trait conservatism (Freckleton
et al. 2002; Maherali and Klironomos 2007) and phy-
logenetic niche conservatism (Peterson et al. 1999; Wiens
2004), making it difficult to evaluate the independent
effect of each factor. Recent advances in statistical
models for quantifying the relative effect of traits and
phylogeny (Desdevises et al. 2003; Diniz-Filho and Bini
2008) and space and phylogeny (Freckleton and Jetz
2009) could be a breakthrough to solve the problem,
although only a few studies to date have adopted these
modelling techniques to quantify the relative contribu-
tion of these factors to species extinction risk (e.g. Safi
and Pettorelli 2010).

The examples above focus on the status of popula-
tions and species, but macroecological approaches
described in this section also play an important role in
assessing the loss of functional diversity (Şekercioğlu
et al. 2004; Flynn et al. 2009) and consequent decline in
ecosystem services (Butchart et al. 2010; Garibaldi et al.
2010; Keesing et al. 2010).

Limitations of and challenges for statistical models
in macroecological studies

Obviously, one big disadvantage of correlation-based
statistical models is the lack of mechanistic structures,
making it difficult to extrapolate to novel conditions
(Sutherland 2006). This is particularly critical in applied
ecological problems, which often require predictions
under novel conditions (e.g. impact of climate change:
Thomas et al. 2004; spread of invasive species: Bradley
et al. 2010). For instance, climate envelope models have
typically been used in efforts to assess biodiversity

Table 2 Problems that need to be dealt with when quantifying
population trends using macro-scale data, and example studies that
have tackled each challenge

Problem Example studies

Spatial autocorrelation Thogmartin et al. (2004)
Differences in population trends
among sites

Link and Sauer (2002);
Amano et al. (2012)

Differences in observers’ abilities Link and Sauer (2002)
Imperfect detection of species Kéry et al. (2009)
Spatial variation in survey efforts Link et al. (2006)
Temporal variation in survey efforts Kéry et al. (2010)
Changes in data collection procedure Brun et al. (2011)
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consequences of climate change (Heikkinen et al. 2006).
However, recent studies have pointed out that the reli-
ance on such correlation-based statistical models can
lead to inaccurate projections of changes in species
spatial distribution (Beale et al. 2008; Duncan et al.
2009). Consequently, there is an increasing awareness
that, for the accurate understanding of the impact of
climate change, it is necessary to incorporate biotic
interactions (Davis et al. 1998; Araújo and Luoto 2007),
physiology (Kearney and Porter 2009), dispersal limi-
tations (Svenning and Skov 2007) and plasticity and
evolution of niches (Pearman et al. 2008; Wiens et al.
2010) in predictive models.

Incorporating such mechanistic structures in ecolog-
ical models at a macro scale is not at all an easy task,
considering the general lack of information at this spa-
tial scale. Nevertheless, recent studies have successfully
enhanced predictions about the spatial population
dynamics of organisms by incorporating information
derived from mechanistic models in statistical models
(Amano et al. 2008; Kearney and Porter 2009; Morin
and Thuiller 2009; Elith et al. 2010). The use of meta
models, such as graph models, which extract key pro-
cesses from but are much simpler than detailed mecha-
nistic models, will also be a promising approach to
applying a mechanistic understanding over large spatial
scales (Urban 2005). Novel statistical approaches to
model parameterisation, such as Bayesian methods and
Stochastic Simulation Models as described earlier in this
paper, also offer an alternative and promising modelling
method that allows the development of mechanistic
models with macroecological data (Hartig et al. 2011;
McMahon et al. 2011). Bled et al. (2011) represents one
excellent example of such a novel modelling approach
for assessing processes underlying the spatial population
dynamics of organisms at a macro scale. Their hierar-
chical Bayesian model explicitly incorporates the inva-
sion process of Eurasian collared doves Streptopelia
decaocto through the estimation of site-persistence
probability, initial colonisation and recolonisation, and
their relationship with local population density, while
accounting for the detection probability of the species.
The model was fitted, using a Bayesian method, to dis-
tribution data derived from the North American
Breeding Bird Survey, and the density-dependent nature
of the invasion process was successfully inferred from
the estimated parameters (Bled et al. 2011). Kadoya and
Washitani (2010) also adopted a Bayesian method to
estimate parameters of the immigration and establish-
ment processes of alien bumblebees Bombus terrestris in
Japan from spatio-temporal presence/absence data.

Future challenge for applied ecological modelling

This review has briefly introduced the application of two
types of ecological models to applied problems. As
indicated above, no single type of model is sufficient to
understand and predict ecological dynamics at hierar-

chical scales, given the difference in processes operating
and information available among scales. Thus, the
complementary use of mechanistic models and statistical
models according to the scale, available information and
skills would be an effective approach to tackling the
dynamics of organisms in a changing world (Bradbury
et al. 2001; McMahon et al. 2011, Fig. 4). Considering
that all models, including the mechanistic and statistical
models introduced here, inevitably contain a black box,
which hides the underlying details, no type of model
should be dismissed automatically as inferior just
because it does not include all of the mechanistic details
(Orzack 2012). What truly matters is where to use such
black boxes in model structures, and the consequent
predictive performance of the models (Orzack 2012),
both of which should be taken into account more
explicitly in future modelling studies. At the same time,
efforts to overcome the drawbacks of each type of model
represent a major challenge for the next decade. Novel
approaches to model parameterisation, such as Bayesian
methods and Stochastic Simulation Models, improve the
chances of a quick and widespread implementation of
mechanistic models even for ecological dynamics at
large spatial and temporal scales. In fact, these
approaches break down the boundaries between statis-
tical models and traditional mechanistic models, pro-
viding a comprehensive framework for the field of
ecological modelling (Fig. 4).

One of the largest challenges faced by ecological
modelling and, more broadly, conservation science, are

Fig. 4 A diagram of the amount of available information,
statistical models, traditional mechanistic models and novel
mechanistic models along the gradient of temporal/spatial scales
and skills required for modelling. The amount of available
information is generally large at small spatial and temporal scales.
Statistical models, including the comparative methods, can be
applied to a wide range of scales but are particularly important for
ecological dynamics at large spatial and temporal scales, where it is
usually difficult to implement traditional mechanistic models due to
the lack of necessary information. Novel statistical approaches to
model parameterisation allow a quick implementation of mecha-
nistic models even with information available at large spatial and
temporal scales, consequently providing a comprehensive frame-
work for the field of ecological modelling
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the reported gaps and heterogeneity in the geographical
and taxonomical coverage of existing information
(Collen et al. 2009; Pennisi 2010). For example, 18%
(7,976/45,301 species) of animal species that have been
evaluated to date by the IUCN have so little information
available for assessing population status that they can be
judged only as Data Deficient (IUCN 2011). Thus, the
challenge is how to effectively understand and predict
the dynamics of organisms with ecological modelling
under such uncertain and temporally and financially
constrained conditions. Although many studies (e.g.
Ludwig 1999; Brook et al. 2000; Coulson et al. 2001)
have explored the validity of ecological models for pre-
dicting future status of organisms, surprisingly few
studies to date have tested if ecological models that have
been developed for a particular species in a particular
region can be used to effectively predict the dynamics of
other species or in other regions (Amano et al. 2011). In
this regard, efforts to test the predictability of species’
extinction risk using trait-based comparative methods
(e.g. Cardillo et al. 2008; Pocock 2011) and the spatial
transferability of predictive models (Broennimann et al.
2007; Whittingham et al. 2007), though still rare, should
be encouraged further.

Finally, special emphasis should be placed on the
importance of improving biodiversity information
across the globe. As discussed above, the possibili-
ties and applicabilities of ecological modelling are re-
stricted largely by the amount of information available
for a target system. Systematic biodiversity monitoring
(Pereira and Cooper 2006; Lindenmayer and Likens
2009), citizen science (Dickinson et al. 2010) and natural
history collections (Graham et al. 2004) all have the
potential to provide invaluable information for devel-
oping effective ecological models. Improving the acces-
sibility of existing but isolated empirical data by
overcoming technological and cultural challenges (Jones
et al. 2006a; Reichman et al. 2011) is also an effective
strategy.

In conclusion, the complementary use and improve-
ment of multiple model types, increased use of novel
model parameterisation, examination of the applicabil-
ity of models to species and regions with little infor-
mation, and the achievement of wider biodiversity
information availability are important challenges for the
effective use of modelling in applied ecological problems.
Enhancing collaborative partnerships among empirical
ecologists, theoretical ecologists and ecological model-
lers would promote the exchange of information and
ideas for these purposes (Green et al. 2005; Lindenmayer
and Likens 2011). However, considering recent declines
in fundamental fields such as taxonomy and natural
history (Noss 1996; Hopkins and Freckleton 2002;
Uniyal 2011), encouraging inter-field collaborations may
not be enough. To borrow Weiner (1995)’s phrase,
individual ecologists should aim to be both modellers
and empiricists. Modellers should learn as much as
possible about the natural history of the systems they are
trying to model, and empiricists should learn as much as

possible about models that may be relevant to their
research (Weiner 1995). Such pluralism, not only within
ecological modelling but across the field of ecology,
might be the best strategy for unraveling the dynamics of
organisms in a rapidly changing world.

Acknowledgments Given the large number of people who have of-
fered support, I have chosen not to give specific names here to
avoid a disaster where I forget to name someone very important!
Instead I would like to express my sincere appreciation for all the
help and kindness I have received from everyone who has sup-
ported my work. This review is based on works funded by Grant-
in-Aid for Young Scientist (B) (19770021, 21710246) of the Japan
Society for the Promotion of Science (JSPS). T.A. is currently
supported by the JSPS Postdoctoral Fellowships for Research
Abroad. I would also like to thank S. Sugasawa and Y. Yamaura
for comments on an earlier draft and two anonymous referees who
greatly helped to improve this manuscript.

References
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