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Abstract The interannual net primary production vari-
ation and trends of a Picea schrenkiana forest were
investigated in the context of historical changes in cli-
mate and increased atmospheric CO2 concentration at
four sites in the Tianshan Mountain range, China.
Historical changes in climate and atmospheric CO2

concentration were used as Biome–BGC model drivers
to evaluate the spatial patterns and temporal trends of
net primary production (NPP). The temporal dynamics
of NPP of P. schrenkiana forests were different in the
western, middle and eastern sites of Tianshan, which
showed substantial interannual variation. Climate
changes would result in increased NPP at all study sites,
but only the change in NPP in the western forest
(3.186 gC m�2 year�1, P < 0.05) was statistically sig-
nificant. Our study also showed a higher increase in the
air temperature, precipitation and NPP during 1987–
2000 than 1961–1986. Statistical analysis indicates that
changes in NPP are positively correlated with annual
precipitation (R = 0.77–0.92) but that NPP was less
sensitive to changes in air temperature. According to the
simulation, increases in atmospheric CO2 increased NPP
by improving the water use efficiency. The results of this
study show that the Tianshan Mount boreal forest
ecosystem is sensitive to historical changes in climate
and increasing atmospheric CO2. The relative impacts of
these variations on NPP interact in complex ways and
are spatially variable, depending on local conditions and
climate gradients.

Keywords BIOME–BGC Æ Boreal forest Æ Climate
change Æ Interannual variation Æ Net primary
production (NPP)

Introduction

The Intergovernmental Panel for Climate Change
(IPCC) report clearly indicates that warming of the cli-
mate system is unequivocal—and very likely due to
rapidly increasing atmospheric levels of greenhouse gas
(such as CO2) caused by human activities (IPCC 2007).
The climate change in Northwest China shows a con-
siderable similarity to the global situation (Ding et al.
2006): although climate change over the last century
(since the end of Little Ice Age) has been dominated by a
warm and drought trend, strong signals of climatic shift
to a warm, humid pattern have been appearing in the
Tianshan Mountain and neighboring regions since 1987
(Shi et al. 2002, 2003). The projection of climate change
due to greenhouse effects in Northwest China, as simu-
lated by a regional climate model under 2 · CO2, has
indicated that the mean annual temperature will increase
2.7�C, with about a 3.0�C increase in the winter and
spring, during the next 100 years. During this same time
period, annual precipitation will usually increase by
more than 20% in most of Northwest China and by
30% or more in some places (Gao et al. 2003b).
Therefore, the effects of climate change on vegetation in
this region has been the focus of concern (Chen et al.
2004; Guo et al. 2007; Su et al. 2007; Xie et al. 2007).

Forests, which currently cover approximately 30–
40% of the vegetated area of the earth, are essential in
determining the state of the global climate system and
carbon cycle (Dixon et al. 1994). Boreal forests are of
particular importance in both the global climate system,
as they expected to undergo the greatest climatically
induced change in the twenty-first century (Bonan et al.
1992), and in the world carbon budget, because forests
have been suggested as possible sinks for the ‘missing
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carbon’ (Ciais et al. 1995). The boreal forests of China
are mainly distributed in northeastern (Daxingan
Mountains) and northwestern China (Altai and Tian-
shan Mountains) (ECVC 1980). In the study reported
here, we have focused on the zonal boreal forests on the
northern slopes of Tianshan Mountain.

The Tianshan Mountains form a large, isolated
mountain range surrounded by desert basins to the
norther and south. The distribution of forest in this
mountainous region is limited to areas of sufficient
moisture and warmth. The tree line, where the average
temperature during the warmest month is 10�C, is
2700 m a.s.l. Areas below 1500 m a.s.l., on the other
hand, are generally too dry to support forest vegetation
(Zhang and Tang 1989). Boreal spruce forest is the most
productive and widespread forest type on the northern
slopes of the Tianshan Mountains. It is also one of the
most important zonal vegetations in the arid land of the
Xinjiang Uygur Autonomous Region, China, account-
ing for 60.8% of the timber growing stock and 54.0% of
forested areas (Zhang and Tang 1989). Therefore, it is
also economically important to determine how Picea
schrenkiana forest ecosystems respond to climate change
and increasing CO2 levels. One line of evidence for
projecting the future performance of P. schrenkiana
forests is how they have responded to the substantial
interannual climatic variation in recent decades. Many
studies have focused on the growth and production of
forests on the Tianshan Mountains during the last dec-
ade (Zhang et al. 1980; Sun 1994; Wang and Zhao 2000;
Li et al. 2003; Ni 2004), but only a few studies measured
past interannual variations and long-term trends of P.
schrenkiana forest to climate change in this region (Ma
et al. 2003; Chen et al. 2004).

Four approaches are commonly used to evaluate the
response of forests to climate change in mountain forest
areas: forest inventory, standard statistical dendrocli-
matic analysis, remote sensing method and process-
based ecosystem modeling. The forest inventory pro-
vides an estimate of the actual biomass accumulation in
each period (Fang and Chen 2001). The factors con-
sidered in such biomass inventories include forest re-
growth following a disturbance, enhanced growth due to
climate change, CO2 fertilization and nitrogen deposi-
tion (Dixon et al. 1994). While being very informative,
forest inventory cannot distinguish the effects of
changing temperature, precipitation and increasing
atmospheric CO2 on growth. Standard statistical den-
droclimatic analysis, in contrast, can facilitate the iden-
tification of pertinent climatic variables and periods
when tree growth was affected by climate change (Yuan
and Li 1994; Zhu et al. 2004; Guo et al. 2007). Tree rings
provide information on carbon allocation to stem
growth, but this information cannot be taken to reflect
the growth of a whole forest ecosystem. Recently, there
has been increasing interest in estimating vegetation
cover and production by normalized difference vegeta-
tion index (NDVI) derived from remote sensing images
(NOAA/AVHRR) (Luo et al. 2003; Ma et al. 2003;

Chen et al. 2004; Xie et al. 2007). This technique pro-
vides a high-resolution map of current vegetation in the
landscape and integrates well with regional stud-
ies.However, NDVI spatial variations result from
changes in the surface density of a forest canopy, and the
linkage between NDVI and the ground-based growth is
not uniform, with variations depending on the terrain
and environment. Moreover, the remote sensing method
is limited to short-term studies, since most of the remote
sensing data were obtained during or after the 1980s.
Theoretically, the approach of process-based ecosystem
modeling allows the researcher to determine the relative
roles of climate and CO2 on production and avoids
many of the limitations already stated for other tech-
niques by integrating ecosystem processes and spatial
variations to environmental factors (Cramer et al. 1999).

Models have been developed to study the responses in
terms of net primary productivity (NPP), a key ecosys-
tem variable and the most critical biotic component of
the global carbon cycle, which is defined as the difference
between gross primary production and the sum of the
maintenance and growth respiration components (Cra-
mer et al. 2001). A process-based ecosystem model,
BIOME-BGC, simulates the storage and fluxes of water,
carbon and nitrogen within the vegetation, litter and soil
components of a terrestrial ecosystem and has been used
to quantify the effect on NPP under different climate
scenarios in oasis areas along the Tianshan Mountains
in Xinjiang, China with an arid climate (Gao et al.
2003a). The model parameters were usually derived from
published information, but the ability of BIOME-BGC
to simulate the NPP of P. schrenkiana forests on the
Tianshan Mountains has been confirmed using inde-
pendent field data (Su et al. 2007). Thus, the model can
be used as tool to explore the fluctuation of forest
growth as a variable of climate change.

The aim of the study reported here was to investigate
the evidence of past NPP changes and trends of P.
schrenkiana forest under the climate change that oc-
curred in recent decades and to assess, using process-
based ecosystem model, the historical effect of fluctua-
tions in climate and atmospheric CO2 on forest pro-
duction.

Materials and methods

Study sites

The study was undertaken at the middle elevations of
the northern slopes of the Tianshan Mountains (Fig. 1).
Forests in the region are dominated by P. schrenkiana.
Some broad-leaved trees and shrubs, such as Sorbus
tianschanica Rupr., Salix xerophila Flod., Betula tians-
chanica Rupr., B. verrucosa Ehrh. and B. microphylla
Bunge, are found in the forest. There is also a dense
understorey of Sabina pseudosabina (Fisch. et May)
(Zhang and Tang 1989). Four sites, Zhaosu (ZS) in
western Tianshan, Tianchi (TC) and Xiaoquzi (XQZ) in
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middle Tianshan, and Yiwu (YW) in eastern Tianshan,
were selected for this study (Table 1). These sites have
different climatic conditions in the various regions of the
northern slopes of the Tianshan Mountain.

The process-based ecosystem model

The BIOME-BGC model, a multi-biome generalization
of the FOREST-BGC model (Running and Coughlan
1988), is a general ecosystem process model designed to
simulate daily biogeochemical and hydrologic processes
from stand to global scales (Running and Hunt 1993;
White et al. 2000; Thornton et al. 2002). Details of the
model are presented elsewhere and the model has been
successfully applied over a range of diverse biomes,
spatial scales and climate regimes, including boreal

forests of the Tianshan Mountains (e.g. Churkina and
Running 1998; Churkina et al. 2003; Gao et al. 2003a;
Hanson et al. 2004; Law et al. 2004; Kang et al. 2006;
Schmid et al. 2006; Kimball et al. 2007; Su et al. 2007).
Version 4.1.1 of the BIOME-BGC model was used in
this study.

Model parameterization

The major input variables for the model include climate,
vegetation ecophysiological parameters and site condi-
tion parameters. In this study, non-site-specific eco-
physiological parameters for P. schrenkiana forests
[taken from data gathered on-site when available;
otherwise, species-specific values were used from a recent
literature synthesis (White et al. 2000)]. For details on

Fig. 1 Study sites of Picea
schrenkiana forests in the
Xinjiang Uygur Autonomous
Region, China. Open circle Plot
sites, filled triangle
meteorological stations, E
elevation of sites

Table 1 General stand characteristics of the four forest sites on the north slopes of the Tianshan Mountains, Xinjiang Uygur Autono-
mous Region, China

Study site Code Speciesa Density (ha�1)
Mean (min–max)

DBH (cm)b Height (m) Soil typec Soil texture (%) Soil depth (m)

Sand Silt Clay

Zhaosu ZS P. spp. 1123(700–2200) 17.9 ± 9.6 11.0 ± 5.6 MLGS 19.79 66.21 14.00 1.50
Xiaoquzi XQZ P. spp. 1269(825–1700) 17.1 ± 8.7 13.5 ± 5.5 MTGS 26.17 51.67 22.16 0.85
Tianchi TC P. spp. 1975(1050–3450) 15.6 ± 9.0 11.4 ± 5.7 MTGS 26.17 51.67 22.16 0.85
Yiwu YW P. spp.

L. spp.
1583(975–3250) 17.5 ± 9.8 11.9 ± 5.6 MCGS 28.18 50.62 21.20 1.00

aP. spp. Picea schrenkiana var. tianschanica; L. spp., Larix sibirica
bDBH is diameter at breast height (cm); DBH and height are expressed in mean ± 1 SD
cMLGS, Mountain leaching gray-cinnamon forest soil; MTGS, mountain typical gray-cinnamon forest soili; MCGS, mountain carbonate
gray-cinnamon forest soil
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the parameters, see Su et al. (2007). This parameteriza-
tion reflects an important model assumption that the
four P. schrenkiana forests have the same physiology
and remain constant throughout all the simulation. Site-
specific parameters, such as soil texture (clay, silt and
sand content) and effective soil depth, were obtained
from field data (Table 1).

The standard daily meteorological input file for
BIOME-BGC was generated by a microclimate simula-
tion model, MT-CLIM (version 4.3; www.forestry.
umt.edu/ntsg) (Kimball et al. 1997; Thornton and
Running 1999; Thornton et al. 2000). The original cli-
mate records (including daily minimum and maximum
air temperature and precipitation over the period 1961–
2000) from meteorological stations near the sites were
obtained from the China National Climatic Data Center
(NCDC) (Fig. 1). A coefficient adjusting the daylight
average temperature (TEMCF), which was set to 0.45 in
the original MT-CLIM model, was set to �0.11, �0.12,
�0.12,and �0.07 for ZS, TC, XQZ, and YW, respec-
tively, based on the daily temperature observations in
those areas. The XQZ and TC stations are centrally
located in the study region and fall within the elevation
range of the plots under study, so the weather data could
be used without interpolation. MT-CLIM initialized the
flat surface conditions of the two sites to the same ele-
vation as the original station data to compute the vari-
ables not present in standard weather station records for
the BIOME-BGC model. However, the ZS and YW
stations are some distance from the study sites (about 10
and 25 km, respectively), which may have introduced
some uncertainty into the climate data used for the
simulations. Therefore, the daily data were adjusted for
site conditions using MT-CLIM based on the elevation,
longitude and latitude. Here, the precipitation pattern
and lapse rates for the minimum and maximum air
temperature were estimated using data obtained from
earlier studies on the climate conditions of the Tianshan
Mountains (Wei and Hu 1990; Zhou 1995; Yang et al.
2006).

Simulation experiments

Two simulations with BIOME-BGC were performed:
one considered climate and CO2 changes together, and
the other considered only climate change. These two
runs were compared to determine the effect of CO2 fer-
tilization on NPP. All analyses were based on the run
combining climate and CO2 changes.

In both cases, the model was first run until a steady-
state condition was achieved for each forest site (the
spin-up run). Throughout this process, the 40-year cli-
mate record was repeated as often as necessary. Atmo-
spheric CO2 concentrations were set to 294.8 ppmv
throughout the spin-up run, thereby approximating
levels at the end of the nineteenth century (Churkina
et al. 2003). Next, taking the spin-up endpoint as an
initial condition, the effect of climate change was simu-

lated under historical daily climate data from 1961 to
2000. The same parameters were used in the two stages
of the simulation. The runs with both climate and CO2

changes used the historical CO2 and daily climate data
from 1961 to 2000 as inputs. Here, historical records of
atmospheric CO2 concentrations at the Mauna Loa
Observatory were used (Keeling and Whorf 2002). The
atmospheric CO2 level has increased by 16.3% (from
317.2 to 368.8 ppmv) over the study period.

Data analysis

1. For each of the four sites, we applied simple linear
regression to explore possible trends of the two cli-
mate parameters (the mean annual temperature and
total annual precipitation) and simulated NPP during
the 40-years period. Because recent research suggests
that a climatic shift from warm–dry to warm–wet
occurred in 1987 in the middle and west regions of
Northwest China (Shi et al. 2002, 2003), we addi-
tionally split our data in two different time spans:
1961–1986 and 1987–2000. Essentially, we were
interested in noting whether the findings of Shi et al.
are consistent with those of our study. For both the
time spans, again, a simple linear regression was ap-
plied to our climate.

2. Annual mean temperature and annual precipitation
were used together with the simulated NPP to
examine the patterns of interannual variability in the
productivity of P. schrenkiana forests in relation to
some potential climatic predictors using lagged cross-
correlation analysis with SPSS FOR WINDOWS ver. 11.0
statistical software (SPSS, Chicago, IL). The time
lags (0, 1 and 2 years), which were suggested for the
cross-correlation analyses, were thought to incorpo-
rate both immediate physiological alterations and
delayed biogeochemical adjustments of P. schrenki-
ana forest ecosystems due to variable climate.

3. The net CO2 fertilization effect on growths for the
time period 1961–2000 was calculated as the differ-
ence in NPP between the two experiments (climate
with CO2 and climate only). Then, annual mean
temperature, annual precipitation and water-use
efficiency [WUE, defined as the ratio between annual
NPP and annual total evapotranspiration (mm
year�1)] were used to examine how these factors
influence the strength of the CO2 fertilization effect
that governs the activity of forest ecosystem.

Results

Climate analysis

During the period between 1961 and 2000, the mean
changes of the temperature were +0.021�C year�1
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(P < 0.05) at the ZS and YW sites. However, the
warming trends in terms of annual means at XQZ and
TC (both +0.008�C year�1) were not statistically sig-
nificant (Table 2). There was also a trend towards a
higher increase in the air temperature during 1987–2000
than 1961–1986.

Precipitation change was a very complicated param-
eter at the four study sites during 1961–2000 (Table 2).
Although the average annual precipitation decreased by
0.72 mm year�1 at ZS, increased by 2.12 mm year�1 at
XQZ and increased by 1.36 mm year�1 at TC, the linear
trend test results showed that the trends over time were
weak and statistically insignificant. Only the trend in
YW was significant (+2.333 mm year�1, P = 0.019).

Trends in NPP

Based on the BIOME-BGC simulations, we estimated
the NPP of four P. schrenkiana forest ecosystems on the
northern slopes of the Tianshan Mountains during the
period 1961–2000 (Table 2). ZS in the west had the
highest annual NPP (mean 595.9 ± 11.0 g C m�2

year�1, range 479.9–757.6 gC m�2 year�1), followed by
XQZ (mean 510.4 ± 22.6 gC m�2 year�1, range 151.2–
718.6 gC m�2 year�1) and TC (mean 518.3 ± 27.5 gC
m�2 year�1, range 71.4–775.2 gC m�2 year�1); YW, the
cool and dry eastern site, has the lowest NPP (mean
327.7 ± 15.4 gC m�2 year�1, range 123.2–594.4 gC
m�2 year�1).

The annual NPP showed substantial interannual
variations, with very different temporal patterns for each
site (Fig. 2). Higher NPP occurred in 1964, 1980 and
1998 at most of the sites, declining sharply in 1976 and
1997. Linear trend analysis revealed that NPP in the
period 1961–2000 increased by an average of 0.351 gC
m�2 year�1 at ZS, 2.139 gC m�2 year�1 at XQZ,
1.977 gC m�2 year�1 at TC and 3.186 gC m�2 year�1 at
YW. The increase in NPP was only significant at YW
(P < 0.05). Again, we found a higher increase in the
NPP during 1987–2000 than during 1961–1986
(Table 2).

Influence of climate fluctuation on NPP

In the west (ZS), middle (XQZ, TC) and east (YW) of
the Tianshan Mountains, different climate-driven pro-
cesses regulated forest production over the period 1961–
2000 (Fig. 2). Annual mean temperature and precipita-
tion were the major climatic factors governing the NPP
of the P. schrenkiana forest (Table 3). The weakly po-
sitive zero-lag correlations between temperature and
NPP in the ZS and YW forests indicated an immediate
response to warmer temperatures through the enhance-
ment of plant production. The central sites, XQZ and
TC, however, displayed significantly negative zero-lag
correlations. Interestingly, almost all of the NPP values T
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were positively correlated with the 1- or 2-year lagged
temperature.

Strongly positive zero-lag correlations were found
between NPP and annual precipitation at all four
sites. This indicated a direct and immediate enhance-
ment of forest production following an increase in

precipitation, which on some occasions persisted into
the next year (see the 1-year lagged correlations).
However, negative correlations between growth and
precipitation were found in the 2-year lagged data at
all four sites.

These results revealed that the effects of precipitation
on the NPP were greater at the dry sites (XQZ, TC, and
YW) than at the wet site (western Tianshan, ZS)
(Fig. 3). The correlations between precipitation and
NPP were strong at the dry sites (R in the range 0.83–
0.92, P < 0.001) with relatively steep slopes. The cor-
relation in ZS, the wet area, was weaker (R = 0.77,
P < 0.01), and the slope was relatively shallow. These
results suggest that a small decrease in precipitation at
the dry sites could lead to a large decrease in growth,
while a similar decrease in precipitation at the wet site
might not affect growth to any major extent. It is
interesting to note that NPP tended to decrease when
annual precipitation was greater than 648.4 mm at TC
and 681.8 mm at XQZ. However, the NPP of the other
two sites was positively correlated with annual precipi-
tation at all levels.

The effect of CO2 fertilization on NPP

Climate variability coupled with CO2 fertilization gener-
ally resulted in a higher annual NPP than did climate
variabilitywithoutCO2 fertilization (Fig. 4). The strength
of theCO2 fertilization effect for theP. schrenkiana forests
showed site-to-site variations, with a mean 21.03 ±
2.40 gC m�2 year�1 (or 3.82 ± 0.47%) for ZS, 22.02 ±
2.20 gC m�2 year�1 (or 5.27 ± 0.71%) for XQZ,
9.43 ± 1.61 gC m�2 year�1 (or 4.30 ± 1.81%) for TC
and 7.74 ± 1.04 gC m�2 year�1 (or 3.05 ± 0.55%) for
YW in the period 1961–2000.

The net effect of CO2 fertilization on NPP showed
great temporal and spatial variations and did not show a
monotonic increase in magnitude as atmospheric CO2

concentration increased from 317.2 to 368.8 ppmv dur-
ing the study period (Fig. 4). Other environmental fac-
tors, however, could also play a part in the observed
trends (Table 4). Correlation analysis suggested that
both temperature and precipitation can influence the
strength of the CO2 fertilization effect. The results of our
analysis further indicated that interannual variations in
the CO2 fertilization effect were strongly correlated with
inter-annual WUE.

Table 3 The lagged correlations (R values) of annual NPP versus temperature and precipitation at the four forest sites

Study site Precipitation Temperature

0-Lag 1-year Lag 2-year Lag 0-Lag 1-year Lag 2-year Lag

ZS 0.774** 0.275 �0.246 0.036 0.174 0.112
XQZ 0.882** �0.011 �0.256 �0.324* 0.308 0.209
TC 0.851** �0.073 �0.228 �0.322* 0.372 �0.014
YW 0.832** 0.124 �0.130 0.159 0.454 0.189

*Correlation is significant at the a < 0.05 level (single-tailed); **correlation is significant at the a < 0.01 level (single-tailed)
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Fig. 3 The response of net primary production (NPP, gC m�2

year�1) to precipitation (P, mm) in the four forest sites over the
period 1961–2000
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Discussion

Interannual climate change

Based on our analysis of the temperature records from
four meteorological stations in the Tianshan Mountains,
there was a trend for annual mean air temperature to
increase at all four sites. This result is in agreement with
observed trends for Xinjiang as a whole (Su et al. 2003;
Xu and Wei 2004). Both local and provincial data show
that (1) most of the temperature increase occurred dur-
ing the last two decades of the twentieth century, and (2)
in many places the degree of warming was well above the
global average.

Annual precipitation at the four sites showed signif-
icant variation over the years studied. Our results sug-
gest that any long-term, monotonic trend was weak and
statistically insignificant in all regions except for site
YW. These results are consistent with those of Song and

Zhang (2003) and Chen et al. (2004) who found that
mean precipitation displayed a slight upward trend to-
wards the end of the twentieth century in the Tianshan
Mountains. Even combining their analysis with our
own, it is still too early to conclude that there has been a
systematic, monotonic, regional trend in precipitation or
temperature in Tianshan Mountains over the past
40 years. Consequently, we conclude that the results of
our study do not support the conclusion of Shi et al.
(2002, 2003) that a climatic shift from warm–dry to
warm–wet occurred in 1987 in Northwest China.

Trends in NPP

Based on the climate and CO2 concentration informa-
tion for the period 1991–2000, the BIOME-BGC esti-
mations of mean NPP were similar to those previously
published estimates of productivity on the north slopes
of the Tianshan Mountains (Wang and Zhao 2000; Ni
2004). Despite the uniform physiognomy of forest cover
in these regions, our simulations also suggest that the
NPP decreased from west to east, responding strongly to
the rainfall and temperature gradient (Sun 1994; Wang
and Zhao 2000).

Our analysis of the BIOME-BGC simulations re-
vealed an increase in the NPP of P. schrenkiana forests
in the Tianshan Mountains and also showed that the
forest NPP has changed even more in the latter two
decades of the twentieth century in response to signifi-
cant temperature changes. Evidence for a substantial
increase in productivity can also be found using forest
inventory surveys. The total growing stock and standing
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Fig. 4 Effect of CO2 on net
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gC m�2 year�1) of P.
schrenkiana forests in the four
forest sites over the period of
1961–2000. Solid lines indicate
the changing trends

Table 4 Correlative coefficients between precipitation, tempera-
ture, water use efficient changes (DWUE) and net CO2 effect on the
NPP of P. schrenkiana forests

Study site T P DWUE

ZS 0.340* �0.282 0.943**
XQZ 0.260 0.216 0.922**
TC 0.309 �0.306 0.873**
YW 0.262 �0.217 0.861**

*Correlation is significant at the a < 0.05 level (single-tailed);
**correlation is significant at the a < 0.01 level (single-tailed)
T , Annual temperature (�C); P, annual precipitation (mm); NPP,
net primary production (gC m�2 year�1)
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volume per hectare of Xinjiang forests have increased
enormously in recent decades according to forest
inventory data (Fang and Chen 2001; Li et al. 2003).
Depending on the regional scale, results of satellite-
based studies indicate that forest growth and vegetation
production have increased on the northern slopes of the
Tianshan Mountains since the early 1980s (Ma et al.
2003; Chen et al. 2004), which is consistent with the
trends in plant growth or NPP in the northern high and
middle latitudes at the same time (Myneni et al. 1997;
Hicke et al. 2002; Fang et al. 2003; Nemani et al. 2003;
Slayback et al. 2003; Cao et al. 2004; Kimball et al.
2007). This may partially explain the increased carbon
sinks in the northern region (Schimel et al. 2001). In
comparing our work with other studies, our most
striking result is the sustained climate signal and favor-
able growth response from the 1980s to the present. This
suggests that the NPP trends estimated from the three
approaches are comparable. We also evaluated the re-
sults of our model and were able to identify key infor-
mation gaps that can be filled by appropriate
observational and research programs.

Changes in NPP due to climate change and CO2

Recent climate changes have enhanced plant growth in
the northern mid-latitudes and high latitudes, and mul-
tiple mechanisms (e.g. climate changes, CO2 fertiliza-
tion, nitrogen deposition, forest regrowth and
management) have promoted increases in NPP (Nemani
et al. 2003; Hyvönen et al. 2007). In the temperate and
boreal zones, nutrient availability is the main limiting
factor, but in large parts of Northwest China, forest
growth is primarily limited by temperature (high lati-
tudes) or water availability (arid, semi-arid) (Zhang and
Tang 1989). Given the focus of this study on estimating
the NPP of P. schrenkiana forests at an ecosystem level,
we only discuss here the relationship between climate
variables, atmospheric CO2 concentration and NPP;
NPP variability associated with other factors is beyond
the scope of our study.

It is well established that temperature and precipita-
tion are dominant controlling factors of plant photo-
synthesis, and the interaction of their effects on general
growth patterns has been obtained from long-term
experiments (Lieth 1975). Our analysis suggests that
precipitation is an important factor affecting the growth
of P. schrenkiana, accounting for at least 70% of the
total variance in NPP at all four study sites (Fig. 3). In
other words, an increase in precipitation in the future
will tend to alleviate the moisture stress for forest growth
and have, therefore, a positive effect on the NPP of P.
schrenkiana forests in the Tianshan Mountain region (Su
et al. 2007). These results are in general agreement with
those from other P. schrenkiana studies in which growth-
ring evidence at Xinjiang showed that precipitation is
critical to growth (e.g. Yuan et al. 2000; Yuan et al.
2001; Zhu et al. 2004; Guo et al. 2007). These results are

also in agreement with those from studies of water-
limited regions by Nemani et al. (2003) and Mohamed
et al. (2004), which showed that increasing precipitation
will dramatically increase the simulated NPP in the fu-
ture. Our analysis also indicated a negative correlation
between NPP and 2-year lagged precipitation for all four
sites (Table 3). The lagged correlations provide a pos-
sible explanation for a delayed negative impact of pre-
cipitation on forest production: the NPP was positively
related with the current year rainfall, but rainfall did not
influence or had a negative relation with lagged the 2-
year NPP.

In contrast, the results from our study suggest that
temperature had relatively little effect on the NPP of P.
schrenkiana forests. In other words, the precipitation
increase had a greater influence than the temperature
changes on P. schrenkiana forest productivity in the
Tianshan Mountains (Su et al. 2007). This result is
consistent with the analysis of Hunt and Running
(1992), who suggested that the temperature effect in
BIOME-BGC simulation is small. Almost all of the
NPP, however, showed positive 1- and 2-year lagged
correlations with the temperature. This was difficult to
explain as being simply a composite effect of the forest
ecosystem. The following mechanism, however, may
provide an explanation for this result. Warm tempera-
tures result in an increase of biomass input to the soil
pool, while precipitation increases soil moisture and
facilitates the transformation of organic matter into
readily available inorganic nutrients (mainly phospho-
rous and nitrogen). Warm temperatures therefore ben-
efit forest growth, but only after a certain delay (Tian
et al. 1998). Consequently, in the BIOME-BGC model,
the interaction of temperature, precipitation and nutri-
ents in terms of their effects on forest general growth
patterns seems to be well estimated (Su et al. 2007).
Elevated temperatures may increase NPP through met-
abolically enhanced photosynthesis and by prolonging
the growing season as well as increasing nutrient avail-
ability through higher rates of decomposition. Elevated
temperatures, however, may also decrease NPP by
decreasing soil moisture and enhancing plant respiration
(Churkina and Running 1998; Thornton et al. 2002).
Our results suggest that the positive effects of the tem-
perature increase more than just compensate for the
negative effects on the NPP of the P. schrenkiana forest
at the ZS and YW sites. Without an increase in precip-
itation, increases in temperature may limit the produc-
tion of P. schrenkiana forests at the XQZ and TC sites.
This proposal is in agreement with other P. schrenkiana
studies, which have determined that lower production
may be attributed to a temperature-induced increase in
water stress in these water-deficient environments (Yuan
and Li 1994, 1995; Zhu et al. 2004). It has been sug-
gested that the effects of temperature on productivity
may be dependent on local conditions (Nemani et al.
2003; Mohamed et al. 2004).

The rise in atmospheric CO2 concentration is one of
the best documented global atmospheric changes of the
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past half century, and enormous research efforts have
been undertaken to understand how plants and ecosys-
tems will respond to it (Ainsworth and Long 2005). The
results of our study suggest that the increasing CO2

concentration had a comparatively small positive effect
on the NPP of P. schrenkiana forests (range 3.05–
5.27%). This positive response resulted primarily from
the higher rates of photosynthesis due to the direct effect
of CO2 fertilization, but also to a reduction in stomatal
conductance and transpiration and improved WUE in
the simulation. This result is in agreement with that of
Chen et al. (2000), who reported a similar decrease in
isotopic discrimination and increase in WUE over the
same period using historical records of P. schrenkiana
tree rings. Our result is also consistent with the simula-
tion results of Xiao et al. (1998), Ni (2002) and Su et al.
(2007), who both reported that an increase in atmo-
spheric CO2 concentration had no significant effect on
the NPP of the boreal forests in China. Similarly, Mel-
illo et al. (1993) found that increasing simulated atmo-
spheric CO2 levels did not change the NPP of the boreal
woodland and boreal forest as predicted by the terres-
trial ecosystem model (TEM).

Our analysis also indicated that interannual climate
variability could alter the effect of CO2 fertilization on the
production of P. schrenkiana forests, which show that
different ecosystems respond to increased levels of CO2

quite differently depending on environmental factors
(Fig. 4). In particular, we found that the effect of CO2

fertilization on the forests in the Tianshan Mountains
depended strongly on temperature (Table 4). The simul-
taneous elevation of CO2 and temperature had been ob-
served to have a positive effect in most tree organs
(Aranjuelo et al. 2005). This positive interaction between
CO2 and temperature could be explained by an increase in
the photosynthetic thermal optimum due to changes in
the Rubisco kinetic properties (Long 1991). Therefore,
these results emphasize the importance of resource
interactions and feedback in the analysis of forest re-
sponse to rising CO2 concentrations (Hanson et al. 2005).

Conclusion

The climate data reported here shown that the annual
mean temperature increased significantly and precipita-
tion varied greatly at all four sites in the Tianshan
Mountain range between 1961 and 2000. The NPP of the
P. schrenkiana forests exhibited a substantial year-to-
year variation, and most production variations did not
show any significant trends due to the dominance of
high frequencies. Thus, NPP estimates based on a single
year’s measurement must be treated cautiously in view
of the temporal and spatial variations in climate. Our
sensitivity analysis suggested that the NPP is sensitive to
temperature and rainfall changes and that precipitation
appears to be a determinant of production of P.
schrenkiana forests. The results show that the most
striking feature of the climate and NPP record is

continuing temperature and rainfall changes and a
favorable growth response from the 1980s to the present
in the Tianshan Mountains. They also reveal that the
recent increase in atmospheric CO2 may already have
had impacts on the production of P. schrenkiana forests.
Our analysis indicates that climate change and CO2

fertilization explain most of the NPP variation observed
in P. schrenkiana forests.
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