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Abstract We investigate the speed of invasion waves for
a single species generated by stochastic short- and/or
long-distance colonizations in a time-continuous cellular
automaton (CA) model on a two-dimensional homoge-
nous landscape. By simulating the CA models, we
demonstrate that stochasticity can dramatically increase
the speed of invasion compared to the corresponding
deterministic CA model or the corresponding one-
dimensional stochastic CA model. To explain this phe-
nomenon, we first develop a mathematical model for the
invasion involving only short-distance colonization (i.e.,
colonization only occurs from the eight adjacent cells),
and present several approximation methods for solving
the model. Our analyses show that the increased wave
speed in the stochastic model is due to irregularity in the
shape of the wavefront. Further extension of this model
to include long-distance colonization demonstrates that
stochasticity influences speeds to even greater extents in
this case. Using dimension analysis, we deduced a semi-
empirical formula for the speed as a function of three
parameters intrinsic to short- and long-distance coloni-
zation, which agrees well with simulation results. Based
on these results, we discuss how important stochasticity
in colonization and spatial dimensionality are in the
acceleration of invasion speed.

Keywords Stochastic colonization Æ Cellular
automaton Æ Biological invasion Æ Stratified diffusion Æ
Long-distance dispersal

Introduction

When a species colonizes a new area, it spreads across
that area in the form of an invasion wave. The speed of
this wave is determined by the vital rates of the popu-
lation (birth, death, etc.) and by individual dispersal
ability. Since the pioneering work of Skellam (1951), the
spatial propagation of invasions has been extensively
studied using diffusion equations combined with popu-
lation growth. Mathematical analyses of these models
suggest that the range front of an invading species ad-
vances at a constant velocity (Fisher 1937; Skellam 1951;
Okubo 1980; Okubo and Levin 2001). This result was
subsequently found to apply to many invading organ-
isms (Hengeveld 1989; Andow et al. 1990, 1993; Wil-
liamson 1996; Shigesada and Kawasaki 1997). Recently,
integral-kernel-based models that incorporate dispersal
distance distribution and/or age structure have been
presented by Mollison (1977), Van den Bosch et al.
(1992), Kot et al. (1996), Clark (1998), Neubert and
Caswell (2000), and many others. Most of these models
have been formulated using deterministic equations for
the dynamics of the expected population density or
population range. In these models, as long as the dis-
persal kernels have shorter tails than an exponentially
bounded distribution, the range expands at a constant
speed, forming a traveling wave. More recently,
increasing attention has been focused on stochastic
versions of deterministic models, where the effects of
stochasticity in dispersal and/or reproduction on the rate
of spread are investigated, mostly in the framework of
one-dimensional models (Lewis and Pacala 2000; Lewis
2000; Snyder 2003; Kot et al. 2004).

On the other hand, cellular automaton (CA) models
(also known as lattice models or interacting particle
models) have become a popular tool for modeling
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population dynamics in two-dimensional space. The CA
models divide the space into a discrete lattice, and de-
scribe the state at each location (‘‘cell’’ or ‘‘patch’’) on
the lattice using a discrete variable. The states of the cells
are updated (in either discrete or continuous time) as a
function of their state and the states of the cells in the
local neighborhood.

These CA models have been used to describe cell
colony growth (Eden 1961; Richardson 1973), plant
populations with multiple modes of reproduction (Ha-
rada and Iwasa 1994; Harada et al. 1995), forest gap
expansion (Kubo et al. 1996; Satake et al. 2004), com-
petition (Caswell and Cohen 1991; Caswell and Etter
1992, 1999; Etter and Caswell 1994; Tilman et al. 1997;
Durrett and Levin 1998; Buttel et al. 2002; Cannas et al.
2003), predation (Hassell et al. 1991), epidemics (Mol-
lison and Kuulasmaa 1985; Tainaka 1988; Sato et al.
1994; Filipe and Maule 2004), and game-theoretical
interactions (Nowak et al. 1995; Nakamaru et al. 1996;
Nakamaru and Levin 2004). A series of works by Levin
and Durrett have provided comprehensive guides to
ecological applications of stochastic CA models (Levin
1992; Durrett and Levin 1994a, 1994b; Levin and Dur-
rett 1997; Chave et al. 2002).

While the CA model is advantageous in easily
incorporating stochasticity, it generally makes mathe-
matical analysis more difficult than the diffusion and
integral-kernel-based models. As well as this, most pre-
vious CA models have not addressed the speed of
invasion, apart from the spatial pattern of the species
involved and the conditions required for their coexis-
tence or extinction. As an exception, Ellner et al. (1998)
presented a pair-edge approximation method to deal
with the speed and the conditions required for successful
invasion in a lattice population model.

In this paper, we investigate invasion waves that are
generated by stochastic short- and/or long-distance
colonization in a time-continuous CA model for a single
species on a two-dimensional homogenous landscape.
We first demonstrate, using computer simulations, that
stochasticity can dramatically increase the speed of the
invasion waves compared to the deterministic version of
the model or the corresponding one-dimensional model.
For invasion involving only short-distance colonization,
we develop a mathematical model to describe spatio-
temporal changes in the distribution of frontal positions,
and present several approximation methods for solving
the model. Our analyses show that the increased wave
speed in the stochastic model is due to irregularity in the
shape of the wavefront, which is present in the stochastic
model for two-dimensional space, but not in the corre-
sponding deterministic model or in the corresponding
stochastic model for one-dimensional space.

Further extension of this model to include long-dis-
tance colonization demonstrates that stochasticity
influences speeds to even greater extents. Based on these
results, we discuss how important stochasticity and
spatial dimensionality are in the enhancement of inva-
sion speed.

A time-continuous stochastic CA model and its computer
simulation

Consider a square lattice in which each cell is either in
state 1 (occupied) or in state 0 (vacant). A cell in state 0
changes to state 1 at the rate an, where n is the number
of the eight adjacent cells that are in state 1 and a is the
colonization rate from an occupied adjacent cell. Thus,
the transition probability p10 from state 0 to state 1
during dt is given by

Caseð1Þ : p10 ¼ andt: ð1Þ
More exactly, the probability that state 0 remains un-
changed during dt is exp(�an dt). We refer to this case as
Case (1). This model is analogous to the basic contact
model (Durrett 1988; Ellner et al. 1998) except that the
death process is eliminated. In the following, we focus
on the case where the cells at the left boundary are ini-
tially in state 1 and all other cells are in state 0.

Before tackling this problem, we also consider a
special case (referred to as Case (1s)), in which a cell in
state 0 cannot change to state 1 unless its left neighbor is
occupied. Thus Eq. 1 is rewritten as:

Caseð1sÞ : p10 ¼ randt: ð2Þ
where r=1 if the left neighboring cell is in state 1, and
r=0 if it is in state 0. This case may not be biologically
realistic, but it is analytically tractable and provides a
good reference point for further analyses.

We first simulate the model for a 100·200 grid with
periodic boundary conditions on the upper and lower
edges. The lower and left boundaries of the CA are set
on the x- and the y-axes, respectively. As shown in
Fig. 1, computer simulations demonstrate that the range
of occupied cells expands to the right and the front
exhibits wavy patterns for both Cases (1s) and (1). The
waviness (irregularity) is more accentuated in Case (1)
than in Case (1s).

To define the front of the invasion wave, we focus on
the configuration of states in each row. The cells in each
row are numbered sequentially from left to right. The
right-most occupied site in each row is defined as the
front (i.e., the furthest-forward location). We introduce
the front distribution function f(i, t), which gives the
probability that the front of a randomly chosen row is
located at site i at time t. Figure 2a, b shows f(i, t) ob-
tained from simulations for Cases (1s) and (1), respec-
tively. The average location of the front is given by

ih i ¼
X200

i¼1
if i; tð Þ: ð3Þ

As seen in Fig. 3, the average front location advances at
a constant rate for each case: 3.38a in Case (1s), and
6.55a in Case (1).

In contrast, if we consider a corresponding deter-
ministic model, each front advances by one cell at every
time interval of 1/3a. Accordingly, the range front forms
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a straight line, and its advancing speed is 3a. Therefore
the speeds in the stochastic model for Case (1s) and Case
(1) are 1.12 and 2.18 times higher than that in the
deterministic model, respectively. We are interested in
why such discrepancies in speed occur between the sto-
chastic and deterministic rules.

Dynamical equations for the front distribution

To understand the increase in front speed in the sto-
chastic simulations compared with the corresponding
deterministic model, we construct a dynamical model for
the distribution of front positions and develop some
approximation methods to solve the model.

Case (1s)

We begin with Case (1s), in which colonization of a cell
can occur only if the neighboring cell on the left is
occupied. In this case, each row in the CA consists of
state 1 cells that are consecutively aligned from the left
boundary to a certain position, and state 0 cells for the
remaining sites.

The dynamical equation for f(i, t) is given by

df i; tð Þ
dt

¼ r i; tð Þf i� 1; tð Þ � r iþ 1; tð Þf i; tð Þ for i> 1; ð4Þ

where f(0, t)=0, and r(i+1, t) is the average rate at
which the front at site i advances to site i+1 in unit time.
From Eq. 4, we obtain the speed of the average front as:

d ih i
dt
¼ d

dt

X1

i¼1
if i; tð Þ

 !
¼
X1

i¼1
r iþ 1; tð Þf i; tð Þ: ð5Þ

The rate of change in the variance of the front location is
given by

d
dt

X1

i¼1
i� ih ið Þ2f i; tð Þ

 !
¼ 2
X1

i¼1
ir iþ 1; tð Þf i; tð Þ

þ 1� 2 ih ið Þ d ih i
dt

: ð6Þ

To solve Eq. 4, we need the functional form of r(i+1, t).
If we assume that the front distributions of the adjacent
upper and lower rows are given by the common prob-
ability density f(i, t), and that they are statistically
independent of each other and of the row under con-
sideration, r(i+1, t) is given by

(a) Case (1s)

t = 10 t = 20 t = 30 t = 40 t = 50

t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 

(b) Case (1)

Fig. 1 The progression of invasion wavefronts in the continuous-
time stochastic CA model. a Case (1s) for a=1; b Case (1) for a=1.
dt=0.001
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Fig. 2 The probability distribution f(i, t) of the front position at
time t in the CA model. a Case (1s) for a=1; b Case (1) for a=1.
dt=0.001
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Fig. 3 The progress of the mean front position with time in Case
(1s) for a=1 and Case (1) for a=1. dt=0.001
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r iþ 1; tð Þ ¼ aþ 2af i; tð Þ þ 4af iþ 1; tð Þ

þ 6a
X1

k¼2
f iþ k; tð Þ ð7Þ

� aþ q iþ 1; tð Þ: ð8Þ
The first term a on the right-hand side of Eq. 7 repre-
sents the rate at which cell i at the front causes the
adjacent right cell i+1 to change from state 0 to state 1.
The second term is the rate at which cell i+1 is colonized
from the upper and lower rows when the fronts in the
upper and lower rows are located at site i. The third term
represents the contribution from the upper and lower
rows when their fronts are located at site i+1, and the
fourth term is the contribution from the upper and lower
rows when their fronts are located further ahead of site
i+1. Thus function q(i+1, t) defined in Eq. 8 represents
the average rate at which cell i+1 is occupied by the
colonization from cells in the upper and lower adjacent
rows.

We first numerically solve Eq. 4 with 7, and obtain
the front distribution f(i, t), which is illustrated in Fig. 4.
Substituting this solution for f(i, t) in the right-hand side
of Eq. 5 yields an average speed of 3.32a, which is close
to the speed obtained from simulation, 3.38a. It should
be noted that the front distribution, f(i, t), shows a
nearly triangular shape with a base length of about 6. In
contrast, the front distribution obtained from the sim-
ulation (see Fig. 2a) exhibits an irregular localized pat-
tern, consisting of multiple steep peaks. We infer that the
front distribution obtained from simulations may be
given by superposing multiple triangular distributions as
derived above.

Based on the results from numerical computations,
here we develop an analytical model for the front dis-
tribution f(i, t). Let us assume that f(i, t) has an isosceles
triangular shape with base length 2b, and moves at a
constant speed c without changing its form. Thus we put:

f i; tð Þ ¼

0 i < ct � b
i� ct þ bð Þ

�
b2 ct � b6i < ct

�iþ ct þ bð Þ
�

b2 ct6i < ct þ b
0 ct þ b6i

8
>><

>>:
ð9Þ

Note here that, whereas the area of the isosceles triangle
is one, the summation of f(i, t) with respect to integer i
gives an approximate value, which is not necessarily one.
By substituting Eqs. 9 and 7 into 5 and 6, we obtain the
rate of change in the mean front location and its vari-
ance, as

d
dt

ih i ¼ a 4� 2

b
þ 1

b3

� �
; ð10Þ

d
dt

i2
� �
� ih i2

� �
¼ a 4� 7

5
bþ 1

3b
þ 1

15b3

� �
: ð11Þ

Since we assumed that the spatial pattern of f(i, t) moves
at speed c without changing its form, we set the right-
hand side of Eq. 10 equal to c, and the right-hand side of
Eq. 11 equal to zero. Then we obtain b=2.94 and
c=3.36a. Again the speed is fairly close to that obtained
from simulations of the CA model (3.38a). Furthermore,
the base length 2b=5.88 agrees well with that numeri-
cally obtained, �6, as noted above.

Case (1)

Here we relax the restriction that colonization can occur
only if the left adjacent neighbor is occupied. The cal-
culations become more complex, because more routes to
colonization must be considered, but we can use basi-
cally the same procedure as in the previous cases.

State 1 cells do not necessarily occur consecutively
from the left boundary. State 0 cells may intervene lo-
cally in the sequence of state 1 cells. We classify the
sequence of cell states in each row into one of two types,
f1- and f2-type (Fig. 5). In an f1-type row, state 1 cells are
consecutively aligned from the left boundary. In an f2-
type row, the cell directly to the left of the front is in
state 0 and the remaining cells to the left of that 0 state
cell are all in state 1. Although the computer simulations

i

f (i, t)

0.2

0.4

Fig. 4 The front distribution for Case (1s) obtained from dynam-
ical model 4 with 7

1 00 0 0111

i–1    i     i+1

1 1 0 0 0111

i–1    i     i+1

front

front

f2-type

f1-type

Fig. 5 Frontal patterns of f1- and f2-type rows
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permit state 0 cells to occur at sites more than one cell to
the left of the front, the above classification assumes that
any such cells change immediately to state 1. We intro-
duce f1(i, t) to denote the probability that a randomly
chosen row is of f1-type and its front is located at site i,
and f2(i, t) to denote the probability that an randomly
chosen row is of f2-type and its front is located at site i.
Thus we have the following set of equations:

df1 i; tð Þ
dt

¼ � aþ
X1

k¼1
r iþ k; tð Þ

( )
f1 i; tð Þ

þ 2aþ r i� 1; tð Þf gf2 i; tð Þ
þ aþ r i; tð Þf g f1 i� 1; tð Þ þ f2 i� 1; tð Þf g;

ð12Þ

df2 i; tð Þ
dt

¼ � 3aþ r i� 1; tð Þ þ
X1

k¼1
r iþ k; tð Þ

( )
f2 i; tð Þ

þ
X1

k¼2
r i; tð Þ f1 i� k; tð Þ þ f2 i� k; tð Þf g;

ð13Þ
where r(j, t) is the average rate at which a cell at site j is
colonized by the cells in the adjacent upper and lower
rows at time t. The meanings of the terms in the right-
hand side of Eq. 12 are as follows. The first term,

aþ
P1

k¼1
r iþ k; tð Þ

� 	
f1 i; tð Þ, represents the loss rate of an

f1-type row with front at site i: a is the rate at which the
cell to the right of site i is colonized by the front cell, and
the summation term is the rate at which any cell to the
right of site i is colonized by the cells in the upper and
lower rows (see Fig. 6a). The second term
2aþ r i� 1; tð Þf gf2 i; tð Þ in Eq. 12 represents the creation

of an f1-type row from an f2-type row by colonization of
the empty cell to the left of its front (Fig. 6b). The third
term, aþ r i; tð Þf g f1 i� 1; tð Þ þ f2 i� 1; tð Þf g, represents
the rate at which an f1-type (f2-type) row with front at
site (i�1) advances its front by one cell (this case cor-
responds to Fig. 6a, in which k=1 and i is replaced by
i�1). Equation 13 is constructed in a similar fashion.

To determine r(j, t), we need the front distributions
for the adjacent upper and lower rows. Let us first as-
sume that the front distributions of f1- and f2-type in the
adjacent upper and lower rows are the same as f1(i, t)
and f2(i, t), respectively. Then, via a similar procedure
used to derive q(j, t) in Eq. 7, we obtain the following
equation:

rðj;tÞ¼2a
(

f1ðj�1;tÞþ2f1ðj;tÞ

þ3
X1

k¼1
f1ðjþk;tÞþf2ðj�1;tÞþf2ðj;tÞþ2f2ðjþ1;tÞ

þ2f2ðjþ2;tÞþ3
X1

k¼3
f2ðjþk;tÞ

)
ð14Þ

Here we again adopt a triangle approximation similar
to that employed in Case (1s). Let us assume that the
front distributions of f1- and f2-type are given by isos-
celes triangles with bases 2b1 and 2b2, respectively, both
of which move at constant speed c without changing
their forms. Thus we put:

f1 i; tð Þ ¼

0 i\ct � b1
h1 i� ct þ b1ð Þ

�
b2
1 ct � b16i\ct

h1 �iþ ct þ b1ð Þ
�

b2
1 ct6i\ct þ b1

0 ct þ b16i

8
>><

>>:
; ð15Þ

0 00 0 01/0 1/01 1

i

i i

f1/2(i, t)

f2(i+k, t)

i+ki+k

00 0 01 11

i

i+ki

0 01 11 111

{αδk1+σ(i+k)} f1/2(i, t)

rapid process (k>2)

***

***

(a)

00 0 01 111

f2(i, t) f1(i, t)

0 0 011 111
{2α+σ(i–1)} f2(i, t)

***

***

(b)

Fig. 6 The transition rates between f1- and
f2-type rows (see Eqs. 12 and 13, and their
explanations in the text). The cell with 1/0 is
either in state 1 or in state 0. f1/2 represents f1
when the cell with 1/0 is in state 1, and f2 when
the cell with 1/0 is in state 0. dk1 is the
Kronecker delta (dk1=1 if k=1 and dk1=0 if
otherwise). Cells located more than one cell to
the left of the front are assumed to change
immediately to state 1
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f2 i; tð Þ¼

0 i< ctþd�b2

h2 i� ctþdþb2ð Þ
�

b2
2 ctþd�b26i< ctþd

h2 �iþ ctþdþb2ð Þ
�

b2
2 ctþd6i< ctþdþb2

0 ctþdþb26i

8
>><

>>:
;

ð16Þ
where h1 and h2 are the fractions of f1- and f2-type,
respectively, and d is the relative distance between the
two triangles. If Eqs. 15 and 16 are good enough to
describe the front distributions, the following set of
equations should hold:

d
dt

X1

i¼1
f1 i; tð Þ ¼ 0; ð17Þ

d
dt

X1

i¼1
if1 i; tð Þ=h1 ¼

d
dt

ih if1 ¼ c;

d
dt

X1

i¼1
if2 i; tð Þ=h2 ¼

d
dt

ih if2 ¼ c; ð18Þ

d
dt

X1

i¼1
i� ih if1
� �2

f1 i; tð Þ=h1 ¼ 0;

d
dt

X1

i¼1
i� ih if2
� �2

f2 i; tð Þ=h2 ¼ 0: ð19Þ

Equations 17 and 19, respectively, mean that the frac-
tions and variances of the front distributions of f1- and
f2-type are maintained constant with time, and Eq. 18
means that the average front positions advance at con-
stant speed c for both f1- and f2-type. Thus df1/dt and
df2/dt in Eqs. 17, 18, and 19 are substituted by the right-
hand sides of Eqs. 12 and 13 in which f1(i, t) and f2(i, t)
are replaced with Eqs. 15 and 16, respectively. Then the
resulting set of equations are numerically solved to give
all parameter values included in Eqs. 15 and 16 as
follows:

c ¼ 8:15a; b1 ¼ 2:94; b2 ¼ 2:79; d ¼ 0:96;

h1 ¼ 0:780 and h2 ¼ 0:223:

The speed, 8.15a, is fairly close to, though higher than,
the speed 6.55a from simulating the CA. One of the
reasons for the discrepancy between the two speeds may
come from the assumption that state 0 cells occurring at
sites more than one cell to the left of the front change
immediately to state 1.

Figure 7 illustrates f1(i, t) and f2(i, t) given by Eqs. 15
and 16 for the parameter values obtained above. The
front distribution, f1(i, t)+f2(i, t), ranges within about
six cells. This means that the front positions of adjacent
two rows could differ by at most six cells, and thus
colonization from the leading front to the adjacent row
could result in the retarding front of the latter jumping
forward by up to six cells. Accumulated effects of such
events could explain accelerated speeds in wavy fronts.
Note, however, that such a jump is not allowed in Case

(1s) by definition. This is why the speed in Case (1s)
remains close to that in the deterministic model.

Cases with narrower landscapes

If the above reasoning is valid, we may expect that
reducing the landscape size (i.e., the number of rows
along the y-axis) will decrease the front speed, because a
wavy pattern is less likely to develop when the landscape
size is small. To examine this, we carry out computer
simulations for Case (1) with grids of size (L·200) from
L=1 to 128. The result is illustrated in Fig. 8. The front
speed increases with L, tending to an asymptote at 6.55a.
When L=1, the speed is 3a. This is because the CA is
subject to a periodic boundary condition where upper
and lower cells are at the same state as the focal cell so
that the front proceeds at speed 3a on average. When
L=2, the speed increases to 4.29a. Specifically for this
case, we develop a different analytical model to evaluate
the speed.

Let us focus on the (2·2) array of cells at the front,
in which at least one of the right-most cells of the
front is occupied. The possible configurations of the
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0 1 2 3 4-4 -3 -2 -1

Fig. 7 Frontal distributions of f1- and f2-type in Case (1) derived
from the assumption that they are approximated by isosceles
triangles that move at a constant speed without changing their
forms and their relative distance. Open and shaded bars represent
f1(j, t) and f2(j, t), respectively

0

1

2

3

4

5

6

7

21 4 8 16 32 64 128

S
pe

ed
 o

f r
an

ge
 e

xp
an

si
on

Landscape size, L
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four cells are classified into four types, (1)–(4), as
illustrated in the left-most column of Fig. 9. Each type
includes a pair of configurations in which the upper
and lower rows are commuted. These four types
interconvert among them by colonization, as shown to
the right of arrows. Here we assume that all of the
cells on the left of the four focal cells are in state 1.
Then the transition rates, which are calculated under
the periodic boundary condition where the upper and
lower cells are connected, are given by the values
indicated below the resultant individual configurations.
Using these transition rates, the average distance
gained by each type of front per unit time is given in
the rightmost column of Fig. 9.

Let us now denote the frequency of type (i) at time t
by pi(t). Then the stochastic equations for pi(t) are given
by the transition matrix as follows:

d
dt

p1
p2
p3
p4

0

BB@

1

CCA¼

�6a 5a 4a 3a
6a �8a 7a 6a
0 a �13a a
0 2a 2a �10a

0

BB@

1

CCA

p1
p2
p3
p4

0

BB@

1

CCA: ð20Þ

The stationary distribution, p*, is given by the eigen-
vector corresponding to the eigenvalue 0 of the matrix in
Eq. 20, which is

p� ¼

0:4337

0:4315

0:0404

0:0944

0
BBBB@

1
CCCCA
: ð21Þ

By averaging the speed of advance with these stationary
frequencies, we get the mean speed,

c¼ 3a� 0:4337þ 5a� 0:4315þ 11:5a� 0:0404

þ 4a� 0:0944 ¼ 4:301a;
ð22Þ

which closely agrees with the speed derived from sim-
ulation, 4.29a. This means that the above assumption
of assigning state 1 to all of the cells on the left of the
four focal cells is reasonable, and that the possible
differential in front positions between the two rows
could be at most 2.

2α

6α

7α4α α

α

2α

5α α 2α

6α

3α

Average
Speed

5α

11.5α

4α

1

1

1

0/1

1

0/1

11

1 0 0 0 0

1 1

0 0 00 0 0 0

1

1 0 0 0

0

0 0

0 0

1

1 0

11

1

1 1

1

1 0

(4) (2)

(3) (2)

1 1 0

0 0 1

(4)

(2) (1)

1

(3)

1 0

1

(4)

(1) (2)

1 1

1

1

(3)

(1)

1 1

1

1 1

(4)

(3)

+

+ +

+

+

+

+

+

3α

0 1

1

(1)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 9 Possible colonization processes and
their transition rates for Case (1) with L=2.
The (2·2) array of cells at the front are
classified into four types (1)–(4), which are
illustrated in the leftmost column. Each type
includes a pair of configurations, in which the
upper and lower rows are commuted. All of
the cells on the left of the four focal cells are
assumed to be at state 1. The transition rates
between the four possible types are indicated
below the respective resultant states. State 1
enclosed by a dotted square represents a newly
colonized cell. State 1 enclosed by a solid circle
represents a cell automatically colonized upon
shifting the four focal cells rightwards,
according to the above assumption. The
average distance gained by each type of front
per unit time is given in the rightmost column
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Effects of long-distance dispersal

The dispersal often involves two modes, short-distance
dispersal and long-distance dispersal. When offspring
depart from their parents, most of them undergo short-
distance dispersal to settle near the parent’s range, while
a minor fraction is infrequently observed at distant
locations (Hengeveld 1989; Shigesada and Kawasaki
1997; Higgins et al. 2003). To accommodate both short-
and long-distance dispersal, Shigesada et al. (1995)
previously formulated the stratified diffusion model, in
which the invading species extends its range concentri-
cally at a constant speed c by short-range dispersal,
while at the same time producing long-distance migrants
to create nuclei of new colonies at positions well-sepa-
rated from the parent. In that model, the number of
nuclei produced per unit time by long-distance migrants
from a parent colony per unit area is a random variable
chosen from a Poisson distribution with average k, and
their dispersal distances are probabilistically determined
by a dispersal kernel k(|x|), where |x| indicates the dis-
tance from the source (see also Shigesada and Kawasaki
1997, 2002).

In this section, we construct a stochastic CA model
that corresponds to the stratified diffusion model. In the
CA model, the transition probability of a cell from state
0 to state 1 due to short-distance colonization is given by
rule 1 (i.e., corresponding to Case (1)), while the tran-
sition probability of a cell from state 0 to state 1 due to
long-distance colonization is given by the product of
k dt and

P
j

k xi � xj



 

� �
where k represents the rate of

generation of long-distance dispersers from a cell in state
1, i indicates the cell in question and the summation
means all contributions from any cell j in state 1. For the
functional form of the dispersal kernel, we adopt a
modified Bessel function of order zero kind,
K0 r=dLð Þ

�
2pd2

L

� �
, where r=|xi�xj| and dL represents the

mean dispersal distance due to long-range dispersal.
This functional form of the dispersal kernel is obtained if
we assume that organisms become sedentary at a con-
stant rate while undergoing random diffusion (Broad-
bent and Kendall 1953; Shigesada 1980; Metz et al.
2000). Thus the model contains three independent
parameters: the colonization rate due to short-distance
dispersal, a, the rate of generation of new colonies due to
long-distance dispersers from an occupied cell, k, and
the average distance of long-range dispersal, dL. We
carry out numerical computations for this model on a
100·400 grid for a variety of values of dL, k and a with
the same periodic boundary conditions as used before.
Figure 10 shows snapshots of a simulation with fixed
a=1, k=0.01, and dL=20 at t=5, 10, and 15, in which
cells in state 1 sporadically arise at distant locations
forming patchy distributions ahead of the contiguous
distributed range.

From Fig. 10, we calculate the mean front position
(the mean of the furthest-forward locations) as defined
by Eq. 3 and plotted it as a function of time as shown in

Fig. 11. For each dL, results of individual simulations
are indicated by thin lines and the average of 20 such
runs is given by a thick line. Although the individual
thin lines show irregular fluctuations with time, each
thick line exhibits a smoothly rising curve, which
asymptotically approaches a linear slope. This tendency
generally applies to cases with other parameter values
too. The slope of the linear curve at the later phase gives
the final average speed attained. Figure 12a illustrates
the average speed (closed circles) as a function of dL for
each value of k. The speed starts at 6.55 (the speed due
to short-distance colonization alone), and gradually in-
creases with increases in dL up to �6 due to increasing
contributions from long-range dispersal. Above this
range, long-range dispersal makes a major contribution
and thus the speed increases almost linearly with dL. On
the other hand, Fig. 12b shows that the speed as a
function of the generation rate of long-distance
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Fig. 10 Invasion wave progression due to both short- and long-
distance colonization at three time points t=5, 10, and 15. The
parameters used were a=1, k=0.01, dL=20, and L=100
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Fig. 11 The mean front positions of invasion waves due to both
short- and long-distance colonization as a function of time for
various fixed values of dL. The other parameters used were a=1,
k=0.01, and L=100. The three thin curves given for each dL
represent results from arbitrary runs. The thick curves are the
averages over 20 runs
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dispersers, k, rises sharply from 6.55 at first, and then the
rate of increase in speed gradually slows down as k in-
creases from zero. In Fig. 12c, the speed is plotted as a
function of a for various k values, which shows a similar
trend as observed in Fig. 12b, though its initial rise is
less sharp.

Using dimensional analysis, we deduced the following
semi-empirical formula for the speed:

V � 1:93c2=3 kð Þ1=3dL; ð23Þ
Here c=6.55a, the speed due to short-range coloniza-
tion. (By retrospectively applying the same analysis, we
realized that the corresponding formula in the stratified
diffusion model (Eq. 17.7 in Shigesada and Kawasaki
2002) should be corrected to V � 1:9c2=3 kð Þ1=3dL). We
plot this function in Fig. 12 (solid lines), and this
agrees fairly well with all of the simulation results.
Briefly, the idea used to obtain this equation is as
follows. Let us assume that the speed is given by
V ¼ Acxkydz

L; where A, x, y, and z are constant. Since
the dimensions of V, c, k, and dL are L/T, L/T, 1/L2T,
and L, respectively, x+y=1 and x�2y+z=1 should
hold. Based on the simulation results in Fig. 12a, we
further assume that the speed increases linearly with
dL, so that z is put equal to one. Then we have x=2/3
and y=1/3. The coefficient 1.93 is obtained by
regression. It is remarkable to note that Eq. 23 auto-
matically fits to all of the data sets upon fixing only a
single parameter A, except in the case of small dL,
where the assumption of linear dependency of dL does
not hold. Incidentally, the value A=1.93 is derived
specifically for the modified Bessel function used here.
However, we may suppose that Eq. 23 still holds upon
adjusting A, even if we employ a different functional
form for the dispersal kernel, as long as it has an
exponentially bounded tail.

We further examine how the speed is influenced
when the landscape of the CA is reduced from L=100
to 1, as in the ‘‘Cases for narrower landscapes’’ section.
We find that the speed slows down monotonically with
decreasing L even more drastically than in the case
without long-range colonization. In Fig. 12, the results
are indicated for L=1 (open circles), which is several
times lower than the case for a sufficiently large L. It
should be noted here that the case for L=1 corre-
sponds to a one-dimensional CA in which the rate
of short-range colonization is 3a and the dispersal
kernel for long-range colonization is k xð Þ ¼
exp � xj j=dLð Þ=2dL. The great enhancement in speed in
the two-dimensional CA may be explained by a
mechanism analogous to that previously suggested for
the CA model involving only short-range colonization:
a colonization from leading patches to an unoccupied
cell on another row could result in a big leap of
the furthest-forward front of that row with a high
probability.

Using a similar dimensional analysis, we derive a
semi-empirical formula for the speed in one dimension
as

V � 1:5 ckð Þ1=2dL; ð24Þ
where c=3a. Equation 24 is illustrated by dashed lines
in Fig. 12, which again fits all simulated results well
when the single parameter A is adjusted to be 1.5.
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Fig. 12 Dependence of speed on parameter values. a Speed as a
function of dL for various values of k with a=1. b Speed as
a function of k for various values of dL with a=1. c Speed as a
function of a for various values of k with dL=20. Closed circles and
bars, respectively, indicate the mean speed and one standard
deviation of 20 simulation results for the two-dimensional CA
model. The solid lines indicate speeds given by the semi-empirical
formula 23 for the two-dimensional CA model. Open circles and
bars, respectively, indicate the mean speed and one standard
deviation of 20 simulation results for the one-dimensional CA
model. The dashed lines indicate speeds given by the semi-empirical
formula 24 for the one-dimensional CA model
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Discussion

In this work, we presented a stochastic CA model for
invasion waves generated by colonization due to short-
and/or long-distance dispersal. When colonization only
occurs from the eight adjacent cells, the frontal wave
shows a wavy pattern, through which the frontal speed is
accelerated by up to twofold compared with the speed in
the corresponding deterministic model. To better
understand the mechanism of this accelerated speed, we
developed dynamical equations for the distribution of
the front position in each row. Analyzing the equations
demonstrated that the distribution of frontal positions
along a row falls within about six cells. Thus, the pos-
sible difference in front positions between two adjacent
rows could be six at the most, so there would be a chance
of long-range colonization jumping about six cells ahead
of the front of a row. This jump in colonization is
inevitably accompanied by greater irregularities (or
waviness) in the shape of the frontal wave in the two-
dimensional space. Despite the marked irregularity of
the global frontal shape as seen in Fig. 1, its average
speed is virtually constant with time (see Fig. 2). As we
reduce the width of the landscape, the frontal irregu-
larities gradually diminish, leading to monotonic de-
creases in speed. Since the irregular boundary of the
frontal wave cannot occur in one-dimensional space, we
may conclude that the presence of both stochasticity and
two-dimensional space is essential for an enhancement
in speed. As a matter of fact, if we consider a stochastic
one-dimensional CA, the average speed is exactly the
same as the speed in the corresponding deterministic
CA.

Recently, Ellner et al. (1998) dealt with a similar
lattice population model using an alternative mathe-
matical method, the pair-edge approximation. Their
model included death processes and was restricted to the
case of colonization from the eight neighboring cells.
The pair approximation method takes the correlations
between nearest neighbor sites in account and provides a
good approximation of the speed of the frontal wave
and the conditions needed for successful invasion. On
the other hand, our approach focuses on the distribution
of the front position in each row. It thus provides de-
tailed insights into how leaping colonizations can take
place, even though each event is engaged by nearest
neighborhood colonizations.

When we take into account both short- and long-
distance dispersals, mathematical analyses become for-
midable. Thus we carry out computer simulations for
the case corresponding to the stratified diffusion model
(Shigesada and Kawasaki 2002), although the mathe-
matical frameworks of these models are essentially dif-
ferent. Space is taken as continuous in the stratified
diffusion model, but discrete in the CA model. On the
other hand, stochasticity is incorporated into long-dis-
tance dispersal in both models, while stochasticity in
short-distance dispersal is only included in the CA.

Nevertheless, essentially similar features are derived for
the speed in either model: the speed increases almost
linearly with average long-range dispersal distance, dL,
while it increases more slowly as the generation rate of
long-distance dispersers, k and the colonization rate, a
increase. We deduced a semi-empirical formula for the
speed, which fits the simulation results remarkably well
for wide ranges of dL, k and a. The patchy patterns
characteristic of the stratified diffusion model and its CA
version are caused by the combined effect of short- and
long-distance colonization, but never occur when there
is only long-range colonization with an exponentially
bounded dispersal kernel. However, Shaw (1994) dem-
onstrated that in an epidemic CA model with time delay,
fat-tailed dispersal kernels like a Cauchy distribution
can generate patch-like patterns, although the fronts of
the wave cannot be defined very well. From a different
approach based on diffusion–reaction equations, Pet-
rovskii et al. (2005) also showed that patchy invasion of
a predator or infectious disease occurs in two-dimen-
sional space, whereas the species become extinct in the
corresponding one-dimensional system.

Apart from the CA model, the effects of stochas-
ticity on range expansion have been extensively studied
by integro-differential or integro-difference equations
(integral-kernel-based models) in one-dimensional
space by Mollison (1977), Lewis and Pacala (2000),
Lewis (2000), Clark et al. (2001) and Snyder (2003).
More recently, Kot et al. (2004) analyzed an integro-
difference model using branching random walks and
proved that speeds of invasion are never affected by
stochasticity in either reproduction or dispersal or both
in the absence of density-dependent effects. On the
other hand, in density-dependent models, stochasticity
generally decreases the speed (Mollison 1977; Lewis
and Pacala 2000; Clark et al. 2001; Snyder 2003). The
CA model dealt with here inevitably contains density
dependence in the sense that recolonization of a pre-
occupied cell is ignored. Nonetheless, the stochasticity
accelerates speeds in the two-dimensional CA, whereas
it has no effect on the average speed in the one-
dimensional CA. The apparent discrepancy between the
present CA model and the integral-kernel-based models
may be attributed to the fact that most mathematical
analyses of the latter models appear to deal with one-
dimensional space.

In nature, dispersal is stochastic and real invasion
wavefronts are almost certainly irregular. Therefore,
stochastic CA models may be useful for capturing some
basic aspects of invasion that are difficult to explain
using their deterministic or one-dimensional analogs.
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