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Abstract We examined effects of seasonality of climate
and dominant life form (evergreen/deciduous, broad-
leaf/coniferous) together with energy condition on spe-
cies diversity, forest structure, forest dynamics, and
productivity of forest ecosystems by comparing the
patterns of changes in these ecosystem attributes along
altitudinal gradients in tropical regions without season-
ality and along a latitudinal gradient from tropical to
temperate regions in humid East Asia. We used warmth
index (temperature sum during growing season, WI) as
an index of energy condition common to both altitudinal
and latitudinal gradients. There were apparent differ-
ences in patterns of changes in the ecosystem attributes
in relation to WI among four forest formations that
were classified according to dominant life form and cli-
matic zone (tropical/temperate). Many of the ecosystem
attributes—Fisher’s alpha of species-diversity indices,
maximum tree height and stem density, productivity
[increment rate of aboveground biomass (AGB)], and
population and biomass turnover rates—changed shar-
ply with WI in tropical and temperate evergreen broad-

leaved forests, but did not change linearly or changed
only loosely with WI in temperate deciduous broad-
leaved and evergreen coniferous forests. Values of these
ecosystem attributes in temperate deciduous broad-
leaved and evergreen coniferous forests were higher
(stem density was lower) than those in tropical and
temperate evergreen broad-leaved forests under colder
conditions (WI below 100�C). Present results indicate
that seasonality of climate and resultant change in
dominant life form work to buffer the effects of energy
reduction on ecosystem attributes along latitudinal
gradients.

Keywords Species diversity Æ Aboveground net primary
productivity Æ Forest dynamics Æ Forest structure Æ
Latitude

Introduction

A latitudinal gradient from tropical to boreal regions is
not only an energy gradient but also a gradient of
duration of growing season. As the growing season
shortens and latitude increases, dominant life forms of
forest ecosystems change from evergreen broad-leaved
trees through deciduous broad-leaved trees to coniferous
trees (Holdridge 1947; Kira 1976; Ohsawa 1995). In
tropical regions, evergreen broad-leaved trees dominated
across the altitudinal gradients despite the decline in air
temperature because there was no seasonality in climate
(Whitmore 1990; Kitayama 1992).

Many previous studies on changes in forest eco-
system attributes along latitudinal gradients have
focused on the relationships with energy rather than
on the relationships with seasonality of climate and/or
dominant life forms. Net primary productivity has
been estimated using actual evapotranspiration (e.g.,
Miami model of Lieth 1975; Chikugo model of
Uchijima and Seino 1985). The species–energy
hypothesis explains that energy availability may
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constrain the number of species that can coexist in a
community (Hutchinson 1959; Adams and Woodward
1989; Currie 1991). However, since life form is an
adaptation to seasonality of climate, the pattern of
changes in ecosystem attributes along latitudinal gra-
dients may be affected by dominant life forms of forest
ecosystems. Deciduousness is an adaptive leafing phe-
nology to achieve sufficient productivity during the hot
summer in temperate regions (Kikuzawa 1991). It is
well known that conifers have greater maximum tree
size and lifespan than broad-leaved trees (Waring and
Franklin 1979; Suzuki and Tsukahara 1987). These
differential functions among life forms may work as a
buffer to the effects of energy reduction on produc-
tivity and biomass along a latitudinal gradient, and
ecosystem attributes may be different depending on
forest formations with different dominant life forms.
Accordingly, we have to consider the effects of sea-
sonality of climate and resultant change in dominant
life form on ecosystem attributes to understand lati-
tudinal changes in forest ecosystems.

Recently, many studies have examined patterns in
ecosystem attributes at global scales using databases of
plot-level forest inventory data (Adams and Woodward
1989; Currie 1991; Phillips et al. 1994; Cornelissen 1996;
Reich and Bolstad 2001). However, there are few studies
that have focused on the geographical patterns in East
Asia (Ohsawa 1995; Kohyama 1999). In East Asia, the
humid climate extends continuously from tropical to
boreal regions without deserts at middle latitudes. This
condition provides us good opportunities to examine the
effects of air temperature on ecosystem attributes with-
out considering the effects of seasonality of precipita-
tion. The objectives of this study were to examine the
effects of seasonality of climate and the resultant dif-
ferences in dominant life form on species diversity,
structure, dynamics, and productivity of forest ecosys-
tems along a latitudinal gradient in humid East Asia.

In the present study, in order to distinguish the effects
of seasonality and dominant life forms from the effects
of energy condition, we compared the patterns of
changes in ecosystem attributes along a latitudinal gra-
dient from tropical to boreal regions with the patterns of
changes along altitudinal gradients in tropical regions.

Methods

We collected tree census data by using the database
PlotNet, which includes plot-level forest inventory data
from equatorial regions in Southeast Asia to boreal
regions in East Asia (http://eco1.ees.hokudai.ac.jp/
�plotnet/db/). From the study plots collected, we chose
48 plots that met the following conditions: more than
1,000 mm of annual precipitation, primary forest with
no record of logging, more than 1,000 m2 in plot area
(Appendix 1). We used plots with large areas because
some ecosystem attributes vary depending on plot area,
especially species diversity and forest dynamics. How-
ever, the effects of plot area may not be excluded com-
pletely because half of the plots were less than 1 ha in
area. We used census data collected from 1990–2001 for
trees‡10 cm in diameter at breast height (DBH). Since
seven plots lacked recensus data and 27 plots lacked
litterfall data, sample sizes were different among analy-
ses (Table 1).

For forest structural attributes, maximum DBH and
tree height (H), stem density, and aboveground biomass
(AGB) were calculated. AGB was estimated from allo-
metric regressions between aboveground tree mass and
DBH2·H reported for each forest formation in previous
studies (Appendix 2). For some plots without tree height
data, allometric regressions between aboveground tree
mass and DBH were adopted for the estimation of
AGB. Aboveground net primary production (ANPP)
was calculated as annual increment in AGB of surviving
trees between two censuses (AGB increment rate) plus
mean annual fine litterfall. Fine litterfall included all
organs greater than 2 mm in diameter (leaves and
branches less than about 2 cm in diameter and flowers,
fruits, and dust); it was collected by litter traps that were
made of 1- or 2-mm mesh and were cone- or rectangular-
shaped with a 0.5-m2 opening. Fisher’s alpha and
Shannon-Wiener’s H¢ were calculated as species diver-
sity indices.

Mortality (mt), recruitment (rc), population turnover
(pt), and biomass turnover (bt) rates were calculated as
attributes of forest dynamics from the following equa-
tions:

Table 1 Number of sampled plots for species diversity and attributes of forest structure and dynamics

Formation type Species
diversity

Maximum
tree size

AGB Population
dynamics

AGB
increment

ANPP

Temperate deciduous
broad-leaved forests

11 12 12 8 8 4

Temperate evergreen
coniferous forests

14 15 15 13 14 2

Temperate evergreen
broad-leaved forests

8 9 9 8 8 4

Tropical evergreen
broad-leaved forests

11 12 12 11 11 11

Total 44 48 48 40 41 21
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mt ¼ 100 ln Noð Þ � ln Nsð Þ½ �=t

rc ¼ 100 ln N fð Þ � ln Nsð Þ½ �=t

pt ¼ mt þ rcð Þ=2

bt ¼ annual AGB increment=AGB

where No=number of stems at start, Ns=survived
stems, Nf=final stems (survived stems+recruits), and
t=census span (year).

As an index of energy condition, we used warmth
index (WI, Kira 1948):

WI ¼
X

MMAT� 5ð Þ

where MMAT is monthly mean air temperature for
months with a mean above 5�C. We did not use actual
evapotranspiration (AET) as an index of energy condi-
tion, though many previous studies have. AET explained
well the changes in ANPP along both temperature and
humidity gradients (Lieth 1975), since it is a function of
net radiation and saturation deficit. However, AET is
independent of altitude, and it cannot explain changes in
ecosystem attributes along an altitude gradient, since
solar radiation is generally independent of altitude.
Therefore, we used WI as an index of energy condition
common to both latitudinal and altitudinal gradients.
Since study plots used in this study were located in hu-
mid regions, we did not need to consider the effects of
deficiency of precipitation. For 26 plots below 1,000 m
in altitude, WI significantly correlated with AET when
we estimated AET from monthly mean air temperature
and precipitation following Takahashi (1979) (r2=0.78).
Annual temperature range (mean temperature of the
warmest month minus the coldest month) was used as an
index of seasonality of climate. Although day length
during the growing season may change in relation to
annual temperature range along a latitudinal gradient,
effects of day length could not be distinguished from
effects of annual temperature range in this study.

Figure 1 shows latitudinal changes in WI, annual
temperature range, and relative basal area of evergreen
broad-leaved trees (RBA-EB) for the 48 plots. WI ran-
ged from 20.3�C month in boreal coniferous forests to
261.1�C month in tropical lowland rain forests. As an-
nual temperature range increased above 20�C and WI
fell below 80�C month in temperate regions, RBA-EB
decreased from 100 to 0% abruptly, and deciduous
broad-leaved and evergreen coniferous trees predomi-
nated. In tropical regions, evergreen conifers increased
as WI decreased below 100�C month, but evergreen,
broad-leaved trees predominated in all plots but one.
Therefore, we divided vegetation types into four for-
mations based on the climatic zone and dominant life
form: tropical evergreen broad-leaved forests, temperate
(warm-temperate) evergreen broad-leaved forests, tem-
perate (cool-temperate) deciduous broad-leaved forests,
and temperate (cool-temperate and boreal) evergreen
coniferous forests, and we compared the pattern of

changes for ecosystem attributes along WI among the
four formations in this study.

To compare ecosystem attributes among the four
formations, correlation between ecosystem attributes
and WI in each formation was tested by ANOVA, and
slopes and intercepts of regression lines against WI were
compared by Bonferroni test after ANCOVA. To test
the effects of energy condition, seasonality of climate,
and dominant life forms on ecosystem attributes, mul-
tiple regression analysis was adopted. In this analysis,
three explanatory variables were used: WI as an index of
energy condition, annual temperature range as an index
of seasonality of climate, and RBA-EB as an index of
dominant life form.

Results

The species diversity indices, Fisher’s alpha and Shan-
non-Wiener’s H¢ (data not shown), increased with
increasing WI in each formation (ANOVA, P<0.01;
Fig. 2). For Fisher’s alpha, the slope of the regression
line against WI for temperate deciduous broad-leaved
and evergreen coniferous forests was significantly looser
than for tropical and temperate evergreen broad-leaved
forests (ANCOVA, P<0.01). The slope of the regression
for the temperate deciduous broad-leaved and evergreen
coniferous forests was greater than for the tropical and
temperate evergreen broad-leaved forests at a compar-
able WI under colder conditions (WI<100�C month).
For Shannon-Wiener’s H¢, neither the slopes nor the
intercepts of the regression lines against WI were
significantly different among the four formations.

For forest structural attributes, there were apparent
differences among the four formations. Maximum
DBH increased with increasing WI in each formation
(ANOVA, P<0.01; Fig. 3a), but the slope of the
regression line against WI was greater for the temperate
deciduous broad-leaved and evergreen coniferous forests

Fig. 1 Latitudinal changes in warmth index (WI, open squares),
annual temperature range (open triangles), and relative basal area
of evergreen broad-leaved trees (RBA-EB, closed circles) for the 48
study plots
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than for the tropical and temperate evergreen broad-
leaved forests (ANCOVA, P<0.05). Maximum tree
height increased with increasing WI in tropical and
temperate evergreen broad-leaved forests (ANOVA,
P<0.01), but showed similar values and no significant
relationships with WI in temperate deciduous broad-
leaved and evergreen coniferous forests (ANOVA,
P>0.05; Fig. 3b). Thus, maximum tree height was
higher in temperate deciduous broad-leaved and ever-
green coniferous forests than in tropical and temperate
evergreen broad-leaved forests under colder conditions
(WI<100�C month).

Stem density decreased with increasing WI in tropical
and temperate evergreen broad-leaved forests (ANOVA,
P<0.01) while it varied independently of WI in tempe-
rate deciduous broad-leaved and evergreen coniferous
forests (ANOVA, P>0.05; Fig. 3c). For stem density,
the intercept of the regression line against WI for the
tropical and temperate evergreen broad-leaved forests
was significantly greater than that for the temperate
deciduous broad-leaved and evergreen coniferous forests
(ANCOVA, P<0.01). The low stem density under
colder conditions in temperate deciduous broad-leaved
and evergreen coniferous forests was explained by
the decrease in stem density of small trees
(10 cm £ DBH<15 cm) at low WI (Fig. 4).

Fig. 3 Changes in forest
structural attributes in four
forest formations in relation
to WI. a Maximum DBH.
b Maximum tree height. c Stem
density of trees‡10 cm in DBH.
d Aboveground biomass
(AGB). Symbols are the same
as Fig. 2

Fig. 2 Changes in species diversity (Fisher’s alpha) of four forest
formations in relation to WI
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AGB increased with increasing WI in each formation
(ANOVA, P<0.01; Fig. 3d), and there were no signifi-
cant differences in slopes and intercepts of the regression
lines among the four formations. Accordingly, the dis-
tribution of carbon in biomass differed among the four
formations. Under colder conditions (WI<100�C
month) in temperate deciduous broad-leaved and con-
iferous forests, a greater part of the assimilated carbon
was concentrated in a few large canopy trees rather than
small trees. In contrast, under colder conditions in tro-
pical and temperate evergreen broad-leaved forests, ca-
nopy trees were smaller but had greater stem density,
with assimilated carbon shared among a greater number
of trees.

ANPP was positively correlated with WI for the 21
plots for which ANPP data was available (ANOVA,
P<0.01; Fig. 5a). However, we could not compare
among the four formations due to the small sample size.
Therefore among the four formations, we compared
AGB increment rate, which is recognized to be a good
estimate for ANPP (Clark et al. 2001). AGB increment
rates in temperate deciduous broad-leaved and ever-
green coniferous forests were similar and had no sig-
nificant relationship with WI (ANOVA, P>0.05), while
increment rates in tropical and temperate evergreen
broad-leaved forests increased with WI (ANOVA,
P<0.01; Fig. 5b). AGB increment rates in temperate
deciduous broad-leaved and evergreen coniferous forests
were greater than those in tropical and temperate ever-
green broad-leaved forests at WI below 100�C month.

In tropical and temperate evergreen broad-leaved
forests, mortality, recruitment rate, and population
turnover rates increased with increasing WI, but one plot
showed a high rate below 80�C month of WI (Fig. 6). In
contrast, these attributes of forest dynamics varied
independently of WI in temperate deciduous broad-
leaved and evergreen coniferous forests (ANOVA,

P>0.05). Biomass turnover rate, which was independent
of population turnover rate, showed a pattern similar to
population turnover rates. Values for these four attri-
butes of forest dynamics tended to be higher in temperate
deciduous broad-leaved and evergreen coniferous forests
than in tropical and temperate evergreen broad-leaved
forests under colder conditions (WI<100�C month).

Multiple regression analysis was significant in clari-
fying the variance in 10 of 12 ecosystem attributes. For 6
of the 10 attributes—Fisher’s alpha, maximum tree
height, stem density, AGB increment rate, population
turnover rate, and biomass turnover rate—multiple
regression analysis demonstrated that RBA-EB together
with WI explained a significant amount of the variance
(Table 2). For these six attributes, regression against
WI was not significant or the slopes of the regression
lines were significantly looser for the temperate decidu-
ous broad-leaved and evergreen coniferous forests com-
pared to those for the tropical and temperate evergreen

Fig. 4 Changes in percentage of small trees (10 cm £ DBH
Symbols are the same as Fig. 2

Fig. 5 Changes in a aboveground net primary productivity and
b aboveground biomass increment rate (AGB increment rate) in
four forest formations in relation to WI. Symbols are the same as
Fig. 2

291



broad-leaved forests. Annual temperature range played
a significant role in only three attributes—Shannon-
Wiener’s H¢, maximum DBH, and stem density.

Discussion

The pattern of changes in ecosystem attributes in rela-
tion to WI was distinctively different for two groups of

formations. One group included tropical and temperate
evergreen broad-leaved forests, and the other included
temperate deciduous broad-leaved and evergreen conif-
erous forests. Multiple regression analysis demonstrated
that not only energy condition but also seasonality of
climate and dominant life form significantly contributed
to explaining the variance in many ecosystem attributes
in humid East Asia. Dominant life form, especially, af-
fected ecosystem attributes much more than seasonality

Fig. 6 Changes in forest
dynamics in four forest
formations in relation to WI.
a Mortality rate. b Recruitment
rate. c Population turnover
rate=(mortality+recruitment
rate)/2. d Biomass turnover
rate=AGB increment rate/
AGB. Symbols are the same
as Fig. 2

Table 2 Results of multiple regression analysis between forest
ecosystem attributes as criterion variables and three explanatory
variables: warmth index (WI), annual temperature range (Temp
range), and relative basal area of evergreen broad-leaved trees
(RBA-EB). Coefficient of determination (r2) and probability of

significance (P) for the multiple regression and number of samples
(n) are shown for each attribute. Standard regression coefficient
and probability of significance for the three explanatory variables
are also shown

Attribute n r2 P Standard regression coefficient Probability

WI Temp range RBA-EB WI Temp range RBA-EB

Fisher’s alpha 44 0.79 0.00 1.29 �0.17 �0.72 0.00 0.18 0.00
Shannon-Wiener’s H¢ 43 0.82 0.00 0.74 �0.40 �0.19 0.00 0.00 0.18
Max. DBH 48 0.39 0.00 1.04 0.50 �0.17 0.00 0.02 0.48
Max. tree height 35 0.64 0.00 1.40 0.07 �0.82 0.00 0.69 0.00
Stem density 47 0.44 0.00 �1.09 �0.63 0.76 0.00 0.00 0.00
AGB 48 0.50 0.00 0.77 0.17 0.08 0.00 0.34 0.70
ANPP 21 0.62 0.00 0.78 �0.09 �0.07 0.00 0.68 0.81
AGB increment rate 41 0.65 0.00 1.33 0.10 �0.62 0.00 0.53 0.00
Mortality rate 40 0.17 0.09 0.76 0.04 �0.66 0.02 0.87 0.04
Recruitment rate 40 0.13 0.15 0.57 �0.14 �0.47 0.07 0.58 0.13
Population turnover rate 40 0.21 0.03 0.84 �0.04 �0.71 0.01 0.86 0.02
Biomass turnover rate 41 0.23 0.02 0.90 0.16 �0.79 0.00 0.51 0.01
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of climate. These results indicate that seasonality of
climate and resultant changes in dominant life form
work to buffer the effects of energy reduction on eco-
system attributes along a latitudinal gradient. As well,
the effects of dominant life form are more important
than the direct effects of seasonality of climate in many
cases.

AGB increment rates of temperate deciduous broad-
leaved and evergreen coniferous forests did not decrease
with decreasing WI, while those of tropical and tem-
perate evergreen broad-leaved forests did. Reich (1993)
compared net photosynthetic capacity, leaf N concen-
tration, and specific leaf area in relation to leaf lifespan
among some formations, and showed that values for
these three leaf traits were higher in deciduous broad-
leaved trees than in evergreen broad-leaved trees.
Accordingly, deciduous broad-leaved trees achieve high
photosynthetic capacity per unit time by allocating
much N to leaves, which may contribute to the greater
annual productivity of temperate deciduous broad-
leaved forests than tropical and temperate evergreen
broad-leaved forests under colder conditions
(WI<100�C month) despite the shorter growing season.
Although day length during growing season increased
with increasing latitude and may contribute to the high
productivity in forests at high latitudes, we could not
examine the effects of day length on productivity in this
study. The higher concentration of leaf N leads to higher
litter decomposition rates in temperate deciduous broad-
leaved forests compared to tropical and temperate
evergreen broad-leaved forests (Cornelissen 1996). The
high productivity and decomposition rate may provide
the basis for the high biomass turnover rate in temperate
deciduous broad-leaved forests.

Stem density in temperate deciduous broad-leaved
and evergreen coniferous forests was lower than in
tropical and temperate evergreen broad-leaved forests at
a comparable WI due to the low density of small trees,
though stem density varied independently of WI in
temperate deciduous broad-leaved and evergreen conif-
erous forests. This suggests that large canopy trees may
share a greater part of the resources and suppress small
trees in temperate deciduous broad-leaved and evergreen

coniferous forests. Takyu et al. (1994) showed that shrub
species had much higher mortality and recruitment rates
than canopy species in a temperate coniferous forest.
Temperate evergreen conifers generally have a longer
lifespan and greater maximum tree size than deciduous
and evergreen broad-leaved trees (Waring and Franklin
1979; Suzuki and Tsukahara 1987). The high population
turnover rate of temperate evergreen coniferous forests
may result from the high population turnover rate of
shrub species due to severe suppression by large canopy
trees, although we could not compare the differences in
population turnover rates between canopy and shrub
species in our data set. However, we could not deny the
effect of variation in gap formation among study plots
on the forest dynamics in temperate evergreen conifer-
ous forests, since attributes of forest dynamics varied
independently of WI in this forest formation. Since the
death of large canopy trees in coniferous forests may
create large gaps, attributes of forest dynamics may vary
if a study plot includes large gaps. On the other hand,
high productivity due to the exclusive use of resources
and the long lifespan of large canopy trees may result in
the high AGB increment rate of temperate evergreen
coniferous forests under colder conditions.

This study is a preliminary step in examining the ef-
fects of seasonality of climate and resultant changes in
dominant life form using a database of forest inventory
data; however, the database is not yet adequate for data
from East Asia. The development of networks among
forest ecologists and the accumulation of forest inven-
tory data are necessary for understanding patterns and
mechanisms of changes in ecosystem attributes along a
latitudinal gradient and for monitoring changes in eco-
systems in East Asia due to global climatic changes.
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Table 3 List of study plots

Plot name Region/country Latitude Longitude Altitude (m) Plot area (m2) Reference

Pasoh Peninsular
Malaysia/Malaysia

2�59¢N 102�19¢E 100 60,000 Niiyama et al. (2003)

Lambir CBP Sarawak/Malaysia 4�2¢N 113�5¢E 200 80,000 Nakagawa et al. (2000)
Lambir Crane Sarawak/Malaysia 4�2¢N 113�5¢E 200 40,000 Nakagawa et al. (2000)
Kinabalu 07T Sabah/Malaysia 6�03¢N 116�42¢E 650 10,000 Aiba and Kitayama (1999)
Kinabalu 07U Sabah/Malaysia 6�06¢N 116�42¢E 700 10,000 Aiba and Kitayama (1999)
Kinabalu 17T Sabah/Malaysia 6�N 116�32¢E 1,560 10,000 Takyu et al. (2002)
Kinabalu 17Q Sabah/Malaysia 6�01¢N 116�32¢E 1,860 10,000 Takyuet al. (2002)
Kinabalu 17U Sabah/Malaysia 6�03¢N 116�36¢E 1,860 2,000 Aiba and Kitayama (1999)
Kinabalu 27T Sabah/Malaysia 6�03¢N 116�32¢E 2,590 2,500 Aiba and Kitayama (1999)
Kinabalu 27U Sabah/Malaysia 6�03¢N 116�32¢E 2,700 2,000 Aiba and Kitayama (1999)
Kinabalu 31T Sabah/Malaysia 6�05¢N 116�33¢E 3,080 2,000 Aiba and Kitayama (1999)
Mt.Makiling long-term
monitoring plot

Luzon
Island/Philippines

14�08¢N 121�11¢E 400 40,000 Luna et al. (1999)

Yakushima AIK Kagoshima/Japan 30�23¢N 130�38¢E 170 5,000 Aiba (unpublished)
Yakushima KAW Kagoshima/Japan 30�21¢N 130�24¢E 200 2,500 Aiba et al. (unpublished)
Yakushima HAN Kagoshima/Japan 30�22¢N 130�23¢E 280 5,000 Aiba (unpublished)
Yakushima KOY1 Kagoshima/Japan 30�18¢N 130�27¢E 700 2,500 Aiba and Kohyama (1997)
Yakushima KOY2 Kagoshima/Japan 30�18¢N 130�27¢E 540 2,500 Aiba and Kohyama (1997)
Yakushima ANB Kagoshima/Japan 30�19¢N 130�36¢E 570 5,000 Aiba (unpublished)
Yakushima ARA Kagoshima/Japan 30�18¢N 130�34¢E 1,180 5,000 Aiba (unpublished)
Yakushima MIG Kagoshima/Japan 30�19¢N 130�29¢E 1,200 10,000 Akashi et al. (unpublished)
Kirishima Kagoshima/Japan 31�7¢N 130�27¢E 1,140 10,000 Kubota (unpublished)
Aya Miyazaki/Japan 32�04¢N 131�09¢E 400 40,000 Tanouchi

and Yamamoto (1995)
Ohkuchi Kagoshima/Japan 32�8¢N 130�32¢E 490 4,700 Tanouchi et al. (1994)
Mt. Tatera Nagasaki/Japan 34�08¢N 129�13¢E 170 40,000 Miura et al. (2001)
Ohdaigahara Nara/Japan 34�11¢N 136�04¢E 1,450 10,000 Akashi

and Nakashizuka (1999)
Ohdaigahara Belt 1 Nara/Japan 34�N 136�E 1,550 4,000 Nakashizuka (1991)
Ohdaigahara Belt 2 Nara/Japan 34�N 136�E 1,550 2,000 Nakashizuka (1991)
Ohdaigahara Belt 3 Nara/Japan 34�N 136�E 1,550 2,000 Nakashizuka (1991)
Ogawa Ibaraki/Japan 36�54¢N 140�35¢E 555 60,000 Nakashizuka

and Matsumoto (2002)
Kayanodaira Nagano/Japan 36�5¢N 138�3¢E 1,500 10,000 Ida (unpublished)
Kanumazawa Riparian
Research Forest

Iwate/Japan 39�06¢N 141�52¢E 430 47,100 Suzuki et al. (2002)

Shirakami Akaishizawa Aomori/Japan 40�3¢N 140�7¢E 380 10,000 Nakashizuka (unpublished)
Shirakami Kumagera Aomori/Japan 40�3¢N 140�7¢E 520 10,000 Nakashizuka (unpublished)
Shirakami Kushiishione Aomori/Japan 40�3¢N 140�7¢E 624 10,000 Nakashizuka (unpublished)
Tomakomai Horonai Hokkaido/Japan 42�43¢N 141�34¢E 90 12,000 Wada and Ribbens (1997)
Tomakomai Horonai hills Hokkaido/Japan 42�43¢N 141�34¢E 90 6,800 Seino (unpublished)
Tomakomai
Midori-no-tunnnel

Hokkaido/Japan 42�43¢N 141�34¢E 90 10,000 Kohyama et al. (1999)

Nukabira Hokkaido/Japan 43�21¢N 143�09¢E 1,000 22,500 Takahashi (1994)
Taisetsu onsen Hokkaido/Japan 43�21¢N 143�1¢E 1,000 18,000 Kubota et al. (1994)
Nopporo Hokkaido/Japan 43�25¢N 141�32¢E 100 1,200 Seino (unpublished)
Taisetsu nipesotu Hokkaido/Japan 43�29¢N 143�04¢E 1,400 1,200 Kubota (1995)
Taisetsu 13–1 Hokkaido/Japan 43�31¢N 143�12¢E 1,000 2,000 Kubota (1995)
Taisetsu 13–2 Hokkaido/Japan 43�31¢N 143�12¢E 1,000 1,600 Kubota (1995)
Taisetsu mikuni Hokkaido/Japan 43�34¢N 143�08¢E 1,000 2,000 Kubota (1995)
Tokachigawa Hokkaido/Japan 43�39¢N 142�57¢E 1,100 65,000 Kubota and Nagaike

(unpublished)
Shiretoko 1 Hokkaido/Japan 44�04¢N 145�02¢E 200 22,500 Kubota (2000)
Shiretoko 2 Hokkaido/Japan 44�04¢N 145�02¢E 250 1,600 Kubota (unpublished)
Shiretoko 3 Hokkaido/Japan 44�04¢N 145�02¢E 250 1,600 Kubota (unpublished)
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